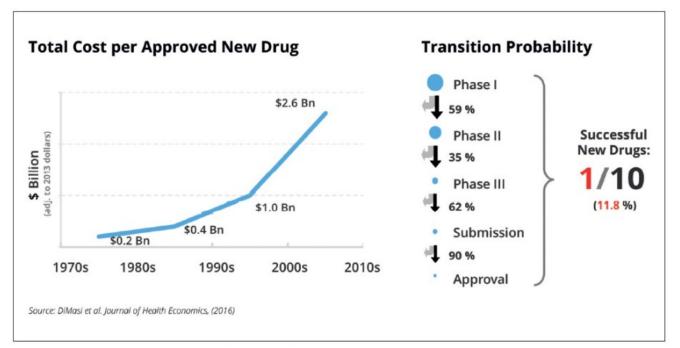


Al-Powered Structural Bioinformatics and Computational Technologies for Drug Discovery

3rd Leiden Drug Development Conference (LDDC-3) 19 September 2024

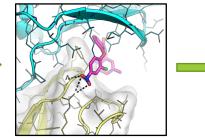


Kanin Wichapong, PhD

Chief Technology Officer (CTO) & Project Manager Hillmark B.V., Maastricht The Netherlands k.wichapong@hillmarkbiopharma.nl https://www.hillmarkbiopharma.com

Hillmark B.V. The problem

Companies spend more than ever on new drugs **but** few make it to the market



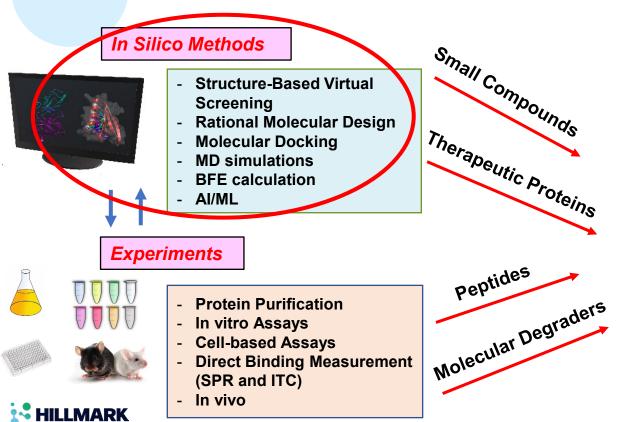
page 02

Hillmark B.V. The opportunity

Hillmark promises smarter discovery and optimization through computational rationalized, **green** and **sustainable** approaches

Computational structure-based molecular design and lead finding

- accelerated discovery & development
- focused discovery through application of in silico ADME-Tox filters
- o reduction in time and cost
- more focused in vitro testing avoiding unnecessary testing and reduction of waste → lowering of environmental fingerprint


Development of Bioactive Compounds

👥 HILLMARK

Drug Targets: Small Compounds In Silico Methods - Enzymatic Proteins - Receptors Structure-Based Virtual - Protein-Protein Interactions Screening - IDPs/IDPRs (Histones) Rational Molecular Design - Both intracellular and extracellular Therapeutic Proteins Molecular Docking MD simulations BFE calculation AI/ML **Experiments Drug Targets in:** Peptides - Inflammatory Diseases Molecular Degraders - Cardiovascular Diseases - Protein Purification - Sepsis In vitro Assays - Cancer **Cell-based Assays** - Viral Diseases **Direct Binding Measurement** (SPR and ITC) In vivo page

page 04

How do we do it?

