Saturday, June 21

08:45 Opening

	Session 1
	Chair: Abril Castro
09:00	Stefan Gugler [426] Finding molecular minima and transition-states with reverse diffusion
09:20	Miguel Steiner [512] Differentiable simulations for insight into multi-phase reaction mechanisms
09:40	Laura Grazioli [116] Excited states as critical points of the potential energy surface
10:00	Nina Glaser [639] Targeting Excited States on Early Fault Tolerant Quantum Computers
10:20	Frank Hu [519] Accurate and efficient structure elucidation from NMR using artificial intelligence
10:40	-11:10 break
	Session 2
	Chair: Thomas Bondo Pedersen
11:10	Fabian Faulstich [176] A static quantum embedding scheme based on coupled cluster theory
11:30	Marti Gimferrer [756] On the impact of nuclear quantum effects in intermolecular interactions
11:50	Ji Woong Yu [642] Investigation of anomalous water dynamics using machine learning force field
12:10	Madhubanti Mukherjee [568] Exploring Additives for Crystallization of Halide Perovskites in Solar Cells
12:30	- 14:10 break

Session 3

Chair: Michele Cascella

14:10	Marcos Casanova-Páez [410]
	Core-Excited States for Open-Shell Systems in Similarity-Transformed Equation-of-Motion Theory

14:30 Torsha Moitra [556] Real-time methods for light-induced attosecond spectroscopies

- 14:50
 Ben McLean [275]

 Thermodynamics of graft copolymer self-assembly in mixed solvents: Molecular dynamics
- 15:10 Róża Okoń [445] Small-molecule energy carriers for prebiotic metabolism models
- 15:30 Mariia Ivonina [325] Decoding SARS-CoV-2 Pseudoknot Dynamics: Unraveling Drug Interaction Mechanism
- 15:50 16:20 break
 - Session 4

Chair: Ainara Nova

- 16:20 Rebecca Tomann [750] Efficient Extended Tight Binding Implementation with Linear Scaling Algorithms
- 16:40
 Leonardo Dos Anjos Cunha [741]

 Photonic observables and QEDFT functionals for strongly coupled light-matter systems
- 17:00 Sergio Moles Quintero [484] Exploring Excited-State Aromaticity and Diradical Nature on Singlet Fission
- 17:20 Enric Petrus [694] Automated Exploration of Ozonation Reactions for Model Olefins in Water
- 17:40 Closing
- 17:50 19:30 break
- 19:30 Young WATOC dinner (at Skullerud stua)

Sunday, June 22

15:00 Opening

Plenary P1

Chair: Odile Eisenstein

15:40	Michele Parrinello [927]				
	The weird and wonderful world of cataly	sis			
16:20	Veronique van Speybroeck [829]				
	Is simpler better? Alternative wave funct	ion approaches for molecular modeling			
17:00	- 17:30	break			
	Plenary P2				
	Chair: Peter Gill				
17:30	Frank Neese [929]				
	The Bubblepole approximation for large molecular systems				
18:10	Jan Martin [954]				
	Accurate thermochemistry, kinetics, and spectroscopy: the high and low roads				
18:50	- 19:20	break			

19:20 - 20:00 Mingling with refreshments

	Session A1	Session B1	Session C1	Session D1	Session E1
	CATALYSIS & REACTIVITY	ELECTRONIC-STRUCTURE THEORY	BIOSYSTEMS	COMPUTING & SOFTWARE	CHEMICAL STRUCTURE & BONDING
	Reactants, reactions, and catalysis	Green's function methods	Cheminformatics & medicinal chemistry	Quantum computing	Conjugated systems
	Chair: Kevin Naidoo	Chair: Andreas Görling	Chair: Stacey Wetmore	Chair: Ivan Kassal	Chair: Peter Schreiner
08:30	Raghavan Sunoj [963]	Dominika Zgid [924]	Jean-Louis Reymond [986]	Birgitta Whaley [919]	Debashree Ghosh [871]
	Computational Chemistry and Machine Learning Approaches in Asymmetric Catalysis	Fully self-consistent finite temperature GW for correlated systems	Chemical Space from First Principles	Finding Quantum Advantage for Quantum Chemistry	Structure and photophysics of melanin
08:55	Stuart Macgregor [926]	Wim Klopper [458]	Jan Řezáč [480]	Artur Izmaylov [131]	Abhik Ghosh [973]
	Modelling Ruthenium-Catalyzed N- Directed C–H Functionalization	Bethe-Salpeter Equation for Calculations of X-Ray Spectra	PM6-ML: Synergy of Semiempirical Quantum Chemistry and Machine Learning	Optimizing Quantum Algorithms for Next-Generation Quantum Chemistry	Ground- and excited-state charge flow phenomena in metallocorroles
09:20	Ashique Lal [207]	Marios-Petros Kitsaras [124]	Elfi Kraka [130]	Davide Castaldo [327]	Martin Rahm [23]
	Unraveling CO2 Reduction with DFT Molecular Dynamics at Interfaces	Analytic Bethe-Salpeter equation excited-state gradients	Revolutionizing Drug Discovery with SmartCADD: AI Meets Quantum Chemical Precision	Accelerating quantum chemistry simulations on quantum computers with signal processing	Superconducting Radical Pancakes
09:35	Boris Maryasin [127]	Arno Förster [572]	Jean-Philip Piquemal [699]	Karl Michael Ziems [260]	Takafumi Shiraogawa [313]
	In Silico Organic Chemistry: From Small to Large Molecular Scales	Consistent merging of GW and T- matrix self-energies	A Foundation Model for Accurate Simulations in Drug Design	Simulation of spectroscopic properties on quantum computers	Antisymmetry rules of response properties in certain chemical spaces
09:50	- 10:20	break			

