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Abstract

This study analyzes the eects of global trade on deforestation. Based on georeferenced
data on forest loss and agricultural and livestock production, the amount of deforestation
measured between 2006 and 2010 was attributed to 42 agricultural commodities and
3 livestock commodities. A global input-output matrix was used to understand how
deforestation propagates through production chains until it reaches nal demand. Using
input-output theory techniques, two indicators were calculated: one for deforestation
generation per additional dollar in nal demand, and another for the deforestation footprint
of countries. Subsequently, a case study was carried out to estimate the impact of the
EUDR on the Brazilian beef market, assuming the regulation had been in force at the end of
2005. The results revealed facts such as the dependence of the demand structure of poorer
countries on more extractive sectors, and that richer countries consume deforestation
mainly via imports. The simulated EUDR scenario pointed to an annual trade reduction
of USD 38,9 million between Brazil and the EU, and a reduction of the EU’s deforestation
footprint by 202 hectares over ve years.
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10 Abstract



1 Introduction

Deforestation has likely been a constant feature of human history, driven by the need

to build villages, cities, agricultural plantations, and exploit mineral resources. Following

the Industrial Revolution, technological advancements and industrial activities expanded at

an unprecedented rate. Urban development grew alongside these changes, while population

increases necessitated the conversion of forests into agricultural land and pastures for

livestock. This relentless drive for expansion and resource use has placed immense pressure

on forests. Furthermore, the methods of production in modern society, which rely on the

burning of fossil fuels, have emerged as a primary contributor to global warming through

the intensication of the greenhouse eect, posing severe threats to countless species on

Earth, including humanity itself (Mora et al., 2018).

Today, one of the major challenges humanity faces is how to mitigate the eects

of climate change. Policies aiming to reduce greenhouse gas (GHG) emissions, such as

multilateral agreements and carbon pricing mechanisms, have been created to achieve

emission reduction targets. Among the burning of fossil fuels, deforestation also has a

signicant weight as a source of emissions. Agriculture, Forestry and Other Land Uses

(AFOLU) contributes to around 22% of global greenhouse gas (GHG) emissions. Land

Use, Land-Use Change and Forestry (LULUCF)—primarily deforestation—is responsible

for nearly half of the net AFOLU emissions (IPCC, 2023). Besides this, other negative

externalities from deforestation may arise, such as loss of biodiversity, changes in soil

absorption of water, changes in rain regime control, and biogeochemical cycle equilibrium

(Mitchard, 2018; Foley et al., 2007; Faria et al., 2023; Berenguer, 2024).

However, within forestry governance, multilateral agreements related to forest

protection have not seen full development and adherence from countries (Sotirov et al.,

2020; Sommer, 2020; Henn, 2021). In this context, the European Union introduced an

important regulatory measure to promote the consumption of deforestation-free products.

The EU Deforestation Regulation (EUDR) aims to reduce the EU’s contribution to global

deforestation by restricting trade with market agents operating in deforested areas —

11



12 1. Introduction

whether legally or illegally — since December 31, 2020. The logic of the regulation is based

on the fact that expansion of agricultural land-use (which includes cropland, pastures, and

forestry) is the primary cause of deforestation. This fact is adressed in Pendrill et al.,2022.

Features such as populational increase and land grabbing are also drivers of deforestation

(Fearnside, 2001; Pfa, 1999; Busch and Ferretti-Gallon, 2017; Araujo et al., 2009).

This dissertation investigates the potential eects of the EUDR, with a focus on the

Brazilian beef industry as a case study.1 The analysis proceeds in three main steps. First, we

identify key deforestation-intensive products and commodities by mapping their countries

of origin. Second, we examine how deforestation is embedded and transmitted through

global value chains. This allows us to construct deforestation indices by product and

country. Third, we estimate the potential impact of the EUDR on trade and deforestation

in the Brazilian beef sector by applying a sectoral shock. Using the deforestation index

and input-output analysis, we simulate a counterfactual scenario in which the EUDR had

been in eect since the end of 2005. This approach provides insights into the regulation’s

long-term implications for trade ows and deforestation patterns. The period analyzed for

deforestation outcomes spans from 2006 to 2010.

We draw on multiple data sources for each step of the analysis. In the rst

step, deforestation is quantied as forest loss at the pixel level using the Global Forest

Change (GFC) dataset, covering the period from 2006 to 2010. This dataset, derived

from Landsat imagery, provides a spatial resolution of 30 meters. Each deforested pixel is

then associated with agricultural and livestock production—also at the pixel level—by

allocating forest loss proportionally to the increase in cultivated area for each crop during

the same time period. To estimate the global distribution of crops — forming the basis for

connecting deforestation to agricultural activity — we use spatial data on production and

harvested area from Agro-MAPS and SPAM. These datasets are compiled by the Food

and Agriculture Organization (FAO), the International Food Policy Research Institute

(IFPRI), and the Center for Sustainability and the Global Environment (SAGE) at the

University of Wisconsin-Madison. In addition, we incorporate spatial data on global

livestock production and distribution from the FAO’s Gridded Livestock of the World

(GLW) database to assess the contribution of livestock expansion to deforestation.

In the second step, we analyze how deforestation associated with agricultural
1The tools and methods developed in this analysis can be extended to other sectors and countries

globally.
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and livestock production propagates through global supply chains using input-output

analysis. Specically, we use Release 059 of the GLORIA global environmentally-extended

multi-region input-output (MRIO) database (Lenzen et al., 2021), developed by the

Global MRIO Lab (Lenzen et al., 2017). GLORIA-MRIO oers a detailed representation

of international trade and production linkages, covering 164 regions and 120 sectors,

which enables a comprehensive assessment of how deforestation-related commodities move

through global markets. This analysis yields two key outputs: (i) global indicators

of deforestation intensity—referred to here as deforestation generators—attributed to

products and countries, and (ii) national deforestation footprints.

