	Session A1	Session B1	Session C1	Session D1	Session E1
	CATALYSIS & REACTIVITY	ELECTRONIC-STRUCTURE THEORY	BIOSYSTEMS	COMPUTING & SOFTWARE	CHEMICAL STRUCTURE & BONDING
	Reactants, reactions, and catalysis	Green's function methods	Cheminformatics & medicinal chemistry	Quantum computing	Conjugated systems
	Chair: Kevin Naidoo	Chair: Andreas Görling	Chair: Stacey Wetmore	Chair: Ivan Kassal	Chair: Peter Schreiner
08:30	Raghavan Sunoj [963]	Dominika Zgid [924]	Jean-Louis Reymond [986]	Birgitta Whaley [919]	Debashree Ghosh [871]
	Computational Chemistry and Machine Learning Approaches in Asymmetric Catalysis	Fully self-consistent finite temperature GW for correlated systems	Chemical Space from First Principles	Finding Quantum Advantage for Quantum Chemistry	Structure and photophysics of melanin
08:55	Stuart Macgregor [926]	Wim Klopper [458]	Jan Řezáč [480]	Artur Izmaylov [131]	Abhik Ghosh [973]
	Modelling Ruthenium-Catalyzed N- Directed C–H Functionalization	Bethe-Salpeter Equation for Calculations of X-Ray Spectra	PM6-ML: Synergy of Semiempirical Quantum Chemistry and Machine Learning	Optimizing Quantum Algorithms for Next-Generation Quantum Chemistry	Ground- and excited-state charge flow phenomena in metallocorroles
09:20	Ashique Lal [207]	Marios-Petros Kitsaras [124]	Elfi Kraka [130]	Davide Castaldo [327]	Martin Rahm [23]
	Unraveling CO2 Reduction with DFT Molecular Dynamics at Interfaces	Analytic Bethe-Salpeter equation excited-state gradients	Revolutionizing Drug Discovery with SmartCADD: AI Meets Quantum Chemical Precision	Accelerating quantum chemistry simulations on quantum computers with signal processing	Superconducting Radical Pancakes
09:35	Boris Maryasin [127] In Silico Organic Chemistry: From Small to Large Molecular Scales	Arno Förster [572] Consistent merging of GW and T- matrix self-energies	Jean-Philip Piquemal [699] A Foundation Model for Accurate Simulations in Drug Design	Karl Michael Ziems [260] Simulation of spectroscopic properties on quantum computers	Takafumi Shiraogawa [313] Antisymmetry rules of response properties in certain chemical spaces
09:50	- 10:20	break			

11:40

- 13:20

	Session A2	Session B2	Session C2	Session D2	Session E2
	MACHINE LEARNING	CATALYSIS & REACTIVITY	ELECTRONIC-STRUCTURE THEORY	BIOSYSTEMS	ELECTRONIC-STRUCTURE THEORY
	ML for simulations	Surfaces and heterogenous catalysis	Numerical methods and techniques	Macromolecules	Ultrahigh accuracy and QED
	Chair: Heather Kulik	Chair: Angel Martín Pendás	Chair: Stefan Grimme	Chair: Benedetta Mennucci	Chair: Fritz Schaefer
10:20	Gábor Csányi [967]	Philippe Sautet [873]	Peter Gill [953]	Lynn Kamerlin [49]	Trond Saue [349]
	Machine learning force fields shows extreme generalisation	Can photocatalysis be sustained in the dark? A modeling perspective	A New Approach to Density Functional Quadrature	Loop Dynamics and the Origins of New Proteins	Towards Highly Accurate Calculations of Molecular Properties
10:45	Alexandre Tkatchenko [995]	Núria López [972]	Luca Frediani [896]	Subha Kalyaanamoorthy [653]	Jacek Komasa [178]
	Beyond AlphaFold and Empirical Potentials: Next-Generation Molecular Simulations with Machine-Learned Force Fields	Simulations in complex environments from DFT to Machine Learning	Quantum Chemistry with Multiwavelets: from exotic niche to widespread applicability	From Atoms to AI: Computational Design of Enzymes and Therapeutics	Nonadiabatic relativistic and QED energy levels of the hydrogen molecule
11:10	Jelle Vekeman [785]	Christopher Stein [287]	Alexander Stark [157]	Xiang Sheng [196]	Ádám Margócsy [775]
	Machine Learning Potentials at Speeds Comparable to Reactive Force Fields	Simple Embedding Models for Metallic Surfaces	Improving Slater Orbital Integration Accuracy through Prolate Spheroidal Coordinates	Computational Modeling and Rational Design of Enzymes	Ultra-precise rovibrational intervals for the excited helium dimer
			Trotate Spherolaul Coolumates		
11:25	Michael Gillhofer [317] Buffer Region embedding for MLP/MM simulations in complex environments	Mireia Segado-Centellas [716] Water as Solvent and Reactant: Molecular Interactions and	Eduard Matito [136] Modern Density Functional Approximations are III-designed to	Adil Kabylda [547] (Bio)molecular Simulations with Pretrained Network and	Pekka Pyykkö [486] Is relativistic quantum chemistry a good theory of everything?
		Electrokinetics	Compute Vibrational Properties	Pairwise Force Fields	

	Session A3	Session B3	Session C3	Session D3	Session E3
	ELECTRONIC-STRUCTURE THEORY	ENERGY & MATERIALS	CATALYSIS & REACTIVITY	QUANTUM DYNAMICS	BIOSYSTEMS
	Coupled-cluster theory	Condensed systems	Molecular and reaction design	Nonadiabatic dynamics	Macromolecules
	Chair: Jürgen Gauss	Chair: Yi Qin Gao	Chair: Vidar Remi Jensen	Chair: Ove Christiansen	Chair: Elfi Kraka
13:20	Piotr Piecuch [923]	Francesco Paesani [752]	Yousung Jung [441]	Alicia Palacios [804]	Ferran Feixas [622]
	Recent Advances in the CC(P;Q) Methodology: CIPSI-Driven and Adaptive Approaches	Predictive Data-Driven Many-Body Simulations of Water Across Phases and Environments	Predicting Organic Reactions Based on Electron Movements using Machine Learning	Correlated electron and nuclear dynamics at the attosecond time scale	Navigating the Conformational Landscape of Interacting Biomolecules with Enhanced Sampling
13:45	Henrik Koch [862]	Damien Laage [918]	Jan Halborg Jensen [440]	Jian Liu [86]	Taye Demissie [673]
	Generalized coupled cluster theory for ground state conical intersections	On the mechanisms of hydronium and hydroxide diffusion in water	Computational discovery of new molecules that can actually be made	Nonadiabatic Field: A Conceptually New Approach for Nonadiabatic Transition Dynamics	Computationally-Guided Design and Synthesis of Metal Complexes with Enhanced Cytotoxicity
14:10	Karol Kowalski [199]	Jochen Blumberger [54]	Kevin Naidoo [171]	Peter Schürger [166]	Petra Imhof [339]
	Coupled cluster downfolding formalisms for simulating many-body systems	Perturbed neural network potentials for condensed-phase simulations with external E-fields	An end-to-end integrated experimental computational drug discovery pipeline	Exact Factorization: New Perspective and Applications to Nonadiabatic Dynamics	INTERPLAY OF HYDRATION AND PROTON TRANSFER IN CYTOCHROME C OXIDASE
14:25	Francesco Evangelista [348]	Marco Nascimento [223]	Gyula Hoffka [815]	Oliver Kühn [412]	Ana Gamiz-Hernandez [917]
	Reduced Dimensionality Models of Electrons via Exact Unitary Transformations	Reducing the Coefficient of Friction of Water-Based Drilling Fluids.	Strategies for Generating Computationally Designed Enzymes with Nature-Like Efficiencies	BSE@GW-Based Spin-Vibronic Quantum Dynamics Using the Linear Vibronic Coupling Model	Proton coupled electron transfer in mycobacterial respiratory supercomplex III2IV2

