

Al in Manufacturing for Process Optimization

t.h.w.baeck@liacs.leidenuniv.nl

Thomas Bäck, Leiden Institute of Advanced Computer Science

19.09.2024

Universiteit Leiden The Netherlands

Intro: AI (high level)

Automated Machine Learning

Production Process Application Examples

In vitro Discovery Example

Concluding

Foundations

Artificial Intelligence & Machine Learning

- Algorithms coming as close as possible to human capabilities.
- Includes machine learning → Learning from data
- "deep learning" is a subgroup of machine learning

ARTIFICIAL INTELLIGENCE

A program that can sense, reason, act, and adapt

MACHINE LEARNING

Algorithms whose performance improve as they are exposed to more data over time

DEEP Learning

Subset of machine learning in which multilayered neural networks learn from vast amounts of data

© Cousins of Artificial Intelligence | by Seema Singh | Towards Data Science

Foundations

What is "machine learning"?

- Unsupervised supervised reinforcement learning
- Automated machine learning
- State-of-the-art methods in AI research

What else do we need?

- Data preprocessing and cleansing
- Often also feature extraction / engineering
- Optimization methods, also multi-criteria

© 10 Companies Using Machine Learning in Cool Ways | WordStream

1 PC Y

© divis intelligent solutions GmbH

• One algorithm, training and 10-fold cross-validation

• Algorithms: GLM, SVM, Decision Tree, Random Forest, Gaussian processes, partial least squares regression, kernel quantile regression, fuzzy rule sets, feedforward neural network, etc.

• One algorithm, hyperparameter optimization, training and 10-fold cross-validation

• Algorithms: GLM, SVM, Decision Tree, Random Forest, Gaussian processes, partial least squares regression, kernel quantile regression, fuzzy rule sets, feedforward neural network, etc.

• Many algorithms, hyperparameter optimization, training and 10-fold crossvalidation, best model selection

• Algorithms: GLM, SVM, Decision Tree, Random Forest, Gaussian processes, partial least squares regression, kernel quantile regression, fuzzy rule sets, feedforward neural network, etc.

• Many algorithms, hyperparameter optimization, training and 10-fold crossvalidation, best model selection

- Algorithms: GLM, SVM, Decision Tree, Random Forest, Gaussian processes, partial least squares regression, kernel quantile regression, fuzzy rule sets, feedforward neural network, etc.
 T. Bäck, C. Foussette, P. Krause: Automatic Metamodeling of CAE Simulation Models. ATZ Worldwide 117(5), 36-41, 2015.
 - X. Guo, B. van Stein, T. Bäck: A new Approach Towards the Combined Algorithm Selection and Hyperparameter Optimization Problem. IEEE SSCI, 2042-2049, 2019.

© divis intelligent solutions GmbH

A Client Example, 2021: Data Analytics for Production

Thomas Kummer, COO, IOI Oleo GmbH, Witten, Germany

- IOI Challenge: Production of a specialty product for cosmetics industry caused too many out-of-spec (OOS) batches – which could not be sold
- IOI could not identify the root cause
- Available data:
 - 58 production batches of the product
 - 19 sensor signals, about 3,500 data records per batch

Technical Approach (Outline)

 (\mathbf{C}) IOI OLEOCHEMICAL

batch 000028

Data Analytics Steps:

Data preprocessing

Exploratory data analysis

Feature Engineering

Machine Learning

Interpretation and Deployment

Results

Thomas Kummer, IOI Oleo GmbH, Witten, Germany

- "Thanks to the AI-experts, we are now going the crucial step for the optimization of our product. We are very impressed by the results. The cooperation was very pleasant and we experienced the team as highly competent and efficient. We are using this approach also for other products of IOI Oleochemicals and are looking forward to further cooperation. We recommend divis as a competent partner. Next to the professional competence of Thomas Bäck's team, we are also impressed by their ability to focus on our technical requirements and to employ AI-methods specifically, just as required by the task."
- More specifically:
 - OOS batches have been reduced from about 50% to $0\% \rightarrow$ all batches can be sold.
 - IOI decides to roll out data driven analytics to other processes, too.
- More information:
 - Process Optimization at IOI Oleo GmbH divis intelligent solutions GmbH (divis-gmbh.de)
 - Video (in German): Maschinelles Lernen für die Prozessoptimierung: Praxisbeispiel IOI Oleo GmbH YouTube