Building on the previous steps, the third step simulates a scenario in which the

EUDR had been in eect since 2005, with a specic focus on its impact on the Brazilian

beef industry. For this analysis, we use state-level data on rural productivity and exports

from the Brazilian Institute of Geography and Statistics (IBGE). We estimate output

levels originating from deforested areas, as identied through satellite imagery, linking

them to beef production and export patterns. This step integrates the deforestation

footprint results with the projected trade impacts of the EUDR, providing insights into

how restrictions on deforestation-linked commodities could alter trade ows to the EU

and reduce the contribution of EU consumption—particularly of Brazilian beef—to global

deforestation.

Our results indicate that for low-income countries, which tend to have more

extractive production structures, each additional dollar of nal demand is associated with

a higher level of deforestation compared to wealthier countries, which consume more

industrialized and less land-intensive products. Globally, cattle production emerges as

the leading driver of deforestation. Brazil has the largest deforestation footprint, driven

by both high domestic consumption and signicant meat exports. Developed countries,

in turn, tend to "import" deforestation through their consumption of goods produced in

deforesting regions, highlighting a link between higher GDP levels and the outsourcing

of environmental degradation to less developed countries. The European Union, for

example, is a major importer of Brazilian beef. Under a counterfactual scenario in which

the EUDR had been in place since the end of 2005, we estimate a potential reduction

of USD 38,9 million in trade and a decrease of 202 hectares in the EU’s deforestation

footprint—underscoring the regulation’s capacity to curb deforestation through targeted
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trade restrictions.

There is a wide body of literature that explores the use of input-output techniques

to calculate how physical measures—such as the content of metals, fossil fuels, and

biomass (Lenzen et al., 2017; Hong et al., 2022)—and deforestation are accounted for in

international trade, introducing concepts such as embodied content and footprint (Sun

et al., 2023; Hoang and Kanemoto, 2021). The development of these techniques is essential

for ensuring that environmental costs are accurately calculated and properly attributed to

the responsible agents.

The main contribution of this work is to develop a methodology for assessing the

impact of a commercial regulation focused on reducing deforestation based on the variation

of the environmental footprint and the trade volume, with a particular focus on the EUDR

over Brazilian beef market. It also adds to the literature a mapping of the sectors and

countries that generate most deforestation, and highlights the urgent need for global

governance mechanisms to mitigate deforestation through international trade policies.

This study is organized as follows. Chapter 2 provides the background, exploring

the historical presence of deforestation in human development, its connections with climate

change and international trade, as well as local dynamics in countries such as Brazil,

Indonesia, and Russia—highlighting the complexity of the issue. Chapter 3 describes

the data sources and their specic characteristics. Chapter 4 outlines the methodologies

applied at each stage of the analysis. Chapter 5 presents the results corresponding to each

step. Finally, Chapter 6 concludes the study by discussing the implications of the ndings,

acknowledging limitations, and suggesting directions for future research.



2 Background

The history of civilizations involves the relationship between human beings and

their surrounding environment through modifying actions, aiming to adapt it to their needs

and according to their understanding of natural cycles. Thus, combined with the evolution

of technology, it became possible to improve tools, cultivate food, domesticate animals,

and establish settlements with the development of cities, as well as to enable population

expansion and territorial disputes. Some indigenous civilizations that inhabited, and

still inhabit, forest environments developed an understanding of the forest as something

inherent to their very existence (González and Kröger, 2020). Other civilizations, especially

those that led technological progress through historical processes driven by economic forces

— explained by the protability obtained through surplus production and market expansion

(HUBERMAN, 2009) — culturally lost the connection between the productive process

and the natural cycles, and redened human existence by separating it from a symbiotic

state with nature. Consequently, the pursuit of material progress within this human-

technological symbiosis, while ignoring the role of the natural cycles that surround us, leads

to the depletion of essential resources for maintaining life on the planet. It is a paradox

of material development at the expense of environmental resources, because ultimately,

all the technological advancements aimed at improving well-being would become useless

if natural systems were to collapse (Commoner, 1974) . In 2002, the 1995 Nobel Prize

winner in Chemistry, Paul Crutzen, suggested that we were entering a new era he called

the Anthropocene, referring to the epoch in which human modication of the environment

becomes signicant enough to be a dominant force in shaping the planet’s biogeophysical

processes (Zalasiewicz et al., 2008).

This reection paves the way for us, in this work, to focus on one part of the challenge

humanity faces: protecting natural systems that are under threat from uncontrolled

technological progress. We will address forests, which harbor rich biodiversity and play

a crucial role in maintaining the biogeochemical balance of gases on the planet. In the

following subsections, we will contextualize the problem of deforestation, its relationship

15



16 2. Background

with climate change, its causes through commercial levers activated in global production

chains, and other causes intrinsic to the geographic dynamics of socioeconomic order.

2.1 Deforestation and climate change
Facing climate change is the major challenge humanity faces in current days. The

eect of not taking mitigation and adaptation actions are the intensication of global

warming and consequently materials and lives losses due to extreme events, such as

droughts, oods and hurricanes, which also threats hydric and food supply systems,

aecting the whole economy.

Unequivocally it is clear with high condence that human activities are responsible

for global warming, mainly coming from emissions of fossil fuels combustion. However,

deforestation and land use also plays a signicant role. According to IPCC, in 2019,

AFOLU (Agriculture, Forestry and Other Land Uses) represents approximately 22% of

the total greenhouse gases (GHG) emissions, which Land Use, Land-Use Change and

Forestry (LULUCF), mainly deforestation, accounts for almost half of the total net AFOLU

emissions (IPCC, 2023). The energy sector represents approximately 34% of total emissions,

the industry accounts for 24%, 15% from transport and 6% from buildings. This pattern is

dierent for countries where the energy from thermal sources has less share in the energetic

balance. In Brazil for example, according to deforestation and land use change corresponds

to 46% of it’s total emissions in 2023, whereas energy sector share is only 18% (source:

SEEG).