14:40 - 15:10 break

	Session A4	Session B4	Session C4	Session D4	Session E4
	ELECTRONIC-STRUCTURE THEORY	MACHINE LEARNING	BIOSYSTEMS	CHEMICAL STRUCTURE & BONDING	QUANTUM DYNAMICS
	Explicit correlation	ML for chemical reactions	Macromolecules	Early elements	Ultrafast dynamics
	Chair: Wim Klopper	Chair: Sigbjørn Løland Bore	Chair: Qiang Cui	Chair: Gabriel Merino	Chair: Thomas Bondo Pedersen
15:10	Seiichiro Ten-no [874]	Boris Kozinsky [971]	Modesto Orozco [819]	Miroslav Urban [270]	Françoise Remacle [887]
	Simplified explicit correlation via projective transcorrelation	Symmetry and physics guided machine learning of microscopic interactions	Nucleic acids in the frontier between AI and simulation.	C—Li—C lithium bonds in metal cross-linked polyethylene chains	Controlling ultrafast molecular reactivity with atto and few femtosecond pulses
					<u> </u>
15:35	Ali Alavi [853]	Fernanda Duarte [842]	Alessandra Magistrato [202]	ED Jemmis [163]	Michal Repisky [962]
	Recent developments with Transcorrelated methods	Modelling Chemical Reactions in Solution with MLIPs	Exploring RNA Metabolism through All-Atom Simulations	An Extended Rudolph Diagram explains the Structural Chemistry of Boron	Relativistic Real-Time Dynamics: Ultrafast Chirality in Molecules
16:00	Éva Zsuzsanna Mihálka [470]	Joakim Jestilä [246]	Mariastella Cascone [544]	Celina Sikorska [738]	H. Bernhard Schlegel [197]
	Geminal-based wavefunctions with an explicitly correlated extension	Data-efficient machine learning potentials for atomic layer deposition	Investigating the ET cascade in Cryptochrome 4 of different birds	Boron-based superalkalis for inert molecules activation: a hybrid QM- QSPR approach	Reducing the Cost of TD-CI Simulations of Strong Field Ionization
16:15	Silvia Di Grande [587]	Jessica White [667]	David Carrasco De Busturia [165]	Tatiana Korona [276]	Jonathan Fetherolf [701]
	Pisa Composite Schemes: Advancing Scalable Accuracy in Thermochemical	Enhancing Mineral Carbonation Through Molecular Simulations on	Multiphoton Absorption Spectra of Channelrhodopsin-2 via Multiscale	Defect-induced excited states in boron nitride - a theoretical study	Probing Nuclear–Electronic Orbital Dynamics with Cavity Emission
	Predictions	Mineral Surfaces	Simulation Methods	boron miliae - a incoretical study	Dynamics with Cavity Linission

16:30 - 17:00 break

	Session A5	Session B5	Session C5	Session D5	Session E5
	ELECTRONIC-STRUCTURE THEORY	MACHINE LEARNING	COMPUTING & SOFTWARE	QUANTUM DYNAMICS	CATALYSIS & REACTIVITY
	Density-functional development	ML for chemical design	Quantum computing	Ultrafast dynamics	Electrochemistry and related
	Chair: Weitao Yang	Chair: David Balcells	Chair: Birgitta Whaley	Chair: Federica Agostini	Chair: Cristina Trujillo
17:00	Martin Head-Gordon [957]	Clémence Corminbœuf [446]	Ivan Kassal [356]	Fernando Martín García [663]	Samira Siahrostami [21]
	Some recent advances in density functional theory	Do we really design molecules?	Simulating Quantum Chemical Dynamics on Quantum Computers	New directions in Theoretical Attosecond Chemistry	Computational Discovery of Materials for Selective Electrosynthesis of H2O2
17:25	Erin Johnson [505]	Anatole von Lilienfeld [442]	Marco Govoni [1007]	Ove Christiansen [959]	Maria Besora [402]
	Three short dispersion-corrected DFT vignettes	Quantum machine learning in chemical space	Simulating condensed systems on quantum computers using FCI-in- DFT embedding	Time-dependent dynamics with vibrational coupled cluster theory	Computational Studies of Polyoxometalate-Catalyzed Water Oxidation: Electrochemistry, Chemistry and Statistics
17:50	Fritz Schaefer [687]	Konstantinos Vogiatzis [10]	Maria-Andreea Filip [419]	Jiří Vaníček [691]	Tangui Le Bahers [169]
	Does Jacob's Ladder Lead to Density Functional Heaven?	Molecular Topology Meets AI: Persistent Homology for Molecular Discovery	Current and Future Algorithms for Accelerated Hamiltonian Simulation	Can increasing the size of a molecule reduce decoherence?	Using grand-canonical DFT to investigate electrochemical reactions on semiconductor surfaces
18:30	Viktor Staroverov [154] Electron-nucleus cusps without spherical averaging	Thijs Stuyver [43] Combining chemical theory and ML techniques to accelerate reaction discovery	Yu Zhang [20] Quantum Information-Inspired Algorithms for Quantum Chemistry	Nazanin Jamshidi [140] Quantum Dynamics of Plasmonic Nanocavities and Strong Coupling with Emitters	Melissa Manetsch [362] Quantifying and Tuning Local Electric Fields in Confined Catalytic Systems

	Session A1	Session B1	Session C1	Session D1	Session E1
	CATALYSIS & REACTIVITY	ELECTRONIC-STRUCTURE THEORY	BIOSYSTEMS	ELECTRONIC-STRUCTURE THEORY	SPECTROSCOPY
	Surfaces and heterogenous catalysis	Many-body methods & NCI	Bio/nanosystems	Relativistic quantum chemistry	Polarization models
	Chair: Stuart Macgregor	Chair: Seiichiro Ten-no	Chair: Michele Cascella	Chair: Trond Saue	Chair: Russell Boyd
08:30	Anastassia Alexandrova [38]	Katarzyna Pernal [875]	Daan Frenkel [703]	Wenjian Liu [436]	Benjamin Stamm [798]
	Catalytic interfaces in and out of equilibrium	Two-fermion adiabatic connection methods for multireference electron correlation	Multivalency and cell recognition	Unified Implementation of Relativistic Hamiltonians and Wavefunctions	ddX: Polarizable Continuum Solvation from Small Molecules to Proteins
08:55	Ataualpa Braga [901]	Janus Juul Eriksen [810]	Wataru Shinoda [782]	Jürgen Gauss [438]	Kaline Coutinho [938]
	Cluster Modeling of Acid Sites and	Third-Generation Many-Body	Endosomal Escape of Nucleic Acids	Cholesky decomposition: relativistic	Solvent Effect in Electronic Properties:
	Catalytic Mechanisms in H-ZSM-5	Expanded Full Configuration Interaction Theory	via Lipid Nanoparticles: A Coarse- Grained Molecular Dynamics Study	quantum chemistry and magnetic properties	Approach with Solute&Solvent Polarization
		interaction Theory	Grainea Wolecular Dynamics Study	properties	Polarization
09:20	Mikhail Polynski [357]	A. Daniel Boese [443]	Katie Wilson [97]	Achintya Kumar Dutta [215]	Cedrix Dongmo Foumthuim [624]
	Predicting Nanocatalyst Activity: Fast	Another Angle on Benchmarking	Modeling Bacterial Membranes:	Frozen-Natural-Spinors: An Efficient	Modeling Spectroscopic Properties of
	PES Exploration and Data-Efficient	Noncovalent Interactions	Role of Composition on	Framework for Relativistic Quantum	Biomolecules
	Machine Learning		Antimicrobial Peptide Mechanism	Chemistry Methods	
00.25	Desil Dein [47]	Andreas Hansey [424]	1-2- C-ih [507]	Fril. Danas and Hadanind [407]	T N-++-1: [205]
09:35	Basil Raju [47]	Andreas Hansen [121]	João Coimbra [597]	Erik Donovan Hedegård [497]	Tommaso Nottoli [305]
	Novel Computational Approach for Determining Surface pKa at Metal-	Accurate calculation of non-covalent interactions for large molecules	The molecular mechanism of membrane disruption by venom	Treating heavy transition metals in solvation properly	A Novel Implementation of CASSCF for Energy and Response Properties
	Aqueous Interfaces	interactions for large molecules	PLA2-like proteins	σοινατιοπ ριορετιγ	Lifely wild nesponse Flopelites
	. 1440000		. L. L. me proteins		