CM gluthal: 0. IEXASINAET787 avg patch II. 280059954-398

Example 2: Unsupervised Learning – Anomaly Detection in Coils

Process Framework

Implementation of data analytics and optimization loop

© www.arku.com

©www.schulergroup.com

© www.automobil-produktion.de

B. VAN STEIN, M. VAN LEEUWEN, H. WANG, S. PURR, S. KREISSL, J. MEINHARDT, TH. BÄCK: Towards Data Driven Process Control in Manufacturing Body Parts. In: 2016 International Symposium on Computational Science and Computational Intelligence, Las Vegas, NV, Dec. 15-17, 2016, pp. 459-462. IEEE Press, Piscataway, NJ, 2016.

Exploratory Data Analysis

- Data used:
 - 44 measurement columns
 - Oil
 - IMPOC
 - Thickness
 - Roughness
- This coil:
 - Different production slabs
 - Welded together

Automated Coil Anomaly Detection

• Idea: Flag "unusual" coils automatically

Automated Coil Anomaly Detection: 3rd Example

CM gluthal: 0.3556389857787 avg patch/3.280059956398

Example 3: Supervised Learning – Predicting a Quality Measure

Machine Learning: Decision Tree

- Quality measure: Class (OK/NOK)
- Most important split:
 - IMPOC value

Training a Model – Validation – Prediction

- Data used: as before
- Precision measure
 - Indent ...
 - Continuous measure
- Prediction for 100 parts into future
 - Knowing the stack order
 - Therefore knowing the material parameters
 - Fixed cylinder forces

02.10.2024

Z. Ai, I. Heinle, C. Schelske, H. Wang, P.Krause, T. Bäck: A classification-based solution for recommending process parameters of production processes without quality measures. Procedia Computer Science 180, 600-607, 2021

Example 4: Supervised Learning for Recommending Process Parameters

Current Situation

- Stamping process of parts: Difficult to find good process parameters
- Parameter changes are carefully made \rightarrow only few variations available

 Lack of inline quality data → difficult to learn relation between blank properties, process parameters and quality

Idea: Recommending Process Parameters

• Select best fitting known process parameter combination for a given blank / stack

- Training:
- Blank + Process \rightarrow Quality = good
- Deploy:

Blank \rightarrow Process

	Algorithm based on PART QUALITY	Algorithm WITHOUT PART QUALITY
Accuracy*	93.06%	92.47%
Weighted F1 Score**	92.52%	91.83%

* Accuracy = (TP + TN) / (TP + TN + FP + FN) True Positives, True Negatives, False Positives, False Negatives

** F1 = 2 x Precision x Recall / (Precision + Recall) Precision = TP / (TP + FP); Recall = TP / (TP + FN)

Deployed Application

AI [kN]

160

260

160

260

160

260

160

260

AI

[kN]

160

260

160

260

160

260

160

260

Legend deviation between target geometry and measured value

- 1	- 2	-3
- 4	- 6	-6
-0	- (8)	- 9

Process parameters

-	CALIFORNIA (
200		1000	-				
-	-	and the second	-	1.00	ACTOR	Concession of	The local
Sec.	(mire	intie .	dente	dista in	la de la composición de la com	leiei	lated.
	-	C 1 8					

Only the 8 cushion **cyl**inder forces are changed during production — Scaled change force cylinder 2

EVOLUTIONARY OPTIMIZATION IN PRODUCT DEVELOPMENT

Discovery in Vitro

- MacMillan Rabitz groups, about 2008
- Dr. Ofer Shir, LIACS

• Algorithmically guided organic synthesis: Reaction optimization

Organic Synthesis: Results

- We designed an **evolutionary algorithm** to address this experimental combinatorial optimization problem.
- Depicted: The upper 30th percentile of the 96-well plate over 8 iterations.
- The quality of the reaction yield (~65%) was significantly better than the expert's best known reaction (~15%)
- The resultant reaction was of surprising nature, yet, this may not be considered serendipity!

Mixed-Integer Evolution Strategies

• Simple message: Can be used as experimental optimizer

CONCLUDING

Conclusions

- AI-based quality control and process optimization have huge potential
- Applicable for batch- and continuous production processes
- Combination of modeling, prediction, and optimization
- Questions?

t.h.w.baeck@liacs.leidenuniv.nl