Furthermore, recent studies show that tropical forests, which used to work as a

neutral carbon source and carbon sink system, are in the process of switching from being

approximately neutral to being a net source of carbon (Mitchard, 2018). Beyond the

eects of carbon emissions caused by deforestation, other negative externalities may arise

from this practice, such as loss of biodiversity, which presents inestimable value to the

balance of life on the planet, weather destabilization, proliferation of diseases, etc. Thus,

preserve forests is of utmost importance to limit the global warming and to preserve life.

Facing this problem involves analyze the main channels and incentives that conduct to

the deforestation of an area. It depends on a myriad of geographic and socioeconomic

factors. Undestanding well the local dynamics of deforestation can deliver eective policies

that blocks the channels of deforestation. According to Pendrill et al., 2022, agriculture,
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through direct expansion of pastures and cropland into forests, is the main driver of

deforestation. Hence, many policies and agreements can be designed in order to tackle

supply chains of agricultural and livestock production, and can be scaled up at global

trade level.

2.2 Trade, global value chains and deforestation
In this work, we focus on the relationship between trade and deforestation. The

main premise of our analysis is that all deforestation is driven by the consumption of certain

products whose supply chains activate sectors that generate deforestation to meet nal

demands originating from multiple regions around the world. To understand this entire

chain of relations, we can think of an anecdotal case of the production of an automobile,

whose parts are produced in dierent regions. The high-power engine is forged in Germany,

with some parts coming from Japan. The electronics of the futuristic onboard panel

were assembled in South Korea, while the beautiful wheels came from Italy, using metals

extracted from mines in Australia and Brazil. The fancy beige leather seats and steering

wheel originated from a cattle farm deep in Brazil, where, years ago, a large area of native

forest was cleared to create pastureland, transforming once dense vegetation into open

elds for grazing. Thus, when a nal consumer goes to a dealership and buys the vehicle,

they indirectly help keep several production chains active. However, the environmental

costs embedded in the products they consume are unknown. Furthermore, the ease with

which certain products — whose production generates signicant environmental damage

— enter the market may encourage producers to expand their activities in search of greater

prots. Deforestation in tropical forests follows a similar dynamic, where prots from the

trade of certain commodities provide an incentive for expanding production (Berman et al.,

2023). There are several mechanisms involved in the commercial drivers of deforestation

(López and Galinato, 2005; Faria and Almeida, 2016; Busch and Ferretti-Gallon, 2017;

Abman and Lundberg, 2020). Understanding local socioeconomic dynamics, conducting

good deforestation measurement, and generating detailed trade data allow for better

exploration of these mechanisms and the design of agreements and policies to mitigate

deforestation, as well as to simulate their eects.
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2.3 Local deforestation dynamics
Below, we explain some details of the causes of deforestation in a few of the countries

with the highest deforestation levels, with a greater focus on Brazil. For other countries,

we recommend exploring the Global Forest Watch website1.

Brazil

Brazil has approximately 60% of its territory covered by forests. It is also home

to the largest tropical forest in the world, the Amazon rainforest. The dynamics of

deforestation in Brazil are marked by the predominance of pasture creation. According

to Mertens, 2002, the clearing of land for pasture serves three purposes: to provide food

for livestock, to facilitate land appropriation, and to increase land value at a low cost in

the long term. There is a multiplicity of incentive channels for deforestation, such as the

construction of roads, poorly dened property rights, and the existence of food markets in

nearby regions (Pfa, 1999; Walker et al., 2000; Andersen et al., 2002; Reis and Guzmán,

2015; Andersen and Reis, 2015).

In the 21st century, deforestation dynamics in Brazil have experienced signi-

cant uctuations. Between 2004 and 2014, the country recorded consistent declines in

deforestation rates, driven by policies such as the Priority Municipalities program, the

Soy Moratorium, and the establishment of conservation zones. After 2014, a series of

institutional crises and political instability led to weakened enforcement and a surge in

deforestation, which peaked again in 2021. More recently, however, deforestation rates

have shown a notable decline once more.

Analyzing from a historical perspective, the problem of large-scale deforestation

in Brazil began with the arrival of Europeans on the continent in the early 16th century

and the exploitation of Pau-Brasil, a native tree with reddish wood that had great utility

in the textile industry, which was incipient in England at the time. The enslavement of

Indigenous people and the trade of the tree that would give its name to the new territory

marked the beginning of a major problem that persists to this day.

Throughout its history, the country has undergone several economic cycles associated

with agricultural commodities: the rubber cycle, with the extraction of rubber trees in the

Amazon region; the coee cycle in the southeast, a region of Atlantic Forest; and, more
1https://www.globalforestwatch.org/
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recently, the expansion of soy in the second half of the 20th century. All of these cycles

were accompanied by profound changes in the primary vegetation cover of the territory.

In the early 1960s, during the military regime, the Brazilian government launched

a development program for the northern region under the slogan "integrate not to hand

over." The idea was to invest in highways to integrate the Legal Amazon with the rest

of the country and generate incentives for migration to the region in order to promote

economic development. A program of tax incentives, created by SUDAM (Superintendence

for the Development of the Amazon), and cheap credit, oered by the Bank of Amazon,

for land purchases, led many farmers from the South to sell their properties and buy new

lands in the North. In the 1980s, a farmer could buy 14 hectares of land in the North

for every 1 hectare sold in the South. In addition to nancial incentives, there was much

government propaganda promoting cattle production for export at the expense of the

forest, which was viewed as a "green hell" to be destroyed. 60.000 km of highways were

built, and between 1970 and 1985, the population and GDP grew from 7,3 million to

13,2 million and from US$2,2 billion to US$13,5 billion, respectively (Haddad et al., 2024;

Mahar, 1989; Andersen and Reis, 2015).

Figure 2.1: Bank of Amazon advertisement.

Banco da Amazônia (Bank of Amazon) advertisement of cheap land in the North and
subsidized credit to invest in cattle raising and make money selling to the USA and

Europe.