09:50 - 10:20 break

- 13:20

11:40

	Session A2	Session B2	Session C2	Session D2	Session E2
	CATALYSIS & REACTIVITY	ENERGY & MATERIALS	ELECTRONIC-STRUCTURE THEORY	QUANTUM DYNAMICS	BIOSYSTEMS
	Molecular and reaction design	Materials and energy	Berry phase & complex wave functions	Ultrafast dynamics	Bio/nanosystems
	Chair: Odile Eisenstein	Chair: Leticia González	Chair: Henrik Koch	Chair: Fernando Martín García	Chair: Modesto Orozco
10:20	Satoshi Maeda [307]	Laura Gagliardi [702]	Hardy Gross [949]	Federica Agostini [388]	Biswarup Pathak [921]
	Reaction pathway network representation for predicting unknown chemical reactions	Theory, Computation and Machine Intelligence for Reticular Chemistry	Molecular Berry phase without adiabatic approximation	Theory and simulations of ultrafast dynamics in molecules	Artificially Intelligent Nanopores for High-Throughput DNA Sequencing
10:45	Markus Reiher [80]	Elena Besley [763]	Joseph Subotnik [686]	Morgane Vacher [820]	Matteo Dal Peraro [728]
	Machine Learning for First-Principles Reaction Network Exploration	Crystal embedded multi-reference method for studying strongly correlated materials	Beyond Born-Oppenheimer: Phase Space Approaches to Electronic Structure	Simulating photo-induced processes in molecules: methodological aspects and attochemical applications	A "Structure Transformer" for Integrative Structural Biology and Molecular Design
11:10	Derek Ahneman [161]	Tim Kowalczyk [239]	Ansgar Pausch [581]	Yi Zhao [720]	Gioacchino Schifino [580]
	Building datasets and ML models to predict stepwise organic reactivity	Electronically Excited States and Interlayer Heterogeneity in Covalent Organic Frameworks	Effects of the molecular Berry curvature in relativistic systems	Charge/Energy Transfer in Extended Systems Simulated from Stochastic Schrödinger Equations	Computational Design of Aptasensors for West Nile Virus Detection
11:25	GiovanniMaria Piccini [698]	Shubhajit Das [609]	Bang Huynh [191]	Angela Wilson [680]	Samaneh Davoudi [79]
	Automatic Reaction Discovery by Biasing Deep-Learned Skewed Distributions	Navigating the Landscape of Metal- Organic Framework Catalysts	Symmetry and interpretation of complex orbitals and wavefunctions	Quantum electron dynamics and polaritonic chemistry	Understanding Estrogen's Affinity for GPER using Molecular Dynamics Simulations

14:40

- 15:10

	Session A3	Session B3	Session C3	Session D3	Session E3
	ELECTRONIC-STRUCTURE THEORY	MACHINE LEARNING	MOLECULAR DYNAMICS	QUANTUM DYNAMICS	CHEMICAL STRUCTURE & BONDING
	Density-functional development	ML for chemical reactions	Honorary session: 40 years of AIMD	DMRG and MCTDH	f-block elements
	Chair: Miroslav Urban	Chair: Francesco Paesani	Chair: Matteo Dal Peraro	Chair: Françoise Remacle	Chair: Pekka Pyykkö
13:20	Kieron Burke [922]	Teresa Head-Gordon [847]	Roberto Car [987]	Irene Burghardt [666]	Karin Fink [722]
	Approximate norms for approximate functionals	Machine Learning and Artificial Intelligence for Predictive Chemistry	Ab-initio Molecular Dynamics of Ferroelectrics	Multiconfigurational quantum dynamics of exciton transport in organic semiconductors	Quantum-chemical calculations on magnetic and electronic properties of lanthanide compounds
13:45	Eunji Sim [807]	Dennis Salahub [91]	Ursula Röthlisberger [960]	Zhigang Shuai [773]	Miho Hatanaka [713]
	Clarifying the Role of Density-	Towards ML- and QML-accelerated	Adaptive On-the-fly ML-MTS to	Time-dependent DMRG simulation	Theoretical and Data-Driven
	Corrected DFT in Electronic Structure	discovery of catalytic materials and	Accelerate First-Principles Based	for spin transport in helical	Approaches to Lanthanide
	Calculations	mechanisms	Molecular Dynamics Simulations	molecular wires	Photofunctional Materials
14:10	Jacques Desmarais [128]	Jordi Buils [479]	Mark Tuckerman [395]	Yuki Kurashige [56]	Sergey Varganov [524]
11.10	Meta Generalized Gradient	Data-Driven Methods for Solving	Beating the viscosity-conductivity	Tensor and Neural networks for	Ab initio description of vibronic
	Approximation Made Magnetic	Multi-Species Multi-Equilibria Self-	inverse relation in emerging	quantum dynamics with many	emission bands in lanthanide
	,,	Assembly of Metal-Oxide	battery applications	degree-of-freedom	complexes
		Nanoclusters			
14:25	Priya Priya [692]	Haobo Li [26]	Amin Alibakhshi [771]	Henrik Larsson [134]	Meagan Oakley [700]
_1.23	Green's function formalism for kinetic	Machine Learning Expands	Quantum Chemistry in Machine-	Rigorously computing thousands of	Relativistic Quantum Chemical
	energy density functional for atoms.	Computational Chemistry into Big	Learning Era: How to Assess the	vibrational states using tensor	Investigation of Actinide Covalency
	3,, ,, ,,	Datasets for Catalysis	Reliability?	network methods	Measured by EPR

16:30

- 17:00

	Session A4	Session B4	Session C4	Session D4	Session E4
	CATALYSIS & REACTIVITY	SPECTROSCOPY	BIOSYSTEMS	ELECTRONIC-STRUCTURE THEORY	ENERGY & MATERIALS
	Surfaces and heterogenous catalysis	Methods for excited electronic states	Multiscale modelling	Strong correlation & entanglement	Condensed systems
	Chair: Philippe Sautet	Chair: Frank Neese	Chair: Marco De Vivo	Chair: Piotr Piecuch	Chair: Marco Nascimento
15:10	Annabella Selloni [748]	Emmanuel Fromager [755]	Benedetta Mennucci [832]	Shuhua Li [881]	Nicola Gaston [955]
	Water dissociation at electrified oxide- electrolyte interfaces from machine learning simulations	N-centered ensemble density functional theory of electronic excitations	Photoinduced Biological Function: Bridging Electronic Excitations to the Functional Outcome	Block-correlated Coupled Cluster Methods for Strongly Correlated Systems	Why is gallium liquid at room temperature?
15:35	Akira Nakayama [681]	Weitao Yang [956]	Paula Homem-de-Mello [685]	Mario Piris [16]	Pavel Jungwirth [664]
	Molecular Insight into Adsorption and Conversion at the Liquid/Solid-Oxide Interface	ΔSCF Excited-State Approach: Theoretical Foundation, Fractional Charges, and Orbital Energies	Design of Photosensitizers for Photodynamic Therapy	Expanding the Frontiers of Natural Orbital Functional Theory	Electrolyte-to-metal transition in ammonia solutions of alkali metals by AIMD
16:00	Seungjae Kwak [437]	Momir Mališ [787]	Yingjie Wang [117]	Jiří Pittner [77]	Sheh-Yi Sheu [19]
	Muti-scale Approach to Understanding Superlattice Area Selective Atomic Layer Deposition	Improving the ΔSCF method for excited electronic states	Multiscale Regulation of Light- Harvesting and Quenching in LHCII protein	Spin-free orbital entropy, mutual information, and entanglement analysis	High-Performance Energy-Free Desalination
16:15	Francesc Viñes Solana [89]	Lars Goerigk [139]	Sebastian Reiter [594]	Sarai Dery Folkestad [94]	Jun-Ho Choi [50]
	Computational Assessment of MXenes Bandgap Engineering for Photocatalytic Water Splitting	Time-dependent range-separated double-hybrids with spin scaling for difficult excited-state problems	Multiscale Modeling of Photosystem I Light-Harvesting in Diverse Environments	Towards spin completeness with entanglement CCSD for doublet systems	Molecular aggregation and microheterogeneity in osmolyte solutions