Drug Targets:

- Enzymatic Proteins
- Receptors
- Protein-Protein Interactions
- IDPs/IDPRs (Histones)
- Both intracellular and extracellular

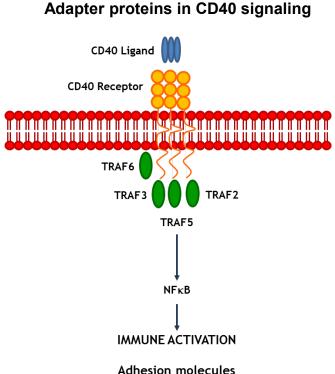
Drug Targets in:

- Inflammatory Diseases
- Cardiovascular Diseases
- Sepsis
- Cancer
- Viral Diseases

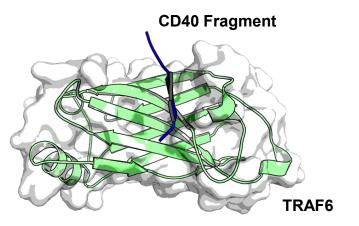
HILLMARK smart lead design and consulting

Showcase Projects

TECHNOLOGY


Showcase 1: Development of Small Molecule Inhibitors

Structure-Based Virtual Screening (SBVS) to Identify Novel TRAF6 Inhibitors


Other Successful Study Targets: coagulation factors V and VIII, Dengue Protease, AMPK, Myt1 Kinase, Activated Protein C, SecA, Streptokinase, TRAF2, SARS-CoV-2 RdRp, SMPD3

TNF Receptor Associated Factor - TRAF

Chemokines/Cytokines

PDB ID 1LB6: TRAF6-CD40 Complex

CD40-TRAF6 interactions drive atherosclerosis

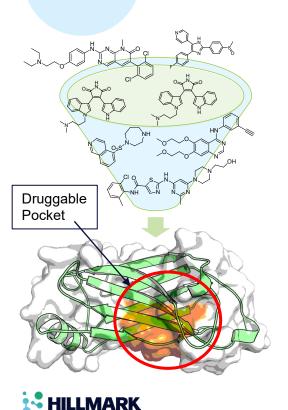
AIM: To develop inhibitors to disrupt CD40-TRAF6 interactions

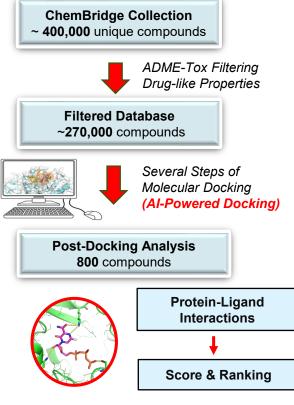
Lutgens E et al., *J. Exp. Med*., 2010

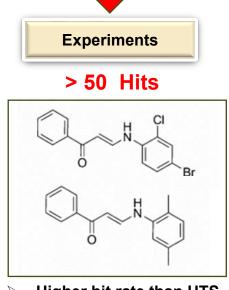
Find a New Compound – Finding a Needle in a Haystack

https://zinc.docking.org/ **ZINC database** – a DB of commerciallyavailable compounds

- contains over 750 million purchasable compounds





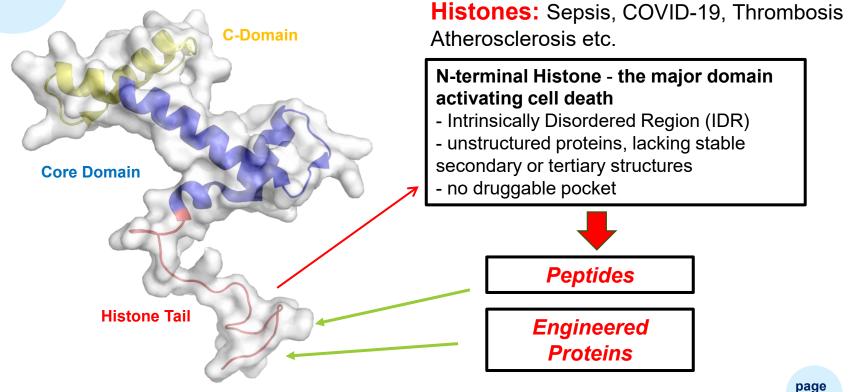


Structure-Based Virtual Screening (SBVS)