In more recent times, with technological innovations in agricultural production,

soybean cultivation has expanded into a biome with drier soil, the Cerrado, characterized
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by savanna vegetation. The strength of agribusiness in Brazil’s economy and politics has

led to the expansion of agriculture and cattle ranching, transforming the country’s natural

vegetation into monoculture elds. According to Mapbiomas data, soy expanded from 4,4

Mha mapped in 1985 to around 40 Mha in 2023.

However, despite the government’s eorts to develop the Amazon region, it remains

one of the poorest areas in the country. The border regions with Peru and Bolivia are

targets of drug tracking routes, as well as other criminal activities such as wildlife

tracking. Furthermore, another signicant driver of deforestation is land grabbing

(Araujo et al., 2009; de Pesquisa Ambiental da Amazônia, 2006; Sant’Anna and Costa,

2021). This practice consists of occupying lands with poorly dened property rights,

followed by deforestation and typically the establishment of pasture to simulate some

productive activity. The land is then regularized and sold at a higher value. Cases of land

invasion and even murders for land theft are also means through which criminal activities

prot from regulatory loopholes.

Therefore, we must bear in mind that the incentives for deforestation in Brazil

take various forms, but the subsequent creation of pasture for cattle is a very common

step, even when the main objective is not cattle production. This pattern of land use in

areas recently deforested for pasture creation is observed in the analysis that we will detail

below.

Indonesia

According to Global Forest Watch, in 2020 over 50% of Indonesia’s territory was

covered by natural forests (Mazur et al., 2023). The country is home to one of the largest

tropical rainforests in the world, as well as the largest tropical peatlands and mangrove

forests globally. In Global Forest Change data (Hansen et al., 2013), the slope of the trend

line for forest cover change from 2000 to 2012 shows that Indonesia had the highest annual

increase in forest loss among all countries.

The main drivers of deforestation in Indonesia between 2001 and 2016, as identied

by Austin et al. (2019), were: oil palm plantations (23%), conversion to grasslands

(20%)—primarily due to peaks in re activity—and small-scale agriculture (22%). They

also note that the share of large-scale plantations declined over time; in the early 2000s,

they accounted for more than half of all deforestation. Moreover, the study highlights the

need for mitigation policies targeting smallholder agriculture, which made a signicant
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contribution to forest loss during the period analyzed.

Russia

From 2001 to 2023, Russia lost 83,7 Mha of tree cover2 (Brazil lost 68,9 Mha 3).

According to Hansen et al., 2013, Russia experienced the highest forest loss during the

observation period. However, when considering forest gain, between 2000 and 2020 Russia

gained 37,2 Mha of tree cover (whereas Brazil gained only 8,1 Mha) (Potapov et al., 2022).

This is largely because most forest loss in Russia is caused by res, followed by natural

forest regeneration over time—a pattern typical of boreal forests (Curtis et al., 2018).

2.4 Regulation under study: the EUDR
The European Union Deforestation-free Regulation (EUDR) is a regulation that

entered into force on June 29, 2023, but its application is scheduled to begin on December

30, 2025, for large and medium-sized companies, and on June 30, 2026, for micro and

small enterprises.

Its objective is to minimize the European Union’s involvement in the consumption of

commodities—cattle, timber, cocoa, soy, palm oil, coee, rubber—and their main derived

products—leather, chocolate, tires, or furniture—associated with global deforestation. The

EUDR is an evolution of the EUTR, a regulation that aimed to mitigate deforestation by

blocking the consumption of timber and timber-based products originating from recently

deforested areas. The fundamental premise for the regulation’s success is that deforestation

is caused by the expansion of agricultural production (Muradian et al., 2025).

The basic rule for producers and commercial operators of various agricultural

commodities and their derivatives entering or exiting the European market is to prove that

their products are not cultivated in areas deforested after December 31, 2020, or that their

production does not contribute to forest degradation. According to the EU’s ocial page,

the regulation’s objectives are: “avoid that the listed products Europeans buy, use and

consume contribute to deforestation and forest degradation in the EU and globally; reduce

carbon emissions caused by EU consumption and production of the relevant commodities

by at least 32 million metric tonnes a year; address all deforestation driven by agricultural
2Global Forest Watch. “Tree cover loss in Russia compared to other areas.” Accessed on 05/20/2025

from www.globalforestwatch.org.
3Global Forest Watch. “Tree cover loss in Brazil compared to other areas.” Accessed on 05/20/2025

from www.globalforestwatch.org.
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expansion to produce the commodities in the scope of the regulation, as well as forest

degradation.”4

From the perspective of this regulation, deforestation is dened as the conver-

sion—whether human-induced or not—of forests into agricultural use. Forests are dened

by the FAO as areas with woody vegetation where at least 10% of the canopy is expected

to reach a height of 5 meters or more. Therefore, if forested land is converted into urban

development or infrastructure, the products extracted from it are not considered to origi-

nate from deforested land and thus are not subject to trade penalties. Conversely, products

originating from forest destruction due to res—whether human-induced or not—are

considered to originate from deforestation under the regulation. Unless the degraded forest

is permitted and able to regenerate: for example, wood products originating from a burned

forest whose recovery is assured are not considered non-compliant.5

Products originating from areas of forest degradation are also considered non-

compliant. Forest degradation includes the following types of conversion: a) primary

forests or naturally regenerating forests converted into plantation forests or other wooded

land; or b) primary forests converted into planted forests.

Adapting to these new requirements demands that producers and commercial

operators invest in technology to track production chains (due diligence), which implies

compliance costs. Other concerns include whether the regulation will eectively reduce

global deforestation, considering that demand for banned products may be redirected

away from the European market. Nonetheless, it is expected that producers will invest

in making their supply chains deforestation-free, rather than losing market access and

relocating their export destinations.

With the scope of the regulation outlined, the following sections apply the method-

ology proposed in this study to assess the commercial impacts of the EUDR on Brazil’s

beef market—a sector that may face signicant challenges in complying with the regula-

tion (Cesar de Oliveira et al., 2024)—as well as to estimate the amount of deforestation

potentially avoided.