	Session A5	Session B5	Session C5	Session D5	Session E5
	BIOSYSTEMS	ELECTRONIC-STRUCTURE THEORY	CATALYSIS & REACTIVITY	SPECTROSCOPY	EXOTIC SYSTEMS
	Cheminformatics & medicinal chemistry	Methods for larger systems	Reactants, reactions, and catalysis	Circular dichroism	Strong fields and high pressure
	Chair: Ursula Röthlisberger	Chair: David Sherrill	Chair: Annia Galano	Chair: Kenneth Ruud	Chair: Peter Schwerdtfeger
17:00	William Jorgensen [808]	Christian Ochsenfeld [952]	David Wales [969]	Daniel Crawford [757]	Stella Stopkowicz [941]
	Impact of Free Energy Calculations for Chemistry and Drug Discovery	Efficient quantum-chemical methods for excited states, properties, and reaction networks	Energy landscapes: from molecules to machine learning	Advanced Quantum Chemical Methods for Chiroptical Spectroscopy	Predicition and Assignment of Strongly Magnetized White Dwarf Spectra
17:25	Zoe Cournia [981]	Hiromi Nakai [723]	Feliu Maseras [674]	Luuk Visscher [814]	Andrew Wibowo-Teale [671]
	Predicting protein-ligand, protein- protein, protein-membrane interactions using molecular simulations and AI	Breaking Barriers in Fragmentation Methods for Long-Range Interactions	Beyond free energy profiles: microkinetic models	Modelling electronically enhanced vibrational circular dichroism spectra: challenges and solutions	Molecular Aharonov–Bohm-type interferometers based on porphyrin nanorings
17:50	Stacey Wetmore [321] A Multipronged Computational Investigation of the Chemistry of Modified RNA	Filippo Lipparini [826] CCSD energies and structures for larger, symmetric molecules	Sebastian Kozuch [2] Tunneling of Molecules: the Weirdest Side of Chemical Reactivity	WanZhen Liang [243] Modeling the Photophysical Processes of Organic Molecular Aggregates	Eva Zurek [697] Unusual Chemistry and New States of Matter at Extreme Pressures
18:30	Christoph Riplinger [714] Deciphering Ligand Interactions with Biomolecules Using Quantum Mechanical Methods	Maristella Alessio [187] Coupled-Cluster Treatment of Large and Complex Open-Shell Systems	Masataka Nagaoka [44] Molecular Simulation of Complex Reaction Systems: The Red Moon Approach	Marco Caricato [138] Optical and Chiroptical Linear Response Properties of Materials	Mercedes Alonso [393] Modeling Atomic and Molecular Behavior under Isotropic Pressure

09:50

- 10:20

	Session A1	Session B1	Session C1	Session D1	Session E1
	ELECTRONIC-STRUCTURE THEORY	SPECTROSCOPY	BIOSYSTEMS	CHEMICAL STRUCTURE & BONDING	ENERGY & MATERIALS
	Methods for periodic systems	Methods for excited states	Multiscale modelling	Analysis	Photophysics and photochemistry
	Chair: Christian Ochsenfeld	Chair: Emmanuel Fromager	Chair: Stefano Vanni	Chair: Henry Rzepa	Chair: Zhigang Shuai
08:30	Georg Kresse [831]	Julia Westermayr [364]	Qiang Cui [689]	Matthias Bickelhaupt [670]	Dage Sundholm [797]
	Machine learning and beyond DFT methods: enabling materials modelling	Machine Learning for Excited States	Recent developments and applications of QM/MM-ML methods	Paradigm Shifts in Chemical Theory	Optical and photophysical properties of fifth generation light-emitting molecules
08:55	Lin Lin [571]	Hannes Jónsson [660]	Garnet Chan [872]	Frank de Proft [813]	Jing Ma [888]
	Finite-size error in quantum chemistry methods for periodic systems	Rydberg/charge-transfer excited states using saddle point searches and neural-network CI	Towards discovering reactivity with QM methods in biological systems	Conceptual Density Functional Theory Based Reactivity Indices: Analytical Evaluation	Machine Learning of NRR and CO2RR Reaction Activities and Selectivities
09:20	David Tew [870]	Thomas Froitzheim [81]	Andrea Pérez-Villa [504]	Inbal Tuvi-Arad [749]	Dana Nachtigallová [636]
	DLPNO-MP2 for Periodic Systems in the Turbomole Program	Δg-xTB: Excited states with state- specific extended Tight-Binding	Synergistic Integration of Co- Folding and QM/MM calculations for Protein-Ligand Binding	Exploring Hidden Structural Insights with Continuous Symmetry and Chirality Measures	Tuning On-Surface Photoactivity: The Role of π-Conjugation in Anhydride- Functionalized Molecules
09:35	Philip Hoggan [13]	Elli Selenius [790]	Andrea Levy [601]	Jacob Toney [394]	Sofia Canola [582]
	Quantum Monte Carlo resolving metal catalyst activation barriers: Hydrogen	Orbital-optimized density functional calculations of challenging charge	Atom-centered electric multipole moments dynamically generated	Graph neural networks predicting metal-ligand coordination in	Molecules meet light in STM: atomically-resolved visualization of
	production	transfer excitations	from QM/MM MD simulations	transition metal complexes	light-mediated processes

11:40

- 13:20

	Session A2	Session B2	Session C2	Session D2	Session E2
	ELECTRONIC-STRUCTURE THEORY	CATALYSIS & REACTIVITY	BIOSYSTEMS	ENERGY & MATERIALS	COMPUTING & SOFTWARE
	Simpler model systems	Reactants, reactions, and catalysis	Multiscale modelling	Photophysics and photochemistry	Software
	Chair: Anna Krylov	Chair: Manuel Yañez	Chair: Garnet Chan	Chair: Dage Sundholm	Chair: Daniel Crawford
10:20	Stefan Grimme [825]	Evert Jan Meijer [943]	Carme Rovira [863]	Kumar Vanka [899]	Patrick Norman [898]
	Status report on the new g-xTB tight- binding method	Elucidating the Role of Solvent and Cations in CO2 Conversion	Deciphering Carbohydrate-Active Enzymes: Reactions, Conformations, and Mechanisms	Understanding the Behaviour of Unidirectional Molecular Motors with Computational Chemistry	VeloxChem: Science and education- enabling platform for quantum molecular modeling
10:45	Peter Schwerdtfeger [92]	Bastian Skjelstad [715]	Marco De Vivo [817]	Leticia González [964]	Susi Lehtola [799]
	100 years of Lennard-Jones potentials: Applications to the solid state	Wacker oxidation insights from density-functional theory and machine-learned interatomic potentials	Targeting RNA at the Conserved Active Site of Splicing Machinery	Unravelling reaction pathways in photoswitchable molecules	Progress towards a reusable software stack in quantum chemistry
11:10	Per Siegbahn [212]	Amalia Poblador Bahamonde [880]	Stefano Serapian [120]	Enrico Tapavicza [523]	John Herbert [24]
	Why is DFT so much better for larger systems ?	Sulfinyl-tethered N-heterocyclic carbene ligands: structure and reactivity by computational approach	Multiscale modelling of allostery in proteins	Photodynamics and chemical compound space of light-driven molecular nanomotors	Open-Source Framework for Fragment-Based Quantum Chemistry
11:25	Itai Panas [679]	Zhexuan Song [654]	Allison Keys [226]	Enrique Manuel Arpa [411]	David Sherrill [513]
	Electron Correlation Corrected Hartree-Fock Theory - Back to the Future	Deciphering the Acceleration Mechanisms of Simple Organic Reactions in Microdroplets	CH–π Interactions Confer Orientational Flexibility in Protein- Carbohydrate Binding Sites	Exploiting excited-state aromaticity to enhance photochemical organic reactivity	Symmetry-Adapted Perturbation Theory for Large Systems with Electrostatic Embedding