09:50 - 10:20

	Session A2	Session B2	Session C2	Session D2	Session E2
	MACHINE LEARNING	CATALYSIS & REACTIVITY	ELECTRONIC-STRUCTURE THEORY	BIOSYSTEMS	ELECTRONIC-STRUCTURE THEORY
	ML for simulations	Surfaces and heterogenous catalysis	Numerical methods and techniques	Macromolecules	Ultrahigh accuracy and QED
	Chair: Heather Kulik	Chair: Angel Martín Pendás	Chair: Stefan Grimme	Chair: Benedetta Mennucci	Chair: Fritz Schaefer
10:20	Gábor Csányi [967]	Philippe Sautet [873]	Peter Gill [953]	Lynn Kamerlin [49]	Trond Saue [349]
	Machine learning force fields shows extreme generalisation	Can photocatalysis be sustained in the dark? A modeling perspective	A New Approach to Density Functional Quadrature	Loop Dynamics and the Origins of New Proteins	Towards Highly Accurate Calculations of Molecular Properties
10:45	Alexandre Tkatchenko [995]	Núria López [972]	Luca Frediani [896]	Subha Kalyaanamoorthy [653]	Jacek Komasa [178]
	Beyond AlphaFold and Empirical Potentials: Next-Generation Molecular Simulations with Machine-Learned Force Fields	Simulations in complex environments from DFT to Machine Learning	Quantum Chemistry with Multiwavelets: from exotic niche to widespread applicability	From Atoms to AI: Computational Design of Enzymes and Therapeutics	Nonadiabatic relativistic and QED energy levels of the hydrogen molecule
11:10	Jelle Vekeman [785]	Christopher Stein [287]	David Sherrill [513]	Xiang Sheng [196]	Ádám Margócsy [775]
	Machine Learning Potentials at Speeds Comparable to Reactive Force Fields	Simple Embedding Models for Metallic Surfaces	Symmetry-Adapted Perturbation Theory for Large Systems with Electrostatic Embedding	Computational Modeling and Rational Design of Enzymes	Ultra-precise rovibrational intervals for the excited helium dimer
11:25	Michael Gillhofer [317] Buffer Region embedding for MLP/MM simulations in complex environments	Mireia Segado-Centellas [716] Water as Solvent and Reactant: Molecular Interactions and Electrokinetics	Eduard Matito [136] Modern Density Functional Approximations are III-designed to Compute Vibrational Properties	Adil Kabylda [547] (Bio)molecular Simulations with Pretrained Neural Network and Pairwise Force Fields	Pekka Pyykkö [486] Is relativistic quantum chemistry a good theory of everything?
11:40	- 13:20	break			

ECTRONIC-STRUCTURE THEORY oupled-cluster theory pair: Jürgen Gauss	ENERGY & MATERIALS Condensed systems	CATALYSIS & REACTIVITY	QUANTUM DYNAMICS	BIOSYSTEMS
upled-cluster theory air: Jürgen Gauss	Condensed systems			Diccitorizino
air: Jürgen Gauss		Molecular and reaction design	Nonadiabatic dynamics	Macromolecules
	Chair: Yi Qin Gao	Chair: Vidar Remi Jensen	Chair: Ove Christiansen	Chair: Elfi Kraka
otr Piecuch [923]	Francesco Paesani [752]	Yousung Jung [441]	Alicia Palacios [804]	Ferran Feixas [622]
cent Advances in the CC(P;Q) ethodology: CIPSI-Driven and laptive Approaches	Predictive Data-Driven Many-Body Simulations of Water Across Phases and Environments	Predicting Organic Reactions Based on Electron Movements using Machine Learning	Correlated electron and nuclear dynamics at the attosecond time scale	Navigating the Conformational Landscape of Interacting Biomolecules with Enhanced Sampling
enrik Koch [862]	Damien Laage [918]	Jan Halborg Jensen [440]	Jian Liu [86]	Taye Demissie [673]
eneralized coupled cluster theory for ound state conical intersections	On the mechanisms of hydronium and hydroxide diffusion in water	Computational discovery of new molecules that can actually be made	Nonadiabatic Field: A Conceptually New Approach for Nonadiabatic Transition Dynamics	Computationally-Guided Design and Synthesis of Metal Complexes with Enhanced Cytotoxicity
rol Kowalski [199] upled cluster downfolding rmalisms for simulating many-body stems	Jochen Blumberger [54] Perturbed neural network potentials for condensed-phase simulations with external E-fields	Kevin Naidoo [171] An end-to-end integrated experimental computational drug discovery pipeline	Peter Schürger [166] Exact Factorization: New Perspective and Applications to Nonadiabatic Dynamics	Petra Imhof [339] INTERPLAY OF HYDRATION AND PROTON TRANSFER IN CYTOCHROME C OXIDASE
ancesco Evangelista [348] educed Dimensionality Models of ectrons via Exact Unitary ansformations	Marco Nascimento [223] Reducing the Coefficient of Friction of Water-Based Drilling Fluids.	Gyula Hoffka [815] Strategies for Generating Computationally Designed Enzymes with Nature-Like Efficiencies	Oliver Kühn [412] BSE@GW-Based Spin-Vibronic Quantum Dynamics Using the Linear Vibronic Coupling Model	Ana Gamiz-Hernandez [917] Proton coupled electron transfer in mycobacterial respiratory supercomplex III2IV2
ot et la ou ro sto an	r: Jürgen Gauss r Piecuch [923] ent Advances in the CC(P;Q) hodology: CIPSI-Driven and ptive Approaches rik Koch [862] eralized coupled cluster theory for und state conical intersections ol Kowalski [199] oled cluster downfolding halisms for simulating many-body ems accesco Evangelista [348] uced Dimensionality Models of trons via Exact Unitary hsformations	Ir: Jürgen GaussChair: Yi Qin Gaor Piecuch [923]Francesco Paesani [752]ent Advances in the CC(P;Q)Predictive Data-Driven Many-Bodyhodology: CIPSI-Driven and potive ApproachesSimulations of Water Across Phases and Environmentsrik Koch [862]Damien Laage [918]eralized coupled cluster theory for and state conical intersectionsOn the mechanisms of hydronium and hydroxide diffusion in waterol Kowalski [199]Jochen Blumberger [54]poled cluster downfolding nalisms for simulating many-body emsPerturbed neural network potentials for condensed-phase simulations with external E-fieldscesco Evangelista [348] uced Dimensionality Models of trons via Exact Unitary tesformationsMarco Nascimento [223] Reducing the Coefficient of Friction of Water-Based Drilling Fluids.	Ir: Jürgen GaussChair: Yi Qin GaoChair: Vidar Remi Jensenr Piecuch [923]Francesco Paesani [752]Yousung Jung [441]ent Advances in the CC(P;Q)Predictive Data-Driven Many-Body Simulations of Water Across Phases and EnvironmentsPredicting Organic Reactions Based on Electron Movements using Machine Learningrik Koch [862]Damien Laage [918]Jan Halborg Jensen [440]eralized coupled cluster theory for ind state conical intersectionsOn the mechanisms of hydronium and hydroxide diffusion in waterJan Halborg Jensen [440] Computational discovery of new molecules that can actually be madeol Kowalski [199]Jochen Blumberger [54]Kevin Naidoo [171] An end-to-end integrated experimental computational drug discovery pipelineexesco Evangelista [348]Marco Nascimento [223] Reducing the Coefficient of Friction of Water-Based Drilling Fluids.Gyula Hoffka [815] Strategies for Generating Computationally Designed Enzymes with Nature-Like Efficiencies	rr: Jürgen GaussChair: Yi Qin GaoChair: Vidar Remi JensenChair: Ove Christiansenr Piecuch [923]Francesco Paesani [752]Yousung Jung [441]Alicia Palacios [804]ent Advances in the CC(P;Q)Predictive Data-Driven Many-Body Simulations of Water Across Phases and EnvironmentsPredicting Organic Reactions Based on Electron Movements using Machine LearningAlicia Palacios [804]rik Koch [862]Damien Laage [918]Jan Halborg Jensen [440]Jian Liu [86]rolk kowalski [199]On the mechanisms of hydronium and hydroxide diffusion in waterComputational discovery of new molecules that can actually be madeNonadiabatic Field: A Conceptually New Approach for Nonadiabatic Transition Dynamicsol Kowalski [199]Jochen Blumberger [54]Kevin Naidoo [171]Peter Schürger [166]peter downfolding malisms for simulating many-body ernsMarco Nascimento [223]Gyula Hoffka [815]Oliver Kühn [412]scesce Evangelista [348] trons via Exact Unitary was Exact UnitaryMarco Nascimento [223]Gyula Hoffka [815]Oliver Kühn [412]stormationsStrategies for Generating with Nature-Like EfficienciesStrategies for Generating Water-Based Drilling Fluids.Strategies for Generating Computationally Designed Enzymes with Nature-Like EfficienciesOliver Kühn [412]