4https://environment▷ec▷europa▷eu/topics/forests/deforestation/regulation-deforestation-free-
products_en

5https://green-business▷ec▷europa▷eu/deforestation-regulation-implementation_en



3 Data

This work can be divided into three phases: geoprocessing to generate the deforesta-

tion satellite account, the calculation of the deforestation footprint and generators, and the

application of the methodology in a simulation of an economic-regulatory scenario aimed

at measuring the impact of the EUDR on the Brazilian beef market. Each phase involves

dierent types of data. In the rst, georeferenced les are used to allocate deforestation

across various agricultural and livestock productions. In the second, an input-output

matrix is used to understand how deforestation is driven by trade interactions within the

production chain and to map the countries and sectors most involved in global deforestation.

In the nal phase, data on beef production, herd sizes, and pasture areas by Brazilian

state are used to estimate how much beef is produced per newly deforested hectare. The

subsections below will detail each data source and its specications.

3.1 Global Forest Change (GFC)
The Global Forest Change (Hansen et al., 2013) is the dataset destined to measure

variation of forest cover. Its data is composed by Landsat images with resolution of 1 arcsec

per pixel (aproximately 30 meters at the equator), and it considers forest as vegetation

with more than 5 meters height. In contrast, deforestation is the complete depletion

of vegetation at the pixel scale. The les are tiles of 10 x 10 degrees, with coordinates

varying from 180W-180E and 80N-60S, totalizing 504 tiles, of which only 243 cover land

portions. In our work, we use the rasters les of lossyear, which measure the forest loss

of each year. We restricted the dataset from 2006 to 2010. As briey mentioned above,

the resolution is 30m x 30m per pixel. However, as will be described below, other rasters

have lower resolution, so it was necessary to aggregate pixels from GFC dataset in order

to compatibilize the rasters les.
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3.2 Spatial Production Allocation Model (SPAM)
Using a variety of inputs, IFPRI’s Spatial Production Allocation Model (SPAM)

uses a cross-entropy approach to make plausible estimates of crop distribution within

disaggregated units. SPAM dataset is provided by Agro-MAPS, a informal collaborative

consortium created in 2002 by Food and Agriculture Organization of United Nations

(FAO), IFPRI (International Food Policy Research Institute) and SAGE (Center for

Sustainability and the Global Environment, University of Wisconsin-Madison) to satisfy

an increasing necessity to have better crop production and land use data to support

their respective program. Data encompasses rasters of physical area, yield, production,

harvest and production value of 42 cultures and for four types of production systems

(according to irrigation method). We use datasets from MapSPAM to map which culture

has been produced in each area. We have data for 2005 ((IFPRI) and for Applied Systems

Analysis (IIASA), 2016) and 2010 ((IFPRI), 2019) that allow us to analyze the variation

of production and to associate the deforestation to agricultural commodities. The SPAM

is our reference raster in terms of resolution (5 arc-minutes, approximately 10 km at the

equator) and coordinate system (WGS 84). All other rasters had to be made compatible

with it in order to avoid mismatching in areas analyses.

3.3 Gridded Livestock of the World (GLW)
Gridded Livestock of the World (GLW) is a database of livestock production and

distribution across the world. We utilize it to estimate the size of herds for three species:

cattle, sheeps and goats. The database relies on a downscaling methodology whereby

census counts of animals in sub-national administrative units are redistributed at the

level of grid cells. This downscaling process depends on the version of the database. We

use data from 2006 (Robinson et al., 2014) and 2010 (Gilbert et al., 2018), GLW2 and

GLW3 respectively. The rst employs stratied spatial regressions. The second uses a

random-forest method. GLW2 has a better resolution, 30 arcsec, approximately 1km at

the equator, while GLW3 has the same resolution as SPAM rasters, 5 arcmin. It means

that we had to aggregate cells from GLW2 to make it compatible with our reference raster.
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3.4 Gloria-MRIO
Gloria Multi Regional Input-Output (MRIO) (Lenzen et al., 2021) is our input-

output matrix data. Developed by the University of Sydney, it integrates primary data

from sources such as the United Nations Statistics Division (UNSD), FAOSTAT, the World

Trade Organization (WTO), among others.

The database covers 164 regions and 120 economic sectors, providing a comprehen-

sive global representation. This extensive coverage enables a broad analysis of deforestation

footprints and their underlying drivers. For our study, we use the 2010 version of the

matrix.

3.5 IBGE and MapBiomas
To obtain a measure of the amount of beef produced per hectare—so that we can

later calculate the quantity of meat that can be produced in a deforested area—we used

various state-level data sources. From the 2010 Municipal Livestock Survey (Pesquisa da

Pecuária Municipal 2010) by IBGE, we extracted cattle herd size data. From MapBiomas

("Project MapBiomas - Collection 9 of Brazilian Land Cover & Use Map Series"), we

obtained the pasture area corresponding to each state. We also used data from the IBGE’s

Quarterly Survey of Animal Slaughter (Pesquisa Trimestral do Abate de Animais) for the

year of 2010, which allowed us to calculate the average yield in kilograms that one hectare

produces. With the results by state, we aggregated them to obtain the national average.

The use of these data will be detailed in the methodology section.
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4 Methodology

This work itself represents a methodological proposal to measure deforestation

driven by commercial forces. However, it can be divided into well-dened stages according

to their objectives. The overall methodology aims to pave the way for new ways of

measuring the impact of trade on deforestation and to generate insights for policymakers

seeking to reduce deforestation through trade-related levers. Each stage explores dierent

techniques to achieve a specic outcome.

The following subsections will address details of these methodological stages, includ-

ing their respective theoretical framework, the main assumptions of the methodology, and

potential limitations of the method. This level of detail is intended to serve as a foundation

for the reader to adapt the techniques, adjusting them to their own assumptions or to

dierent data sources, and generating new results. This section will be divided into three:

Deforestation Satellite Account; Deforestation Generators and Deforestation Footprints;

Economic Scenario Simulation - EUDR.