14:40

- 15:10

	Session A3	Session B3	Session C3	Session D3	Session E3
	ELECTRONIC-STRUCTURE THEORY	CATALYSIS & REACTIVITY	MACHINE LEARNING	SPECTROSCOPY	TEACHING & EDUCATION
	Density-functional development	Molecular and reaction design	ML for simulations	Rotovibrational spectra	Teaching & education
	Chair: Jiali Gao	Chair: Ainara Nova	Chair: Konstantinos Vogiatzis	Chair: Sonia Coriani	Chair: Trygve Helgaker
13:20	Stefan Vučković [837]	Annia Galano [508]	Yi Luo [737]	Attila Császár [931]	Anders Malthe-Sørenssen [998]
	Bridging Traditional Methods and Machine Learning in Density Functional Developments	CADMA-Chem: A Computational Protocol to Design Multifunctional Antioxidants	Autogeneration of functional molecule structures from spectroscopies with machine learning	MARVEL and SNAPS	Computational literacy as a driver for disciplinary renewal in chemistry
13:45	Martin Kaupp [661]	Vidar Jensen [946]	Yi Qin Gao [882]	Guntram Rauhut [106]	Peter Taylor [1001]
	Beyond-zero-sum-game density functionals based on the exact-	Automated de Novo Design of Transition-Metal Catalysts	Al assisted molecular modeling and simulations	Toward a convenient calculation of rovibrational spectra	The "royal road" to expertise in quantum chemistry
	exchange energy density				
14:10	Hans Jørgen Aa. Jensen [457]	Cristina Trujillo [36]	Amanda Arcidiacono [537]	Ayaki Sunaga [735]	Dirk Andrae [367]
14.10	Variational MC-srPDFT – a	Computationally Led Catalyst Design	Understanding excited states of	Variational Vibrational States of	Simple(r), yet (more) efficient maths
	multiconfigurational short-range on-	Computationally Lea Cutalyst Design	carotenoids in environments with	Methanol (12D)	teaching for students of chemistry
	top pair-density model		machine learning	,	, , , , , , , , , , , , , , , , , , , ,
14:25	Aaron Garrison [159]	Wataru Matsuoka [237]	Krzysztof Szalewicz [730]	Frederik Tielens [72]	Henry Rzepa [12]
	Machine Learning Prediction of	Virtual Ligand Assisted-Optimization:	New life for "classical" force fields	Theoretical Raman Spectroscopy in	From FAIRSpec data and Finding aids
	Optimal Exchange Fractions in Hybrid Functionals	A Rational Strategy for Ligand Engineering	in machine-learning age	Industry: From Computational Modeling to Applications	to a FAIRComp specification.

16:30

- 17:00

	-				
	Session A4	Session B4	Session C4	Session D4	Session E4
	CATALYSIS & REACTIVITY	ENERGY & MATERIALS	ELECTRONIC-STRUCTURE THEORY	MACHINE LEARNING	SPECTROSCOPY
	Reactants, reactions, and catalysis	Materials and energy	Optimization in quantum chemistry	ML for electronic structure	Positrons & weak interactions
	Chair: Feliu Maseras	Chair: Evert Jan Meijer	Chair: Erik Tellgren	Chair: Hiromi Nakai	Chair: Edit Mátyus
15:10	Jin Wen [800]	Debra Bernhardt [751]	Éric Cances [742]	Paola Gori-Giorgi [867]	Gustavo Aucar [861]
	Machine Learning-Enhanced Ultrafast Dynamics in Complex Systems: Methods and Applications	lonic conductivity and fluid flow: predictions from response theory	Optimization problems in electronic structure calculation	Machine Learning and Electronic Structure Theory	On molecular chirality and weak forces, entanglement and NMR-J couplings
15:35	Fahmi Himo [928]	Sara Bonella [827]	Roland Lindh [672]	Matthias Kick [233]	Robert Berger [360]
	Modeling Reactions in Supramolecular Systems	Classical simulations of interfaces in supercapacitors	The Reduced Variation Optimization Procedure: A qualitative analysis	Super-Resolution Methods for Accelerating Large-Scale Electronic Structure Calculations	Models, predictions of parity-violating level shifts in small chiral molecules
16:00	Johannes Hoja [575] Towards Kinetics of Molecular Crystals: Polymorph Transitions and Chemical Reactions	Virginia Carnevali [538] Nanoscale effects in α-FAPbl3 evinced by large-scale ab initio simulations	Giovanni Scalmani [619] Stability, CIS/TDA, and TD for complex and general HF/KS-SCF	Angel Martín Pendás [58] Chemical Machine Learning with Real-Space Descriptors	Dermot Green [256] Many-body theory of positron interactions with atoms and polyatomic molecules
16:15	Michele Assante [769]	Tuanan C. Lourenço [334]	Hugh Burton [712]	Tomáš Bučko [214]	Kenneth Jordan [1]
	Combined DFT and ML modelling for metallaphotoredox sp2-sp3 cross-coupling reactions.	Multiscale Investigation of Ionic Liquid-based Electrolytes for Sodium- ion Batteries	Restricted open-shell SCF theory for low-spin coupling	Benchmarking electronic structure methods in anharmonic finite-temperature thermodynamic calculations	Diffusion Monte Carlo Calculations of Positron Affinities