- Higher hit rate than HTS
- > IC_{50} at low μ M level
- Inhibitory Activity in both in vitro & in vivo experiments

page 010

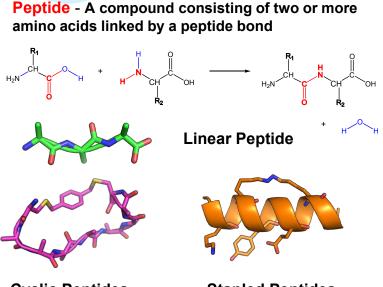
Chatzigeorgiou, Seijkens et al **PNAS** 2014; Zarzyka et al. **J Chem Inf Mod** 2015; Seijkens et al, **J Am Coll Cardiol**. 2018


Showcase 2: Design and Development of Peptidic Inhibitors

Structure-Based Methods to Develop Peptidic Inhibitors Targeting Extracellular Histones

Other Successful Study Targets: CCL5-HNP1, GPIbα-VWF A1, CXCR4-CXCL12

Targeting Extracellular Histones



012

Wildhagen K et al, Thromb Res. 2015, Huckriede J et al, Front Cell Infect Microbiol. 2021, Nicolaes GAF and Soehnlein O., Trends Pharmacol Sci. 2024, Keulen GM et al., Curr. Opin. Hematol. 2024

Peptide Design

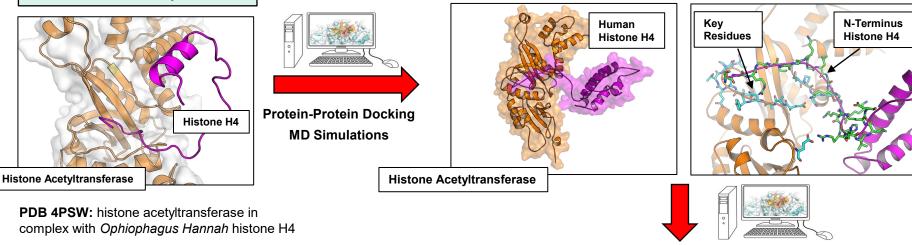
Cyclic Peptides

Stapled Peptides

other types of peptidic inhibitors (or peptidomimetics): D-Amino Acid peptides, Backbone extension, $C\alpha$ -replacement etc.

Peptide design is challenging

Peptide with 2 AA	= 20 X 20	= 400
Peptide with 3 AA	= 20 X 20 X 20	= 8,000
Peptide with 4 AA	= 20 X 20 X 20 X 20	= 160,000
•		
•		
•		
Peptide with 10 AA	= 20 X 20 X 20 X 20 X 20 X 20 X 20 X 20 X 20 X 20	= 10,240,000,000,000


More than 10,000 billion possibilities

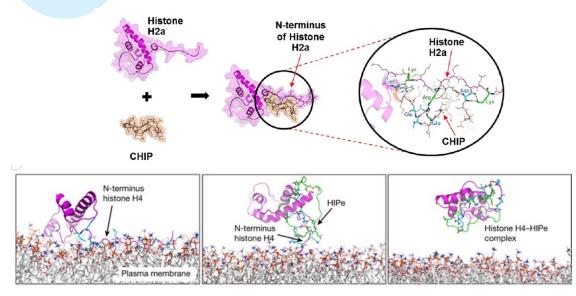
How to find one potential peptidic inhibitor from these 10,000 billion candidates?