14:40 - 15:10 break

	Session A4	Session B4	Session C4	Session D4	Session E4
	ELECTRONIC-STRUCTURE THEORY	MACHINE LEARNING	BIOSYSTEMS	CHEMICAL STRUCTURE & BONDING	QUANTUM DYNAMICS
	Explicit correlation	ML for chemical reactions	Macromolecules	Early elements	Ultrafast dynamics
	Chair: Wim Klopper	Chair: Sigbjørn Løland Bore	Chair: Qiang Cui	Chair: Gabriel Merino	Chair: Thomas Bondo Pedersen
15:10	Seiichiro Ten-no [874]	Boris Kozinsky [971]	Modesto Orozco [819]	Miroslav Urban [270]	Françoise Remacle [887]
	Simplified explicit correlation via projective transcorrelation	Symmetry and physics guided machine learning of microscopic interactions	Nucleic acids in the frontier between AI and simulation.	C—Li—C lithium bonds in metal cross-linked polyethylene chains	Controlling ultrafast molecular reactivity with atto and few femtosecond pulses
15:35	Ali Alavi [853]	Fernanda Duarte [842]	Alessandra Magistrato [202]	ED Jemmis [163]	Michal Repisky [962]
	Recent developments with Transcorrelated methods	Modelling Chemical Reactions in Solution with MLIPs	Exploring RNA Metabolism through All-Atom Simulations	An Extended Rudolph Diagram explains the Structural Chemistry of Boron	Relativistic Real-Time Dynamics: Ultrafast Chirality in Molecules
16:00	Éva Zsuzsanna Mihálka [470]	Joakim Jestilä [246]	Mariastella Cascone [544]	Celina Sikorska [738]	H. Bernhard Schlegel [197]
	Geminal-based wavefunctions with an explicitly correlated extension	Data-efficient machine learning potentials for atomic layer deposition	Investigating the ET cascade in Cryptochrome 4 of different birds	Boron-based superalkalis for inert molecules activation: a hybrid QM- QSPR approach	Reducing the Cost of TD-CI Simulations of Strong Field Ionization
16:15	Silvia Di Grande [587]	Jessica White [667]	David Carrasco De Busturia [165]	Tatiana Korona [276]	Jonathan Fetherolf [701]
	Pisa Composite Schemes: Advancing	Enhancing Mineral Carbonation	Multiphoton Absorption Spectra of	Defect-induced excited states in	Probing Nuclear–Electronic Orbital
	Scalable Accuracy in Thermochemical	Through Molecular Simulations on	Channelrhodopsin-2 via Multiscale	boron nitride - a theoretical study	Dynamics with Cavity Emission
	Predictions	Mineral Surfaces	Simulation Methods		