4.1 Deforestation Satellite Account
At this stage, the objective is to develop a deforestation satellite account — that

is, to assign to each commodity the deforested area corresponding to one cycle of its

production. This account will later be integrated into the input-output matrix in order

to calculate the deforestation footprint and the generators by sectors and countries. In

short, at this phase, the manipulation of georeferenced data plays a central role in the

techniques employed.

Initially, raster les from Global Forest Change were processed. Only deforestation

that occurred between 2006 and 2010 was marked. The pixels were then aggregated to

match the lower resolution of the MapSPAM raster le, and the deforested area per pixel

at the new resolution was calculated. In the Figure 4.1 and in the Table 4.1 are displayed

the deforestation obtained from GFC rasters between 2006 and 2010.
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Figure 4.1: Global Deforestation between 2006 and 2010.

Notes: The figure shows the GFC raster at the MapSPAM resolution (10km x 10km).

Table 4.1: Total deforestation by country (2006-2010)

Ranking Country Deforestation (ha)

1 Russian Federation 29.595.992
2 Federative Republic of Brazil 14.801.404
3 United States of America 8.250.002
4 Republic of Indonesia 7.372.385
5 Canada 6.822.232
6 People’s Republic of China 5.022.578
7 Democratic Republic of the Congo 2.932.148
8 Argentine Republic 2.821.183
9 Malaysia 2.309.186
10 Republic of Paraguay 2.125.838
11 Plurinational State of Bolivia 1.711.886
12 Commonwealth of Australia 1.426.746
13 Republic of Mozambique 1.158.500
14 Republic of Colombia 1.133.824
15 United Republic of Tanzania 1.047.244
16 Republic of the Union of Myanmar 1.006.079
17 United Mexican States 970.006
18 People’s Republic of Angola 964.758
19 Republic of Zambia 740.770
20 Republic of Madagascar 679.797

Notes: The figure shows the top 20 countries with the highest total deforestation
— driven not only by agricultural production, but by other sources such as urban

development, fires, mining, etc. — between 2006 and 2010.
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This process was carried out for all 243 les that contained land portions. Sub-

sequently, the rasters from the Gridded Livestock of the World (GLW) were processed.

The 2006 dataset (GLW2) presents animal density per square kilometer, while the 2010

dataset (GLW3) is a raster that contains the number of animals per pixel. The distribution

of livestock per pixel within a polygon is done using a dasymetric model (DA), which

considers weights calculated by a Random Forest model incorporating spatial predictors

such as topography, human population density, vegetation, etc.

GLW2 has a resolution of approximately 1 km × 1 km at the Equator, which

indicates the number of animals per pixel in that region. However, this resolution becomes

distorted closer to the poles. To make the two datasets compatible, GLW2 was reprojected

into a coordinate reference system that preserves area across the entire extent — Equal

Earth (EPSG 8867) — to calculate the total number of animals per pixel, considering

the approximate 1 km x 1 km size of each cell. Then, the data were aggregated to reach

a resolution of approximately 10 km x 10 km, compatible with GLW3. In this way,

the number of animals per pixel at the new resolution could be determined. To assign

deforested area to livestock production, we used a metric of land area occupied by dierent

types of livestock, including cattle, sheep, and goats.

To estimate the area occupied by livestock, we adopted the reference unit LSU

(Livestock Unit), which standardizes the equivalence between species based on their land

use impact. One LSU corresponds to the grazing equivalent required to support an adult

cow producing 3.000 kg of milk annually. The measure of LSU per hectare (LSU/ha) allows

us to estimate the extent of land used by each type of livestock, facilitating compatibility

with the deforested areas. FAO data on LSU/ha by country for each type of livestock

enabled the calculation of the amount of pasture area occupied by the number of animals

in each pixel — simply by dividing the number of animals in the pixel by the LSU/ha

value for that region.

With the rasters properly aligned with the reference raster from MapSPAM, the

calculation of deforested area distribution by agricultural and livestock commodity was

performed. First, the deforested area between 2006 and 2010 was calculated for each pixel.

Then, the change in pasture area by livestock type (cattle, sheep, and goats) and the

change in cropland area by crop type (42 crops) were calculated per pixel. To understand

how deforestation was distributed, suppose the le contains only four pixels. In each pixel,
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it is possible to measure the forest loss and the area occupied by each crop. Let’s consider

only four crops for simplicity. In the tables below, we have the measurements in area units

(AUs) of forest and production for the four crops. The production area corresponds to the

total cropland area.

Table 4.2: Illustration of the deforestation distribution method for 4
pixels.

2006

Pixel Forest A B C D
Production

Area

#1 36 0 0 0 0 0

#2 18 1 1 1 1 4

#3 9 4 4 4 4 16

#4 3 4 6 8 2 20

2010

Pixel Forest A B C D
Production

Area

#1 36 0 0 0 0 0

#2 4 1 1 8 2 12

#3 6 3 9 5 3 20

#4 1 9 3 3 1 16

∆

Pixel Forest A B C D
Production

Area

#1 0 0 0 0 0 0

#2 -14 0 0 7 1 8

#3 -3 -1 5 1 -1 4

#4 -2 5 -3 -5 -1 -4

Note that only pixels 2 and 3 experienced both forest loss and an increase in

cropland area. In these cases, we allocate deforestation proportionally to the positive

increments in crop production area—negative changes are not considered. If the total forest

loss exceeds the increases in total production area, each crop is assigned a deforestation

value equal to its individual area expansion. For instance, in pixel 2, there is a forest loss

of 14 area units (AUs) and a total cropland increase of 8 AUs. In this case, the entire 8

AUs of expansion are assumed to have driven deforestation: 7 AUs are attributed to crop

C and 1 AU to crop D. The remaining 6 AUs of forest loss are attributed to other causes,

such as urban expansion. Conversely, if the forest loss is less than the total increment in

cropland area—as seen in pixel 3—we assume that all deforestation was caused by crop
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expansion. The forest loss is then distributed across crops in proportion to their share of

the total positive area increase. In pixel 3, only crops B and C increased in area (5 AUs

and 1 AU, respectively). The resulting weights for crops A, B, C, and D are 0, 5
6 ,

1
6 , and

0, respectively. In pixel 1, there was no change in total production area nor any forest loss.