Modeling Spectroscopic Observables on Classic and Hybrid-Quantum Computers The 1-electron Reduced Density Matrix Functional: An Optimal Transport Approach The 1-electron Reduced Density Matrix Functional: An Optimal Transport Approach The 1-electron Reduced Density Matrix Functional: An Optimal Transport Approach The 1-electron Reduced Density Matrix Functional: An Optimal Transport Approach Modeling the Circovirus genome. Hypercoordinate Atom Chemistry Modeling the Circovirus genome. The 1-electron Reduced Density Matrix Functional: An Optimal Transport Approach Modeling the Circovirus genome. Cristiana Di Valentin [794] Jeanet Conradie [118] Modeling complex nanosystems for drug delivery, targeted therapy and imaging manganese(III)-complexes The 1-electron Reduced Density Modeling Complex nanosystems in Planar Hypercoordinate Atom Chemistry Challenges and Related Issues Modeling the Circovirus genome. Hypercoordinate Atom Chemistry Cristiana Di Valentin [794] Modeling complex nanosystems for drug delivery, targeted therapy and imaging imaging manganese(III)-complexes The 1-electron Reduced Density Functional: An Optimal Transport Approach Transport Approach Transport Approach Modeling complex nanosystems for drug delivery, targeted therapy and imaging imaging and properties relationships imaging manganese(III)-complexes The 1-electron Reduced Density Functional: An Optimal Transport Approach Transport Approach Transport Approach Transport Approach Transport Approach Transport Approach The 1-electron Reduced Density Functional Float Indicates I		• •				
Spectroscopy & energy surfaces Chair: Abril Castro Chair: Paola Gori-Giorgi Chair: Laura Gagliardi Chair: Carme Rovira Chair: Carme Rovira Chair: ED Jemmis Marie-Liesse Doublet [966] Modeling Spectroscopic Observables on Classic and Hybrid-Quantum Computers Transport Approach Transp		Session A5	Session B5	Session C5	Session D5	Session E5
Chair: Abril Castro Chair: Paola Gori-Giorgi Chair: Laura Gagliardi Chair: Carme Rovira Chair: ED Jemmis 17:00 Sonia Coriani [925] Paul Ayers [733] Marie-Liesse Doublet [966] Sergio Pantano [417] Gabriel Merino [392] Modeling Spectroscopic Observables on Classic and Hybrid-Quantum Computers The 1-electron Reduced Density Materials for Energy Storage: Stripping off a naked virus: Recent Advances in Planar Hypercoordinate Atom Chemistry Modeling the Cirocvirus genome. Hypercoordinate Atom Chemistry Modeling the Cirocvirus genome. 17:25 Anna Krylov [382] Jiali Gao [904] Emi Minamitani [93] Cristiana Di Valentin [794] Jeanet Conradie [118] Multistate Density Functional Theory and Multistate Density Functional Theory surfaces of metastable states by spectroscopy Decomposition Analysis (MS-EDA) in amorphous solids magning Modeling complex nanosystems for drug delivery, targeted therapy and imagning imagning manganese(III)-complexes 17:50 Ida-Marie Høyvik [721] Andreas Görling [220] Gloria I. Cárdenas-Iirón [795] Stefano Vanni [643] Julien Panetier [53] Charge localized electronic wave functionals of accurate TDDFT excitation energies with standard density-functionals Modeling 18:30 Takeshi Sato [651] Lucien Dupuy [631] Anti Karttunen [607] Modeling Mauricio Coutinho Neto [732] Konrad Patkowski [122] Electronic structure and dynamics Scott Mopping to an Electronically Batrio Satisfactory and Potito3 from Density Lipopeptide Self-Assembled hologen bonding		SPECTROSCOPY	ELECTRONIC-STRUCTURE THEORY	ENERGY & MATERIALS	BIOSYSTEMS	CHEMICAL STRUCTURE & BONDING
17:00 Sonia Coriani [925] Paul Ayers [733] Marie-Liesse Doublet [966] Sergio Pantano [417] Gabriel Merino [392] Modeling Spectroscopic Observables on Classic and Hybrid-Quantum Computers 17:25 Anna Krylov [382] Jiali Gao [904] Emi Minamitani [93] Cristiana Di Valentin [794] Jeanet Conradie [118] Probing complex potential energy surfaces of metastable states by spectroscopy Decomposition Analysis (MS-EDA) in amorphous solids in amorphous solids in amorphous solids 17:50 Ida-Marie Høyvik [721] Andreas Görling [220] Gloria I. Cárdenas-Jirón [795] Stefano Vanni [643] Julien Panetier [53] Charge localized electronic wave functional and excited states of procurate TDDFT excitation energies with standard density-functionals 18:30 Takeshi Sato [651] Lucien Dupuy [631] Electronic structure and dynamics simulations with classical and Exact Mapping to an Electronically Energy Storage: Stripping off a naked virus: Materials for Energy Stripping off a naked virus: Recent Advances in Planar Materials for Energy Stripping off a naked virus: Recent Advances in Planar Materials for Energy Storage: Stripping off a naked virus: Modeling the Cirocvirus genome. Hypercoordinate Atom Chemistry Persistent homology elucidates Modeling to Ciristiana Di Valentin [794] Jeanet Conradie [118] Jeanet Conradie [118] Persistent homology elucidates Modeling complex nanosystems for drug delivery, targeted therapy and imaging imaging manganese(III)-complexes Stefano Vanni [643] Julien Panetier [53] Computational Modeling of Computational Modeling of CO Dehydrogenase Model Systems for CO2 Fixation Stefano Vanni [643] Julien Panetier [53] Computational Modeling of CO2 Fixation Simulations with classical and Electronically Electronic Structure and dynamics Score Grain SAXS Modeling of Influence of three-body interactions on halogen bonding		Spectroscopy & energy surfaces	Beyond standard DFT	Materials and energy	Bio/nanosystems	Coordination chemistry
Modeling Spectroscopic Observables on Classic and Hybrid-Quantum Computers The 1-electron Reduced Density Matrix Functional: An Optimal Transport Approach The 1-electron Reduced Density Matrix Functional: An Optimal Transport Approach Transport Approach Emi Minamitani [93] Cristiana Di Valentin [794] Jeanet Conradie [118] Modeling complex potential energy surfaces of metastable states by spectroscopy Decomposition Analysis (MS-EDA) in amorphous solids Matrix Functional Theory surfaces of metastable states by spectroscopy Italia Gao [904] Emi Minamitani [93] Cristiana Di Valentin [794] Jeanet Conradie [118] Modeling complex nanosystems for drug delivery, targeted therapy and intentifying Jahn-Teller isomers of imaging manganese [III]-complexes Modeling complex nanosystems for drug delivery, targeted therapy and imaging manganese [III]-complexes Modeling Complex nanosystems for drug delivery, targeted therapy and imaging manganese [III]-complexes Modeling Complex nanosystems for drug delivery, targeted therapy and imaging manganese [III]-complexes Modeling Complex nanosystems for drug delivery, targeted therapy and imaging manganese [III]-complexes Modeling Complex nanosystems for drug delivery, targeted therapy and imaging manganese [III]-complexes Modeling Complex nanosystems for drug delivery, targeted therapy and imaging manganese [III]-complexes Modeling Complex nanosystems for drug delivery, targeted therapy and imaging manganese [III]-complexes Modeling Complex nanosystems for drug delivery, targeted therapy and imaging manganese [III]-complexes Modeling Complex nanosystems for drug delivery, targeted therapy and imaging manganese [III]-complexes Modeling Complex nanosystems for drug delivery, targeted therapy and imaging manganese [III]-complexes Modeling Complex nanosystems for drug delivery, targeted therapy and imaging manganese [III]-complexes Modeling Complex nanosystems for drug delivery, targeted therapy and imaging manganese [III]-complexes Modeling Complex nanosystems for drug		Chair: Abril Castro	Chair: Paola Gori-Giorgi	Chair: Laura Gagliardi	Chair: Carme Rovira	Chair: ED Jemmis