16:30 - 17:00 break

	Session A5	Session B5	Session C5	Session D5	Session E5
	ELECTRONIC-STRUCTURE THEORY	MACHINE LEARNING	COMPUTING & SOFTWARE	QUANTUM DYNAMICS	CATALYSIS & REACTIVITY
	Density-functional development	ML for chemical design	Quantum computing	Ultrafast dynamics	Electrochemistry and related
	Chair: Weitao Yang	Chair: David Balcells	Chair: Birgitta Whaley	Chair: Federica Agostini	Chair: Cristina Trujillo
17:00	Martin Head-Gordon [957]	Clémence Corminbœuf [446]	Ivan Kassal [356]	Fernando Martín García [663]	Samira Siahrostami [21]
	Some recent advances in density	Do we really design molecules?	Simulating Quantum Chemical	New directions in Theoretical	Computational Discovery of Materials
	functional theory		Dynamics on Quantum Computers	Attosecond Chemistry	for Selective Electrosynthesis of H2O2
17:25	Erin Johnson [505]	Anatole von Lilienfeld [442]	Marco Govoni [1007]	Ove Christiansen [959]	Maria Besora [402]
	Three short dispersion-corrected DFT	Quantum machine learning in	Simulating condensed systems on	Time-dependent dynamics with	Computational Studies of
	vignettes	chemical space	quantum computers using FCI-in-	vibrational coupled cluster theory	Polyoxometalate-Catalyzed Water
			Dirembedding		and Statistics
17:50	Fritz Schaefer [687]	Konstantinos Vogiatzis [10]	Maria-Andreea Filip [419]	Jiří Vaníček [691]	Tangui Le Bahers [169]
	Does Jacob's Ladder Lead to Density	Molecular Topology Meets AI:	Current and Future Algorithms for	Can increasing the size of a	Using grand-canonical DFT to
	Functional Heaven?	Persistent Homology for Molecular	Accelerated Hamiltonian	molecule reduce decoherence?	investigate electrochemical reactions
		Discovery	Simulation		on semiconductor surfaces
18:30	Viktor Staroverov [154]	Thijs Stuyver [43]	Yu Zhang [20]	Nazanin Jamshidi [140]	Melissa Manetsch [362]
	Electron-nucleus cusps without	Combining chemical theory and ML	Quantum Information-Inspired	Quantum Dynamics of Plasmonic	Quantifying and Tuning Local Electric
	spherical averaging	techniques to accelerate reaction	Algorithms for Quantum Chemistry	Nanocavities and Strong Coupling	Fields in Confined Catalytic Systems
		discovery		with Emitters	
10.15	20.00	brook			
10.45	- 20.00	bleak			
20.00	- 22:00	Poster session 1			
20.00	22.00				

	Session A1	Session B1	Session C1	Session D1	Session E1
	CATALYSIS & REACTIVITY	ELECTRONIC-STRUCTURE THEORY	BIOSYSTEMS	ELECTRONIC-STRUCTURE THEORY	SPECTROSCOPY
	Surfaces and heterogenous catalysis	Many-body methods & NCI	Bio/nanosystems	Relativistic quantum chemistry	Polarization models
	Chair: Stuart Macgregor	Chair: Seiichiro Ten-no	Chair: Michele Cascella	Chair: Trond Saue	Chair: Russell Boyd
08:30	Anastassia Alexandrova [38]	Katarzyna Pernal [875]	Daan Frenkel [703]	Wenjian Liu [436]	Benjamin Stamm [798]
	Catalytic interfaces in and out of equilibrium	Two-fermion adiabatic connection methods for multireference electron correlation	Multivalency and cell recognition	Unified Implementation of Relativistic Hamiltonians and Wavefunctions	ddX: Polarizable Continuum Solvation from Small Molecules to Proteins
08:55	Ataualpa Braga [901]	Janus Juul Eriksen [810]	Wataru Shinoda [782]	Jürgen Gauss [438]	Kaline Coutinho [938]
	Cluster Modeling of Acid Sites and Catalytic Mechanisms in H-ZSM-5	Third-Generation Many-Body Expanded Full Configuration Interaction Theory	Endosomal Escape of Nucleic Acids via Lipid Nanoparticles: A Coarse- Grained Molecular Dynamics Study	Cholesky decomposition: relativistic quantum chemistry and magnetic properties	Solvent Effect in Electronic Properties: Approach with Solute&Solvent Polarization
09:20	Mikhail Polynski [357]	A. Daniel Boese [443]	Katie Wilson [97]	Achintya Kumar Dutta [215]	Cedrix Dongmo Foumthuim [624]
	Predicting Nanocatalyst Activity: Fast PES Exploration and Data-Efficient Machine Learning	Another Angle on Benchmarking Noncovalent Interactions	Modeling Bacterial Membranes: Role of Composition on Antimicrobial Peptide Mechanism	Frozen-Natural-Spinors: An Efficient Framework for Relativistic Quantum Chemistry Methods	Modeling Spectroscopic Properties of Biomolecules
	5				
09:35	Basil Raju [47] Novel Computational Approach for Determining Surface pKa at Metal- Aqueous Interfaces	Andreas Hansen [121] Accurate calculation of non-covalent interactions for large molecules	João Coimbra [597] The molecular mechanism of membrane disruption by venom PLA2-like proteins	Erik Donovan Hedegård [497] Treating heavy transition metals in solvation properly	Tommaso Nottoli [305] A Novel Implementation of CASSCF for Energy and Response Properties