In pixel 4, although there was a forest loss of 2 units, there was a reduction of 4 units in

production. Therefore, we should not attribute the forest loss to the production of crops

A, B, C, and D. In such cases, we ignore these pixels.

It is important to highlight that we cannot determine precisely which crop replaced

the deforested area, as the pixel resolution is not high enough to attribute deforestation to

specic commodities. Instead, what we did was to distribute the forest loss among the

crops present in the pixels where the total production area has increased. The deforestation

driven by agriculture and livestock production is presented in Table 4.3 , which ranks

the most aected countries. Figure 4.2 illustrate the distribution of deforestation by

commodity for the top three countries: Brazil, Indonesia, and China.
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Table 4.3: Agriculture and livestock deforestation by country (2006-2010)

Ranking Country Deforestation (ha)

1 Federative Republic of Brazil 12.910.571

2 People’s Republic of China 4.499.273

3 Republic of Indonesia 4.108.603

4 Russian Federation 2.869.077

5 Argentine Republic 2.104.900

6 Republic of Paraguay 1.544.387

7 Plurinational State of Bolivia 1.260.107

8 United States of America 1.240.972

9 Malaysia 1.190.004

10 Republic of Colombia 1.004.758

11 Republic of Mozambique 920.831

12 United Mexican States 853.191

13 Republic of the Union of Myanmar 827.372

14 People’s Republic of Angola 798.174

15 Canada 744.392

16 Democratic Republic of the Congo 701.678

17 Republic of Zambia 699.911

18 Commonwealth of Australia 690.628

19 Republic of Madagascar 642.940

20 Kingdom of Thailand 605.240

Notes: The figure shows the top 20 countries with the highest deforestation driven by
42 agricultural and three livestock production between 2006 and 2010.

The resulting deforestation satellite account consists of a vector that stores defor-

ested area by sector and by region. Since the input-output matrix used has 164 regions

and 120 sectors, our satellite account is a vector with dimensions of 1 x 19.680. However,
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we measure deforestation for only 45 commodities (42 agricultural and 3 livestock). And

from those 45, when we associate them with the sectors of the GLORIA matrix, we reduce

them to only 15 sectors. Thus, most elements of the vector are zero.

Finally, to close this subsection, we want to address an important discussion in the

work, which is what a satellite account represents. A satellite account represents the ow

of a process inherent to the annual production of a sector in the industry represented in

the input-output matrix. For example, there may be satellite accounts for water use or

CO2-equivalent emissions. However, the reader may have noticed that the deforestation

we measure in this work is the stock of deforestation generated over ve years. Years later,

this deforested land will still be part of the productive cycle of the agricultural industries

and may even be used for dierent sectors than those for which the deforestation initially

took place (for example, an area that right after deforestation hosted cattle may, within a

few years, become an area for soybean production).

This gives rise to a conceptual compatibility issue in satellite accounting that needs

to be mentioned in this work: how can we transform the measured deforestation stock into

a ow measure? This, in itself, could give rise to another extensive study, as it involves

knowledge of the productive cycles of various soil types for dierent sectors and regions.

One way to simplify would be to assume a xed duration of land use by all sectors and

divide the measured deforestation value by this number. For example, if we x the average

land use time per sector at 20 years, we could say that the (ow) deforestation inherent to

annual production corresponds to 1
20 of the measured deforestation stock.

To make this clearer, we can draw a fanciful analogy with a chemical industry

that, instead of emitting a certain amount of CO2 into the atmosphere in each annual

production cycle, emitted all the CO2 from its current and future production at once.

That is, if we measured the total accumulated stock of emissions, how could we transform

it into a ow corresponding to one year? The simplied proposal would be to consider an

average lifetime for these industries and divide the measured stock by each year of their

production. This is the issue we are addressing here in relation to deforestation.

However, to stay focused on the purpose of this study — which is to present a

methodology for measuring the amount of deforested area due to trade forces — we will

present the results obtained based on ve years of deforestation. The conversion to a

ow measure could be carried out if there is a need to rene the results by region and
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sector. We just wanted to highlight this point to acknowledge our awareness of the strict

conceptual framework of a satellite account. Therefore, when we talk about generators

and footprints, it should be understood that the deforestation generated corresponds to a

stock accumulated over ve years.

Figure 4.2: Deforestation prole in Brazil, Indonesia and China.

Notes: Deforestation profile associated with the fifteen GLORIA commodity sectors in
the three main countries that deforest for agricultural and livestock production.

4.2 Deforestation Generators and Deforestation

Footprints
The tools applied in this section are based on input-output theory, developed by the

economist Wassily Leontief (1906–1999). Below, we illustrate the structure of the matrices

we work with, derive the fundamental identity of the Leontief model using a bit of linear

algebra, and apply the method to compute deforestation generators and footprints using

the satellite account derived in the previous subsection.
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Let Z be the intermediate consumption matrix between regions:

Z =




Z11 · · · Z1R

... Zrs ...

ZR1 · · · ZRR




(4.1)

Each block Zrs is itself a matrix that captures the intersectoral trade from region r to

region s:

Zrs =




Zrs
11 · · · Zrs

1N
... . . . ...

Zrs
N1 · · · Zrs

NN




(4.2)

The element Zrs
ij indicates the amount, in monetary units, that sector i in region r sells to

sector j in region s. Thus, Z is a matrix of matrices, which represents the intermediate

consumption across the R regions and N sectors.

To incorporate deforestation data into the interregional input-output framework,

we construct a satellite account which has the form of a row vector. This vector represents

the deforested area attributed to the production activities of each region that links

environmental pressure to economic structure. The satellite account structure is represented

at the bottom of the matrix Z below:



Z11 · · · Z1R

... . . . ...

