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WHAT IS QSPR: QUANTITATIVE STRUCTURE-PROPERTY
RELATIONSHIP MODELLING?

Prediction of chemical bioactivity
and physical properties from the
molecular structure
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QSPR modelling is used in both industry
and academia.

Development typically involves common
steps and components.

Cheminformaticians prefer the flexibility of
Python over available tools.

Experimenting with differ
workflows increase



A flexible and easy to use Quantitative Structure-Property
Relationship Modelling Framework: QSPRpred

¢

:

"

Modular: simple to add new models, descriptors, etc.

z’&

A\

O Easy to use: Includes Command Line Interface,
"= Python APl and tutorials.

@ New features are reqularly added

g3 Compatible with de novo drug design package:
o DrugEx*

(rib Code available on GitHub and pip installable
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THE QSPRPRED WORKFLOW: FUNCTIONALITIES
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DRUGEX: GENERATE NOVEL MOLECULES
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DRUGEX: GENERATE NOVEL MOLECULES
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HELPFUL TUTORIALS TO GET STARTED

Table of Contents

This tutorial tries to cover the most important topics on the various features of QSPRpred, but it is not exhaustive. For more detailed
information on the features of the package, please refer to the documentation.The tutorial data is available through OneDrive (just unzip and
place the two datasets a2a_LIGANDS.tsv and AR_LIGANDS.tsv inthe tutorial_data folder) or recreate the dataset yourself by running
tutorial_data/create_tutorial_data.py after you have installed QSPRpred.

The Quick Start tutorial is designed to get you up and running with QSPRpred as quickly as possible while the rest dedicates more time to
explain each feature in more detail. The Basics cover the most commonly used functionality of QSPRpred. The Advanced tutorials cover more

advanced topics and are designed for users who are already familiar with QSPRpred more in depth or are looking for more niche features. For
detailed description of all QSPRpred classes and functions, as well as examples of how to use the command line interface, see the

documentation pages.

e Quick Start: A quick start guide to using QSPRpred.
* Basics

o Data
= Data Collection with Papyrus: How to collect data with Papyrus.

= Data Preparation: How to prepare data for QSPRpred.
= Data Representation: How data is represented in QSPRpred (MolTable, QSPRDataset, etc.).

= Data Splitting: How to split data into training, validation, and test sets.
= Descriptors: How to calculate descriptors for molecules.

= Searching, Filtering and Plotting: How to search and filter data.

= Applicability Domain: How to calculate the applicability domain of a model.

o Modelling

= (lassification: How to train a classification model.

= Logging: How to set-up logging.

= Model Assessment: How to assess the performance of a model.
o QOther

= Benchmarking: How to benchmark QSPRpred.

m Serializatinns How tn cave and lnad datasete and mndels
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HELPFUL TUTORIALS TO GET STARTED

guick_startipynb M X
Scripts > QSPRpred > tutorials > quick_start.ipynb > M Quick start guide to QSPRpred > m# Creating a dataset
+ Code + Markdown | [ RunAll D Restart | Variables = Outline

Quick start guide to QSPRpred

Welcome to the quick start guide to QSPRpred. Here we will cover the fundamentals of using QSPRpred. We will show you how to create a dataset, train a Quantitative Structure-
(QSPR) model, and make predictions. This tutorial is not meant as an introduction to QSPR modelling and assumes a base level of knowledge on the topic. If you are interested in G It H u b
QSPR modelling, you could have a look at these

While this tutorial provides a good starting point, there are many additional features that are not covered here. For more in-depth information, you can explore and consult the

=N |
“ Creating a dataset

In this tutorial, we will work with a dataset containing bioactivity data for various compounds tested on the human adenosine A2A receptor. The data was collected from . a curated bioactivity
database. The tutorial data is available through (just unzip and place the two datasets A2A L IGANDS.tsv and AR_LIGANDS.tsv inthe tutorial data folder) or recreate the dataset
yourself by running tuterial_data/create_tutorial_data.py.

To start we will load the tsv file containing the dataset.

pandas pd
df = pd.read_csv{ tutorial data/A2ZA LIGANDS.tsv', sep="\t")

df.head()

Discover the world at Leiden University 19



EXTENSIVE DOCUMENTATION

# QSPRpred

@A / Welcome to QSPRpred's documentation!

Welcome to QSPRpred’s documentation!

Welcome to QSPRpred's QSPRpred is open-source software libary for building Quantitative Structure Property Relationship
documentation! (QSPR) models developed by Gerard van Westen's Computational Drug Discovery group. It

Installation provides a unified interface for building QSPR models based on different types of descriptors and

machine learning algorithms. Here you will find the installation guide (Installation), an overview of

C d Line Interf Usag
L Rl L e e available features (Overview of available features), usage examples (Command Line Interface Usage)

Qverview of available features and AP| documentation (Python API). For tutorials and examples of the Python API, please visit the

Python API QSPRpred GitHub repository.

Contents:

Welcome to QSPRpred’s documentation!

« Installation
« Command Line Interface Usage

o CLI Example

Overview of available features
Python API

Discover the world at Leiden University
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APPLICATION:
INTEGRATING PHARMACOKINETICS
IN GENERATIVE DRUG DESIGN
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USING QSPRPRED PK & AFFINITY MODELS IN DRUGEX
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Scoring

QSPR models for adenosine
A,,R binding affinity &
human pharmacokinetics
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)QSPRPRED MODELS PREDICT AFFINITY AND UNBOUND FRACTION
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TAKE HOME MESSAGES

QSPRpred is a versatile tool for Quantitative

Structure-Property Relationship modelling
Contains extensive data-preprocessing functionality.

Suitable for building single-task, multi-task and proteochemometric models.

QSPRpred is simple but flexible

Has a modular structure that allows for easily adding new functionalities.
Comprehensive tutorials available

QSPRpred is open-source
The code can be found on the Leiden Computational Drug Discovery group
Github
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