09:50 - 10:20 break

	Session A2	Session B2	Session C2	Session D2	Session E2
	CATALYSIS & REACTIVITY	ENERGY & MATERIALS	ELECTRONIC-STRUCTURE THEORY	QUANTUM DYNAMICS	BIOSYSTEMS
	Molecular and reaction design	Materials and energy	Berry phase & complex wave functions	Ultrafast dynamics	Bio/nanosystems
	Chair: Odile Eisenstein	Chair: Leticia González	Chair: Henrik Koch	Chair: Fernando Martín García	Chair: Modesto Orozco
10:20	Satoshi Maeda [307]	Laura Gagliardi [702]	Hardy Gross [949]	Federica Agostini [388]	Biswarup Pathak [921]
	Reaction pathway network representation for predicting unknown chemical reactions	Theory, Computation and Machine Intelligence for Reticular Chemistry	Molecular Berry phase without adiabatic approximation	Theory and simulations of ultrafast dynamics in molecules	Artificially Intelligent Nanopores for High-Throughput DNA Sequencing
10:45	Markus Reiher [80]	Elena Besley [763]	Joseph Subotnik [686]	Morgane Vacher [820]	Matteo Dal Peraro [728]
	Machine Learning for First-Principles Reaction Network Exploration	Crystal embedded multi-reference method for studying strongly correlated materials	Beyond Born-Oppenheimer: Phase Space Approaches to Electronic Structure	Simulating photo-induced processes in molecules: methodological aspects and attochemical applications	A "Structure Transformer" for Integrative Structural Biology and Molecular Design
11:10	Derek Ahneman [161] Building datasets and ML models to predict stepwise organic reactivity	Tim Kowalczyk [239] Electronically Excited States and Interlayer Heterogeneity in Covalent Organic Frameworks	Ansgar Pausch [581] Effects of the molecular Berry curvature in relativistic systems	Yi Zhao [720] Charge/Energy Transfer in Extended Systems Simulated from Stochastic Schrödinger Equations	Gioacchino Schifino [580] Computational Design of Aptasensors for West Nile Virus Detection
11:25	GiovanniMaria Piccini [698] Automatic Reaction Discovery by Biasing Deep-Learned Skewed Distributions	Shubhajit Das [609] Navigating the Landscape of Metal- Organic Framework Catalysts	Bang Huynh [191] Symmetry and interpretation of complex orbitals and wavefunctions	Angela Wilson [680] Quantum electron dynamics and polaritonic chemistry	Samaneh Davoudi [79] Understanding Estrogen's Affinity for GPER using Molecular Dynamics Simulations
11:40	- 13:20	break			

	Session A3	Session B3	Session C3	Session D3	Session E3
	ELECTRONIC-STRUCTURE THEORY	MACHINE LEARNING	MOLECULAR DYNAMICS	QUANTUM DYNAMICS	CHEMICAL STRUCTURE & BONDING
	Density-functional development	ML for chemical reactions	Honorary session: 40 years of AIMD	DMRG and MCTDH	f-block elements
	Chair: Miroslav Urban	Chair: Francesco Paesani	Chair: Matteo Dal Peraro	Chair: Françoise Remacle	Chair: Pekka Pyykkö
13:20	Kieron Burke [922]	Teresa Head-Gordon [847]	Roberto Car [987]	Irene Burghardt [666]	Karin Fink [722]
	Approximate norms for approximate functionals	Machine Learning and Artificial Intelligence for Predictive Chemistry	Ab-initio Molecular Dynamics of Ferroelectrics	Multiconfigurational quantum dynamics of exciton transport in organic semiconductors	Quantum-chemical calculations on magnetic and electronic properties of lanthanide compounds
13:45	Eunji Sim [807]	Dennis Salahub [91]	Ursula Röthlisberger [960]	Zhigang Shuai [773]	Miho Hatanaka [713]
	Clarifying the Role of Density- Corrected DFT in Electronic Structure Calculations	Towards ML- and QML-accelerated discovery of catalytic materials and mechanisms	Adaptive On-the-fly ML-MTS to Accelerate First-Principles Based Molecular Dynamics Simulations	Time-dependent DMRG simulation for spin transport in helical molecular wires	Theoretical and Data-Driven Approaches to Lanthanide Photofunctional Materials
14:10	Jacques Desmarais [128] Meta Generalized Gradient Approximation Made Magnetic	Jordi Buils [479] Data-Driven Methods for Solving Multi-Species Multi-Equilibria Self- Assembly of Metal-Oxide Nanoclusters	Mark Tuckerman [395] Beating the viscosity-conductivity inverse relation in emerging battery applications	Yuki Kurashige [56] Tensor and Neural networks for quantum dynamics with many degree-of-freedom	Sergey Varganov [524] Ab initio description of vibronic emission bands in lanthanide complexes
14:25	Priya Priya [692]	Haobo Li [26]	Amin Alibakhshi [771]	Henrik Larsson [134]	Meagan Oakley [700]
	Green's function formalism for kinetic energy density functional for atoms.	Machine Learning Expands Computational Chemistry into Big Datasets for Catalysis	Quantum Chemistry in Machine- Learning Era: How to Assess the Reliability?	Rigorously computing thousands of vibrational states using tensor network methods	Relativistic Quantum Chemical Investigation of Actinide Covalency Measured by EPR
14:40	- 15:10	break			

	Session A4	Session B4	Session C4	Session D4	Session E4
	CATALYSIS & REACTIVITY	SPECTROSCOPY	BIOSYSTEMS	ELECTRONIC-STRUCTURE THEORY	ENERGY & MATERIALS
	Surfaces and heterogenous catalysis	Methods for excited electronic states	Multiscale modelling	Strong correlation & entanglement	Condensed systems
	Chair: Philippe Sautet	Chair: Frank Neese	Chair: Marco De Vivo	Chair: Piotr Piecuch	Chair: Marco Nascimento
15:10	Annabella Selloni [748]	Emmanuel Fromager [755]	Benedetta Mennucci [832]	Shuhua Li [881]	Nicola Gaston [955]
	Water dissociation at electrified oxide- electrolyte interfaces from machine learning simulations	N-centered ensemble density functional theory of electronic excitations	Photoinduced Biological Function: Bridging Electronic Excitations to the Functional Outcome	Block-correlated Coupled Cluster Methods for Strongly Correlated Systems	Why is gallium liquid at room temperature?
15:35	Akira Nakayama [681]	Weitao Yang [956]	Paula Homem-de-Mello [685]	Mario Piris [16]	Pavel Jungwirth [664]
	Molecular Insight into Adsorption and Conversion at the Liquid/Solid-Oxide Interface	ΔSCF Excited-State Approach: Theoretical Foundation, Fractional Charges, and Orbital Energies	Design of Photosensitizers for Photodynamic Therapy	Expanding the Frontiers of Natural Orbital Functional Theory	Electrolyte-to-metal transition in ammonia solutions of alkali metals by AIMD
16:00	Seungjae Kwak [437] Muti-scale Approach to Understanding Superlattice Area Selective Atomic Layer Deposition	Momir Mališ [787] Improving the ΔSCF method for excited electronic states	Yingjie Wang [117] Multiscale Regulation of Light- Harvesting and Quenching in LHCII protein	Jiří Pittner [77] Spin-free orbital entropy, mutual information, and entanglement analysis	Sheh-Yi Sheu [19] High-Performance Energy-Free Desalination
16:15	Francesc Viñes Solana [89] Computational Assessment of MXenes Bandgap Engineering for Photocatalytic Water Splitting	Lars Goerigk [139] Time-dependent range-separated double-hybrids with spin scaling for difficult excited-state problems	Sebastian Reiter [594] Multiscale Modeling of Photosystem I Light-Harvesting in Diverse Environments	Sarai Dery Folkestad [94] Towards spin completeness with entanglement CCSD for doublet systems	Jun-Ho Choi [50] Molecular aggregation and microheterogeneity in osmolyte solutions