Modeling Spectroscopic Observables on Classic and Hybrid-Quantum Computers The 1-electron Reduced Density Matrix Functional: An Optimal Transport Approach Transport Approach Emi Minamitani [93] Cristiana Di Valentin [794] Jeanet Conradie [118] Modeling complex potential energy surfaces of metastable states by spectroscopy Decomposition Analysis (MS-EDA) in amorphous solids Ida-Marie Høyvik [721] Andreas Görling [220] Optimized-effective-potential method for accurate TDDFT excitation energies with standard density-functionals Takeshi Sato [651] Lucien Dupuy [631] Lucien Dupuy [631] Antti Karttunen [607] Mauricio Sorm Density Materials for Energy Storage: Stripping off a naked virus: Modeling of a naked virus: Modeling of a naked virus: Modeling the Cirocvirus genome. Hypercoordinate Atom Chemistry Matrix Functional: An Optimal Challenges and Related Issues Modeling the Cirocvirus genome. Hypercoordinate Atom Chemistry Modeling the Cirocvirus genome. Hypercoordinate Atom Chemistry Modeling the Cirocvirus genome. Hypercoordinate Advances in Planar Hypercoordinate Atom Chemistry Modeling the Cirocvirus genome. PFT methods and techniques for drug delivery, targeted therapy and indentifying John Computation for drug delivery, targeted therapy and indentifying John Computation for drug delivery, targeted therapy and indentifying John Computation for drug delivery, targeted therapy and indentifying John Computation for drug deliver						
on Classic and Hybrid-Quantum Computers Anna Krylov [382] Probing complex potential energy surfaces of metastable states by spectroscopy Ida-Marie Høyvik [721] Charge localized electronic wave functions for ground and excited states for accurate TDDFT excitation energies with standard density- functionals Andie Asson (551) Electrooics structure and dynamics simulations with classical and Andie Asson (551) Electrooics structure and dynamics simulations with classical and Andie Asgo (904) Emi Minamitani [93] Cristiana Di Valentin [794] Persistent homology elucidates Modeling the Cirocvirus genome. Hypercoordinate Atom Chemistry Modeling the Cirocvirus genome. Hypercoordinate Atom Chemistry Modeling the Cirocvirus genome. Hypercoordinate Atom Chemistry Modeling the Cirocvirus genome. Hypercoordinate Atom Chemistry Modeling the Cirocvirus genome. Hypercoordinate Atom Chemistry Modeling the Cirocvirus genome. Hypercoordinate Atom Chemistry Modeling the Cirocvirus genome. Hypercoordinate Atom Chemistry Modeling the Cirocvirus genome. Hypercoordinate Atom Chemistry Modeling the Cirocvirus genome. Hypercoordinate Atom Chemistry Modeling the Cirocvirus genome. Hypercoordinate Atom Chemistry Modeling the Cirocvirus genome. Hypercoordinate Atom Chemistry Modeling the Cirocvirus genome. Hypercoordinate Atom Chemistry Modeling the Cirocvirus genome. Hypercoordinate Atom Chemistry Modeling the Cirocvirus genome. Hypercoordinate Atom Chemistry Modeling the Cirocvirus genome. Hypercoordinate Atom Chemistry Modeling the Cirocvirus genome. For it and the substance of the cirocvirus genome. Hypercoordinate Atom Chemistry Andreas Gring All Seance of the Cirocvirus development. Optimized-effective potential method for gensity by Anna Poblicates Andeling Cristiana Di Valentine [194] For methods and techniques for drug delivery, targeted therapy and identifying Jahn-Teller isomers of drug delivery, targeted therapy and identifying Jahn-Teller isomers of for Good fat or bad fat? From forcefield	17:00	Sonia Coriani [925]	Paul Ayers [733]	Marie-Liesse Doublet [966]	Sergio Pantano [417]	Gabriel Merino [392]
Transport Approach Emi Minamitani [93] Cristiana Di Valentin [794] Jeanet Conradie [118] Probing complex potential energy and Multistate Density Functional Theory surfaces of metastable states by spectroscopy Decomposition Analysis (MS-EDA) in amorphous solids imaging DFT methods and techniques for identifying Jahn-Teller isomers of manganese(III)-complexes 17:50 Ida-Marie Høyvik [721] Andreas Görling [220] Gloria I. Cárdenas-Jirón [795] Stefano Vanni [643] Julien Panetier [53] Charge localized electronic wave functions for ground and excited states of energies with standard density-functionals Takeshi Sato [651] Lucien Dupuy [631] Antti Karttunen [607] Maurício Coutinho Neto [732] Konrad Patkowski [122] Electronic structure and dynamics (S-DFT Beyond Born-Oppenheimer: Pyroelectricity of Ferroelectric Coarse Grain SAXS Modeling of Influence of three-body interactions on simulations with classical and Exact Mapping to an Electronically BaTiO3 and PbTiO3 from Density Lipopeptide Self-Assembled halogen bonding		Modeling Spectroscopic Observables	The 1-electron Reduced Density	Materials for Energy Storage :	Stripping off a naked virus:	Recent Advances in Planar
Anna Krylov [382] Probing complex potential energy surfaces of metastable states by spectroscopy Decomposition Analysis (MS-EDA) Ida-Marie Høyvik [721] Charge localized electronic wave functions for ground and excited states for accurate TDDFT excitation energies with standard density-functionals Takeshi Sato [651] Lucien Dupuy [631] Andrea Simulations with classical and Emi Minamitani [93] Emi Minamitani [93] Cristiana Di Valentin [794] Persistent homology elucidates attructure-properties relationships attructure-pr		•	•	Challenges and Related Issues	Modeling the Cirocvirus genome.	Hypercoordinate Atom Chemistry
Probing complex potential energy surfaces of metastable states by spectroscopy Ida-Marie Høyvik [721] Charge localized electronic wave functions for ground and excited states Takeshi Sato [651] Electronic structure and dynamics simulations with classical and Persistent homology elucidates structure-properties relationships in amorphous solids Modeling complex nanosystems for drug delivery, targeted therapy and identifying Jahn-Teller isomers of manganese(III)-complexes Modeling complex nanosystems for drug delivery, targeted therapy and identifying Jahn-Teller isomers of manganese(III)-complexes Stefano Vanni [643] Julien Panetier [53] Computational Modeling of CO ferroll development to physiology Dehydrogenase Model Systems for CO2 Fixation Modeling Takeshi Sato [651] Electronic structure and dynamics Simulations with classical and Exact Mapping to an Electronically BaTiO3 and PbTiO3 from Density Licians Done Licians		Computers	Transport Approach			
Probing complex potential energy surfaces of metastable states by spectroscopy Ida-Marie Høyvik [721] Charge localized electronic wave functions for ground and excited states Takeshi Sato [651] Electronic structure and dynamics simulations with classical and Persistent homology elucidates structure-properties relationships in amorphous solids Modeling complex nanosystems for drug delivery, targeted therapy and imaging Modeling complex nanosystems for drug delivery, targeted therapy and imaging Modeling complex nanosystems for drug delivery, targeted therapy and imaging Modeling complex nanosystems for drug delivery, targeted therapy and imaging Modeling complex nanosystems for drug delivery, targeted therapy and imaging Modeling complex nanosystems for drug delivery, targeted therapy and imaging Modeling complex nanosystems for drug delivery, targeted therapy and imaging Modeling complex nanosystems for drug delivery, targeted therapy and imaging Modeling complex nanosystems for drug delivery, targeted therapy and imaging Modeling complex nanosystems for drug delivery, targeted therapy and imaging Modeling complex nanosystems for drug delivery, targeted therapy and imaging Modeling complex nanosystems for drug delivery, targeted therapy and imaging Modeling complex nanosystems for drug delivery, targeted therapy and imaging Modeling complex nanosystems for drug delivery, targeted therapy and imaging Modeling complex nanosystems for drug delivery, targeted therapy and imaging Modeling complex nanosystems for drug delivery, targeted therapy and imaging Modeling Complex nanosystems for drug delivery, targeted therapy and imaging Modeling Complex nanosystems for drug delivery, targeted therapy and imaging Modeling Complex nanosystems for drug delivery, targeted therapy and imaging Modeling Complex nanosystems for drug delivery. Modeling Complex nanosystems for drug delivery, targeted therapy and imaging Modeling Complex nanosystems for drug delivery. Modeling Complex nanosystems for drug	47.05		" " o food	5 1111 11 1500	0.1.1. 0.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	