Structure-Based Peptide Design: Histone H4 Inhibitors

1. Identification of (related) Protein-Protein Complex

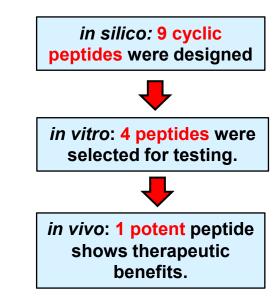
3. In Silico Peptide Design

2. Determination of histone H4-binding protein complex


4. Binding Free Energy (BFE) Calculations

page

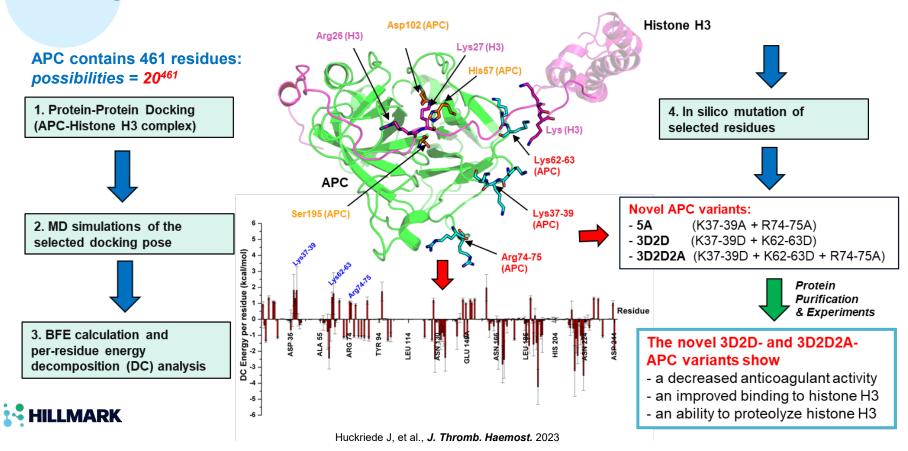
014


Anti-Histone Peptide Inhibitors

Newly Developed Histone Inhibitors

- demonstrate inhibitory activity (in vitro and functional assays)
- exhibit potential therapeutic benefits in mouse models

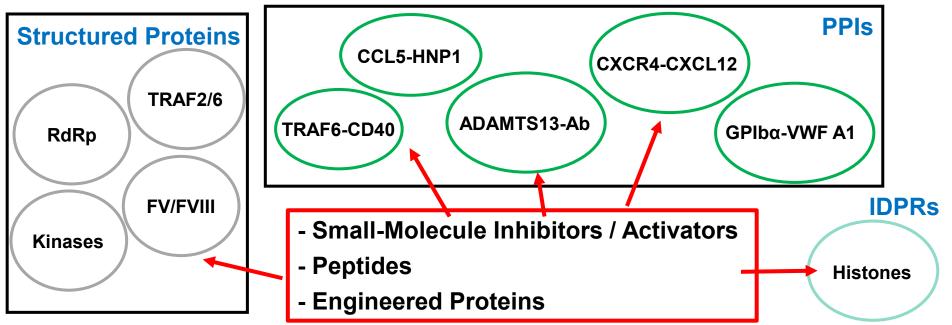
Peptide contains 28 AA = 20²⁸ possibilities


Showcase 3: Design and Development of Therapeutic Proteins

Engineered Therapeutic Proteins: Novel Activated Protein C (APC) variants

Other Successful Study Targets: Factor V, Factor VIII, ADAMTS13, Prothrombin, Protein S, Annexin A5

Design of Novel APC Variants



Conclusion

By use of computer-based methods (in silico),

- we can significantly reduce numbers of compounds subjected to experimental testing (*in vitro* & *in vivo*)
- we have developed lead compounds:

Acknowledgment

Department of Biochemistry, CARIM, Maastricht University, The Netherlands

- Dr. Karin Wildhagen
- Dr. Barbara Zarzycka
- Dr. Danielle Beurskens
- Joram Huckriede
- Che Yee Ng
- Dr. Xiaosong Liu
- Hessel Poelman
- Jiachang Tao
- Dr. Emre Bülbül
- Dr. Bogac Ercig
- Dr. Angelina Pavlic
- Dr. Johana Hrdinova
- Gwen Keulen
- Prof. Chris Reutelingsperger
- Dr. Gerry Nicolaes

https://www.3dstructure-function.nl/ https://www.hillmarkbiopharma.com/

- Dr. Carlos Silvestre-Roig
- Quinte Braster
- Ariane Schumski
- Dr. Anna Lívia Linard Matos
- Prof. Oliver Soehnlein

Department of Medical Biochemistry,

Subdivision of Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, The Netherlands

- Dr. Tom Seijkens
- Dr. Claudia van Tiel
- Prof. Esther Lutgens

Thank you for your Attention