16:30 - 17:00 break

	Session A5	Session B5	Session C5	Session D5	Session E5
	BIOSYSTEMS	ELECTRONIC-STRUCTURE THEORY	CATALYSIS & REACTIVITY	SPECTROSCOPY	EXOTIC SYSTEMS
	Cheminformatics & medicinal chemistry	Methods for larger systems	Reactants, reactions, and catalysis	Circular dichroism	Strong fields and high pressure
	Chair: Ursula Röthlisberger	Chair: David Sherrill	Chair: Annia Galano	Chair: Kenneth Ruud	Chair: Peter Schwerdtfeger
17:00	William Jorgensen [808]	Christian Ochsenfeld [952]	David Wales [969]	Daniel Crawford [757]	Stella Stopkowicz [941]
	Impact of Free Energy Calculations for Chemistry and Drug Discovery	Efficient quantum-chemical methods for excited states, properties, and reaction networks	Energy landscapes: from molecules to machine learning	Advanced Quantum Chemical Methods for Chiroptical Spectroscopy	Predicition and Assignment of Strongly Magnetized White Dwarf Spectra
17:25	Zoe Cournia [981]	Hiromi Nakai [723]	Feliu Maseras [674]	Luuk Visscher [814]	Andrew Wibowo-Teale [671]
	Predicting protein-ligand, protein- protein, protein-membrane interactions using molecular simulations and AI	Breaking Barriers in Fragmentation Methods for Long-Range Interactions	Beyond free energy profiles: microkinetic models	Modelling electronically enhanced vibrational circular dichroism spectra: challenges and solutions	Molecular Aharonov–Bohm-type interferometers based on porphyrin nanorings
17:50	Stacey Wetmore [321]	Filippo Lipparini [826]	Sebastian Kozuch [2]	WanZhen Liang [243]	Eva Zurek [697]
	A Multipronged Computational Investigation of the Chemistry of Modified RNA	CCSD energies and structures for larger, symmetric molecules	Tunneling of Molecules: the Weirdest Side of Chemical Reactivity	Modeling the Photophysical Processes of Organic Molecular Aggregates	Unusual Chemistry and New States of Matter at Extreme Pressures
18:30	Christoph Riplinger [714] Deciphering Ligand Interactions with Biomolecules Using Quantum Mechanical Methods	Maristella Alessio [187] Coupled-Cluster Treatment of Large and Complex Open-Shell Systems	Masataka Nagaoka [44] Molecular Simulation of Complex Reaction Systems: The Red Moon Approach	Marco Caricato [138] Optical and Chiroptical Linear Response Properties of Materials	Mercedes Alonso [393] Modeling Atomic and Molecular Behavior under Isotropic Pressure
18:45	- 20:00	break			
20:00	- 22:00	Poster session 2			

Wednesday, June 25

Plenary P3

Chair: Peter Gill

08:30Gustavo Scuseria [848]
Symmetry-Projected Coupled Cluster Theory09:10Katharina Boguslawski [879]
Is simpler better? Alternative wave function approaches for molecular modeling09:50- 10:20breakPlenary P4
Chair: Martin Head-Gordon10:20Luhua Lai [851]
Computational approaches for making uruggable targets druggable11:40Heather Kulik [418]
What has machine learning taught us abert transition metal chemistry?11:40excursion

20:00 Congress dinner

	Session A1	Session B1	Session C1	Session D1	Session E1
	ELECTRONIC-STRUCTURE THEORY	SPECTROSCOPY	BIOSYSTEMS	CHEMICAL STRUCTURE & BONDING	ENERGY & MATERIALS
	Methods for periodic systems	Methods for excited states	Multiscale modelling	Analysis	Photophysics and photochemistry
	Chair: Christian Ochsenfeld	Chair: Emmanuel Fromager	Chair: Stefano Vanni	Chair: Henry Rzepa	Chair: Zhigang Shuai
08:30	Georg Kresse [831]	Julia Westermayr [364]	Qiang Cui [689]	Matthias Bickelhaupt [670]	Dage Sundholm [797]
	Machine learning and beyond DFT methods: enabling materials modelling	Machine Learning for Excited States	Recent developments and applications of QM/MM-ML methods	Paradigm Shifts in Chemical Theory	Optical and photophysical properties of fifth generation light-emitting molecules
08:55	Lin Lin [571]	Hannes Jónsson [660]	Garnet Chan [872]	Frank de Proft [813]	Jing Ma [888]
	Finite-size error in quantum chemistry methods for periodic systems	Rydberg/charge-transfer excited states using saddle point searches and neural-network Cl	Towards discovering reactivity with QM methods in biological systems	Conceptual Density Functional Theory Based Reactivity Indices: Analytical Evaluation	Machine Learning of NRR and CO2RR Reaction Activities and Selectivities
09:20	David Tew [870]	Thomas Froitzheim [81]	Andrea Pérez-Villa [504]	Inbal Tuvi-Arad [749]	Dana Nachtigallová [636]
	DLPNO-MP2 for Periodic Systems in the Turbomole Program	Δg-xTB: Excited states with state- specific extended Tight-Binding	Synergistic Integration of Co- Folding and QM/MM calculations for Protein-Ligand Binding	Exploring Hidden Structural Insights with Continuous Symmetry and Chirality Measures	Tuning On-Surface Photoactivity: The Role of π-Conjugation in Anhydride- Functionalized Molecules
09:35	Philip Hoggan [13] Quantum Monte Carlo resolving metal catalyst activation barriers: Hydrogen production	Elli Selenius [790] Orbital-optimized density functional calculations of challenging charge transfer excitations	Andrea Levy [601] Atom-centered electric multipole moments dynamically generated from QM/MM MD simulations	Jacob Toney [394] Graph neural networks predicting metal-ligand coordination in transition metal complexes	Sofia Canola [582] Molecules meet light in STM: atomically-resolved visualization of light-mediated processes