surfaces of metastable states by spectroscopy Decomposition Analysis (MS-EDA) Ida-Marie Høyvik [721] Charge localized electronic wave functions for ground and excited states functionals Takeshi Sato [651] Electronic structure and dynamics simulations with classical and Evact Mapping to an Electronically and MultiState Energy Decomposition Analysis (MS-EDA) structure-properties relationships in amorphous solids drug delivery, targeted therapy and imaging identifying Jahn-Teller isomers of manganese(III)-complexes structure-properties relationships in amorphous solids drug delivery, targeted therapy and imaging identifying Jahn-Teller isomers of manganese(III)-complexes Stefano Vanni [643] Charge Iocalized electronic wave functions for ground and excited states for accurate TDDFT excitation energies with standard density-functionals Charge Transport of Dyes and Electrodes by Molecular Junction Modeling Mauricio Coutinho Neto [732] Electronic structure and dynamics Stefano Vanni [643] Julien Panetier [53] Computational Modeling of Computational Modeling of Electrodes by Molecular Junction Modeling Takeshi Sato [651] Electronic structure and dynamics Stefano Vanni [643] Antti Karttunen [607] Mauricio Coutinho Neto [732] Konrad Patkowski [122] Influence of three-body interactions or barriod and PbTiO3 from Density Lipopeptide Self-Assembled halogen bonding	17:25			• •		
spectroscopy Decomposition Analysis (MS-EDA) In amorphous solids Imaging manganese (III)-complexes Ida-Marie Høyvik [721] Charge localized electronic wave functions for ground and excited states Takeshi Sato [651] Electronic structure and dynamics simulations with classical and Evact Mapping to an Electronically Ida-Marie Høyvik [721] Andreas Görling [220] Gloria I. Cárdenas-Jirón [795] Stefano Vanni [643] Julien Panetier [53] Charge Iocalized electronic wave for accurate TDDFT excitation electrodes by Molecular Junction Electrodes by Molecular Junction development to physiology CO2 Fixation Maurício Coutinho Neto [732] Influence of three-body interactions on simulations with classical and Exact Mapping to an Electronically BaTiO3 and PbTiO3 from Density Lipopeptide Self-Assembled						
17:50 Ida-Marie Høyvik [721] Andreas Görling [220] Gloria I. Cárdenas-Jirón [795] Stefano Vanni [643] Julien Panetier [53] Charge localized electronic wave for accurate TDDFT excitation energies with standard density-functionals Takeshi Sato [651] Lucien Dupuy [631] Antti Karttunen [607] Maurício Coutinho Neto [732] Konrad Patkowski [122] Electronic structure and dynamics simulations with classical and Exact Mapping to an Electronically Andreas Görling [220] Gloria I. Cárdenas-Jirón [795] Stefano Vanni [643] Julien Panetier [53] Good fat or bad fat? From forcefield Computational Modeling development to physiology Dehydrogenase Model Systems for CO2 Fixation Modeling CO2 Fixation Maurício Coutinho Neto [732] Konrad Patkowski [122] Influence of three-body interactions or halogen bonding					,, , , , , , , , , , , , , , , , , , , ,	
Charge localized electronic wave functions for ground and excited states for accurate TDDFT excitation energies with standard density-functionals Takeshi Sato [651] Electronic structure and dynamics simulations with classical and Charge Transport of Dyes and for Density Electrodes by Molecular Junction development to physiology Electrodes by Molecular Junction development to physiology Modeling Computational Modeling of CO Dehydrogenase Model Systems for CO2 Fixation Electrodes by Molecular Junction Modeling Modeling Antti Karttunen [607] Maurício Coutinho Neto [732] Coarse Grain SAXS Modeling of Influence of three-body interactions on simulations with classical and Exact Mapping to an Electronically BaTiO3 and PbTiO3 from Density Lipopeptide Self-Assembled Computational Modeling of O Dehydrogenase Model Systems for CO2 Fixation CO2 Fixation CO2 Fixation CO3 Fixation CO4 Fixation Electrodes by Molecular Junction Modeling of CO Dehydrogenase Model Systems for CO2 Fixation CO2 Fixation CO3 Fixation CO4 Fixation CO5 Fixation CO6 Fixation CO7 Fixation CO7 Fixation CO8 Fixation CO8 Fixation CO8 Fixation CO9 Fi		spectroscopy	Decomposition Analysis (MS-EDA)	in amorphous solias	imaging	manganese(III)-complexes
Charge localized electronic wave functions for ground and excited states for accurate TDDFT excitation energies with standard density-functionals Takeshi Sato [651] Electronic structure and dynamics simulations with classical and Charge Transport of Dyes and for Density for accurate TDDFT excitation electrones by Molecular Junction development to physiology Dehydrogenase Model Systems for CO2 Fixation CO2 Fixation CO2 Fixation Modeling Antti Karttunen [607] Maurício Coutinho Neto [732] Maurício Coutinho Neto [732] Coarse Grain SAXS Modeling of Influence of three-body interactions on simulations with classical and Exact Mapping to an Electronically BaTiO3 and PbTiO3 from Density Lipopeptide Self-Assembled Computational Modeling of OD development to physiology Dehydrogenase Model Systems for CO2 Fixation Maurício Coutinho Neto [732] Konrad Patkowski [122] Influence of three-body interactions on simulations with classical and Exact Mapping to an Electronically BaTiO3 and PbTiO3 from Density Lipopeptide Self-Assembled	17.50	Ida-Marie Høywik [721]	Andreas Görling [220]	Gloria I. Cárdenas-Iirón [795]	Stefano Vanni [6/3]	Julian Panatiar [53]
functions for ground and excited states for accurate TDDFT excitation energies with standard density-functionals Takeshi Sato [651] Lucien Dupuy [631] Antti Karttunen [607] Maurício Coutinho Neto [732] Konrad Patkowski [122] Electronic structure and dynamics KS-DFT Beyond Born-Oppenheimer: Pyroelectricity of Ferroelectric Coarse Grain SAXS Modeling of simulations with classical and Exact Mapping to an Electronically BaTiO3 and PbTiO3 from Density Lipopeptide Self-Assembled halogen bonding	17.50	• • •	<u> </u>		• •	• •
energies with standard density- functionals 18:30 Takeshi Sato [651] Lucien Dupuy [631] Antti Karttunen [607] Maurício Coutinho Neto [732] Konrad Patkowski [122] Electronic structure and dynamics KS-DFT Beyond Born-Oppenheimer: Pyroelectricity of Ferroelectric Coarse Grain SAXS Modeling of Influence of three-body interactions or simulations with classical and Exact Mapping to an Electronically BaTiO3 and PbTiO3 from Density Lipopeptide Self-Assembled halogen bonding						
functionals 18:30 Takeshi Sato [651] Lucien Dupuy [631] Antti Karttunen [607] Maurício Coutinho Neto [732] Konrad Patkowski [122] Electronic structure and dynamics KS-DFT Beyond Born-Oppenheimer: Pyroelectricity of Ferroelectric Coarse Grain SAXS Modeling of Influence of three-body interactions on simulations with classical and Exact Mapping to an Electronically BaTiO3 and PbTiO3 from Density Lipopeptide Self-Assembled halogen bonding		junctions for ground and excited states	•	•	development to physiology	, , , ,
Electronic structure and dynamics KS-DFT Beyond Born-Oppenheimer: Pyroelectricity of Ferroelectric Coarse Grain SAXS Modeling of Influence of three-body interactions on simulations with classical and Exact Mapping to an Electronically BaTiO3 and PbTiO3 from Density Lipopeptide Self-Assembled halogen bonding				Modelling		CO2 Tinducti
Electronic structure and dynamics KS-DFT Beyond Born-Oppenheimer: Pyroelectricity of Ferroelectric Coarse Grain SAXS Modeling of Influence of three-body interactions or simulations with classical and Exact Mapping to an Electronically BaTiO3 and PbTiO3 from Density Lipopeptide Self-Assembled halogen bonding						
simulations with classical and Exact Mapping to an Electronically BaTiO3 and PbTiO3 from Density Lipopeptide Self-Assembled halogen bonding	18:30	Takeshi Sato [651]	Lucien Dupuy [631]	Antti Karttunen [607]	Maurício Coutinho Neto [732]	Konrad Patkowski [122]
		Electronic structure and dynamics	KS-DFT Beyond Born-Oppenheimer:	Pyroelectricity of Ferroelectric	Coarse Grain SAXS Modeling of	Influence of three-body interactions or
quantum computers Non-Interacting Molecule Functional Theory Structures		simulations with classical and	Exact Mapping to an Electronically	BaTiO3 and PbTiO3 from Density	Lipopeptide Self-Assembled	halogen bonding
		quantum computers	Non-Interacting Molecule	Functional Theory	Structures	