09:50 - 10:20 break

	Session A2	Session B2	Session C2	Session D2	Session E2
	ELECTRONIC-STRUCTURE THEORY	CATALYSIS & REACTIVITY	BIOSYSTEMS	ENERGY & MATERIALS	COMPUTING & SOFTWARE
	Simpler model systems	Reactants, reactions, and catalysis	Multiscale modelling	Photophysics and photochemistry	Software
	Chair: Anna Krylov	Chair: Manuel Yañez	Chair: Garnet Chan	Chair: Dage Sundholm	Chair: Daniel Crawford
10:20	Stefan Grimme [825]	Evert Jan Meijer [943]	Carme Rovira [863]	Kumar Vanka [899]	Patrick Norman [898]
	Status report on the new g-xTB tight- binding method	Elucidating the Role of Solvent and Cations in CO2 Conversion	Deciphering Carbohydrate-Active Enzymes: Reactions, Conformations, and Mechanisms	Understanding the Behaviour of Unidirectional Molecular Motors with Computational Chemistry	VeloxChem: Science and education- enabling platform for quantum molecular modeling
10:45	Peter Schwerdtfeger [92]	Bastian Skjelstad [715]	Marco De Vivo [817]	Leticia González [964]	Susi Lehtola [799]
	100 years of Lennard-Jones potentials: Applications to the solid state	Wacker oxidation insights from density-functional theory and machine-learned interatomic potentials	Targeting RNA at the Conserved Active Site of Splicing Machinery	Unravelling reaction pathways in photoswitchable molecules	Progress towards a reusable software stack in quantum chemistry
11:10	Per Siegbahn [212]	Amalia Poblador Bahamonde [880]	Stefano Serapian [120]	Enrico Tapavicza [523]	John Herbert [24]
	Why is DFT so much better for larger systems ?	Sulfinyl-tethered N-heterocyclic carbene ligands: structure and reactivity by computational approach	Multiscale modelling of allostery in proteins	Photodynamics and chemical compound space of light-driven molecular nanomotors	Open-Source Framework for Fragment-Based Quantum Chemistry
11:25	Itai Panas [679]	Zhexuan Song [654]	Allison Keys [226]	Enrique Manuel Arpa [411]	Alexander Stark [157]
	Electron Correlation Corrected Hartree-Fock Theory - Back to the Future	Deciphering the Acceleration Mechanisms of Simple Organic Reactions in Microdroplets	CH–π Interactions Confer Orientational Flexibility in Protein- Carbohydrate Binding Sites	Exploiting excited-state aromaticity to enhance photochemical organic reactivity	Improving Slater Orbital Integration Accuracy through Prolate Spheroidal Coordinates
11:40	- 13:20	break			

11:40 - 13:20

	Session A3	Session B3	Session C3	Session D3	Session E3
	ELECTRONIC-STRUCTURE THEORY	CATALYSIS & REACTIVITY	MACHINE LEARNING	SPECTROSCOPY	TEACHING & EDUCATION
	Density-functional development	Molecular and reaction design	ML for simulations	Rotovibrational spectra	Teaching & education
	Chair: Jiali Gao	Chair: Ainara Nova	Chair: Konstantinos Vogiatzis	Chair: Sonia Coriani	Chair: Trygve Helgaker
13:20	Stefan Vučković [837]	Annia Galano [508]	Yi Luo [737]	Attila Császár [931]	Anders Malthe-Sørenssen [998]
	Bridging Traditional Methods and Machine Learning in Density Functional Developments	CADMA-Chem: A Computational Protocol to Design Multifunctional Antioxidants	Autogeneration of functional molecule structures from spectroscopies with machine learning	MARVEL and SNAPS	Computational literacy as a driver for disciplinary renewal in chemistry
13:45	Martin Kaupp [661] Beyond-zero-sum-game density functionals based on the exact- exchange energy density	Vidar Jensen [946] Automated de Novo Design of Transition-Metal Catalysts	Yi Qin Gao [882] Al assisted molecular modeling and simulations	Guntram Rauhut [106] Toward a convenient calculation of rovibrational spectra	Peter Taylor [1001] The "royal road" to expertise in quantum chemistry
14:10	Hans Jørgen Aa. Jensen [457] Variational MC-srPDFT – a multiconfigurational short-range on- top pair-density model	Cristina Trujillo [36] Computationally Led Catalyst Design	Amanda Arcidiacono [537] Understanding excited states of carotenoids in environments with machine learning	Ayaki Sunaga [735] Variational Vibrational States of Methanol (12D)	Dirk Andrae [367] Simple(r), yet (more) efficient maths teaching for students of chemistry
14:25	Aaron Garrison [159] Machine Learning Prediction of Optimal Exchange Fractions in Hybrid Functionals	Wataru Matsuoka [237] Virtual Ligand Assisted-Optimization: A Rational Strategy for Ligand Engineering	Krzysztof Szalewicz [730] New life for "classical" force fields in machine-learning age	Frederik Tielens [72] Theoretical Raman Spectroscopy in Industry: From Computational Modeling to Applications	Henry Rzepa [12] From FAIRSpec data and Finding aids to a FAIRComp specification.
14:40	- 15:10	break			

14:40 - 15:10

	Session A4	Session B4	Session C4	Session D4	Session E4
	CATALYSIS & REACTIVITY	ENERGY & MATERIALS	ELECTRONIC-STRUCTURE THEORY	MACHINE LEARNING	SPECTROSCOPY
	Reactants, reactions, and catalysis	Materials and energy	Optimization in quantum chemistry	ML for electronic structure	Positrons & weak interactions
	Chair: Feliu Maseras	Chair: Evert Jan Meijer	Chair: Erik Tellgren	Chair: Hiromi Nakai	Chair: Edit Mátyus
15:10	Jin Wen [800]	Debra Bernhardt [751]	Éric Cances [742]	Paola Gori-Giorgi [867]	Gustavo Aucar [861]
	Machine Learning-Enhanced Ultrafast	lonic conductivity and fluid flow:	Optimization problems in electronic	Machine Learning and Electronic	On molecular chirality and weak
	Dynamics in Complex Systems: Methods and Applications	predictions from response theory	structure calculation	Structure Theory	forces, entanglement and NMR-J couplings
15:35	Fahmi Himo [928]	Sara Bonella [827]	Roland Lindh [672]	Matthias Kick [233]	Robert Berger [360]
	Modeling Reactions in Supramolecular Systems	Classical simulations of interfaces in supercapacitors	The Reduced Variation Optimization Procedure: A qualitative analysis	Super-Resolution Methods for Accelerating Large-Scale Electronic Structure Calculations	Models, predictions of parity-violating level shifts in small chiral molecules
16:00	Johannes Hoja [575]	Virginia Carnevali [538]	Giovanni Scalmani [619]	Angel Martín Pendás [58]	Dermot Green [256]
	Towards Kinetics of Molecular Crystals: Polymorph Transitions and Chemical Reactions	Nanoscale effects in α-FAPbI3 evinced by large-scale ab initio simulations	Stability, CIS/TDA, and TD for complex and general HF/KS-SCF	Chemical Machine Learning with Real-Space Descriptors	Many-body theory of positron interactions with atoms and polyatomic molecules
16:15	Michele Assante [769] Combined DFT and ML modelling for metallaphotoredox sp2-sp3 cross- coupling reactions.	Tuanan C. Lourenço [334] Multiscale Investigation of Ionic Liquid-based Electrolytes for Sodium- ion Batteries	Hugh Burton [712] Restricted open-shell SCF theory for low-spin coupling	Tomáš Bučko [214] Benchmarking electronic structure methods in anharmonic finite- temperature thermodynamic calculations	Kenneth Jordan [1] Diffusion Monte Carlo Calculations of Positron Affinities

16:30 - 17:00

break

	Session A5	Session B5	Session C5	Session D5	Session E5
	SPECTROSCOPY	ELECTRONIC-STRUCTURE THEORY	ENERGY & MATERIALS	BIOSYSTEMS	CHEMICAL STRUCTURE & BONDING
	Spectroscopy & energy surfaces	Beyond standard DFT	Materials and energy	Bio/nanosystems	Coordination chemistry
	Chair: Abril Castro	Chair: Paola Gori-Giorgi	Chair: Laura Gagliardi	Chair: Carme Rovira	Chair: ED Jemmis
17:00	Sonia Coriani [925]	Paul Ayers [733]	Marie-Liesse Doublet [966]	Sergio Pantano [417]	Gabriel Merino [392]
	Modeling Spectroscopic Observables	The 1-electron Reduced Density	Materials for Energy Storage :	Stripping off a naked virus:	Recent Advances in Planar
	on Classic and Hybrid-Quantum	Matrix Functional: An Optimal	Challenges and Related Issues	Modeling the Cirocvirus genome.	Hypercoordinate Atom Chemistry
	Computers	Transport Approach			
17.25	Appa Krylov [292]	liali Cao [004]	Emi Minamitani [02]	Cristiana Di Valentin [704]	loanet Conradio [119]
17.25	Arilla Krylov [382]			Madalian area and a second and for	Define Contracte [116]
	surfaces of metastable states by	and MultiState Energy	structure-properties relationships	drug delivery targeted therapy and	identifying Jahn-Teller isomers of
	spectroscopy	Decomposition Analysis (MS-EDA)	in amorphous solids	imaging	manaanese(III)-complexes
	· · · · · · · · · · · · · · · · · · ·				
17:50	Ida-Marie Høyvik [721]	Andreas Görling [220]	Gloria I. Cárdenas-Jirón [795]	Stefano Vanni [643]	Julien Panetier [53]
	Charge localized electronic wave	Optimized-effective-potential method	Charge Transport of Dyes and	Good fat or bad fat? From forcefield	Computational Modeling of CO
	functions for ground and excited states	for accurate TDDFT excitation	Electrodes by Molecular Junction	development to physiology	Dehydrogenase Model Systems for
		energies with standard density-	Modeling		CO2 Fixation
		functionals			
18.30	Takeshi Sato [651]	Lucien Dunuy [631]	Antti Karttunen [607]	Maurício Coutinho Neto [732]	Konrad Patkowski [122]
10.50	Electronic structure and dynamics	KS-DET Beyond Born-Oppenheimer	Purpelectricity of Ferroelectric	Coarse Grain SAXS Modeling of	Influence of three-body interactions on
	simulations with classical and	Exact Manning to an Electronically	BaTiO3 and $PhTiO3$ from Density	Linopentide Self-Assembled	halogen honding
	quantum computers	Non-Interacting Molecule	Functional Theory	Structures	halogen bonang
18:45	- 20:00	break			
20:00	- 22:00	Poster session 3			

Friday, June 26

Plenary P5

Chair: Peter Gill

08:30	Mario Motta [983]				
	Quantum chemistry calculations using classical and quantum computers in concert				
09:10	Edit Mátyus [934]				
	Molecular quantum dynamics by solving th	e rovibrational Schrödinger equation			
09:50	- 10:20	break			
	Plenary P6				
	Chair: Peter Gill				
10:20	Alexander Sokolov [415]				
	Efficient multireference methods for excited states and spectroscopy				
11:00	Thomas Jagau [939]				
	Recent progress in complex-energy electronic-structure methods				
11:40	Closing remarks				