ZR1 · · · ZRR

d1 · · · dR




Deforested area in each of

the R regions.

As mentioned previously, a satellite account enables the integration of environmental

indicators into economic models, allowing for an assessment of environmental impacts

along regional production chains. In this representation, each element of the vector is also

a vector of N elements, representing the N sectors of a specic region r.

dr = [dr1 · · · drN ]

The elements of this vector in the present work were obtained as described in the

previous subsection. Now that we have in mind the structures of the global input-output
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matrix and the deforestation satellite account vector, we will develop the model that leads

to the basic identity of the input-output theory (Miller and Blair, 2009).

We start from the basic input–output model, which states that the gross output is

equal to the sum of intermediate consumption and nal demand consumption.

x = Z · i+ y (4.3)

In an interregional model with N sectors and R regions, we have:

• x is the total output vector (NR × 1);

• Z is the intermediate consumption matrix (NR ×NR);

• i is a column vector with all elements equal to 1 (NR × 1);

• y is the nal demand vector (NR × 1).

Now, we dene the matrix of technical coecients. Let A be the matrix of technical

coecients given by

A = Z · X−1 (4.4)

Where X is the diagonal matrix formed with the elements of x. That is, Xii = xi.

Therefore,

X−1 =




1
x1

· · · 0
... . . . ...

0 · · · 1
xN




(4.5)

Thus, we can rewrite equation 4.3 in the form:

x = A · x + y ⇐⇒ (I−A) · x = y (4.6)

Provided that the matrix (I−A) is invertible, we solve the equation for x:

x = (I−A)−1 · y (4.7)

Equation 4.7 is the fundamental equation of the input–output model. The meaning

of this equation is that nal demand drives total production by activating sectors across
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the input chains. We use this idea to calculate how a shock in nal demand results in

deforestation, CO2 emissions, water consumption, and other environmental impacts.

We therefore dene the matrix D, with dimensions NR × NR. It is a diagonal

matrix, i.e., all o-diagonal elements are equal to zero. Each diagonal element of this

matrix is dened as:

Drr
ii = dri

xr
i

; ∀i ∈ {1,▷▷▷,N} , r ∈ {1,▷▷▷,R} (4.8)

Where:

• dri is the deforestation (in hectares) of sector i in region r;

• xr
i is the production (in dollars) of sector i in region r.

D =




d11
x1
1

· · · 0
... . . . ...

0 · · · dRN
xR
N




(4.9)

The unit of D is ha
US$ .

Pre-multiplying both sides of equation 4.7 by D, we obtain:

D · x = D · (I−A)−1 · y ⇐⇒ d = D · (I−A)−1 · y (4.10)

The interpretation of equation 4.10 is analogous to that of equation 4.7: the vector

d expresses the total deforestation (in hectares) associated with the production structure

required to meet the demand y.

We dene the matrix resulting from the multiplication of the deforestation coecient

matrix by the Leontief inverse as the deforestation generation matrix, denoted by G.

G = D · (I−A)−1

From this matrix, we can calculate the global deforestation generated by a one-unit

monetary increase in nal demand. In this case, the values expressed in the GLORIA

matrix are in units of 1.000 US dollars.

To obtain the total deforestation generated by a unitary increase in demand in

sector j of a given region s, we sum the elements in the column of G corresponding to

that sector and region.
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Deforestation Generator

Gs
j =



r



i

Grs
ij

This sum allows us to identify the sectors and regions that exert the most pressure on

deforestation for each dollar added to their demand. We can take the aggregated view

by sector—that is, how much deforestation is caused by a 1.000 US dollar increase in

the demand for a given sector—or the aggregated view by region. For this, the 1.000 US

dollars are distributed proportionally according to the structure of demand, as explained

below:

• How much deforestation is generated worldwide by a 1.000 US$ increase in the

demand for sector j: We increase the demand for sector j by 1.000 US$, distributing

this amount proportionally across the regions that make up the demand for this

sector.

Gj =


s G
s
j · ysj

s y
s
j

(4.11)

• How much deforestation is generated worldwide by a 1.000 US$ increase in the

demand for region s: We increase the demand for region s by 1.000 US$, distributing

this amount proportionally across the sectors that make up the demand for this

region.

Gs =


j G
s
j · ysj

j y
s
j

(4.12)

Deforestation Footprint
We adopt the approach proposed by Kanemoto et al. (2011). To enable an analysis that

accounts for multiple sources or destinations of nal demand, we generalize the nal

demand vector y into a nal demand matrix Y, where each column corresponds to the

nal demand vector of one of the R regions:

Y =

y(1) y(2) · · · y(R)


(4.13)
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Thus, we have:

x = Z · i+ y(1) + y(2) + · · · + y(R) (4.14)

x = Z · i+Y · i (4.15)

• Y is the nal demand matrix (n× R);

• each y(k) represents a column of nal demand from origin or use k.

x = (I−A)−1 ·Y · i (4.16)

Then,

d = D · (I−A)−1 ·Y · i (4.17)

Instead of working with the aggregated deforestation vector d, we can decompose it into

components that reveal where the deforestation was ultimately consumed—that is, we can

allocate the deforestation generated according to the specic nal demand it was intended

to meet.

To do this, we modify equation 4.17 by omitting the summation vector i. We then

obtain:

FD := D · (I−A)−1 ·Y (4.18)

FD =




G11 · · · G1R

... . . . ...

GR1 · · · GRR



·

y(1) y(2) · · · y(R)


=




F11
D · · · F1R

D
... . . . ...

FR1
D · · · FRR

D




(4.19)

Application and Interpretation

• The elements along the diagonal represent deforestation that is produced and

consumed domestically within the country.

• Summing an entire column, excluding the diagonal element, yields the deforesta-

tion imported by the region.

• Summing an entire row, excluding the diagonal element, yields the deforestation

exported by the region.
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Calculating the Deforestation Footprint

The total deforestation footprint of a region is calculated as:

Footprint = DDom +DImp −DExp (4.20)

Where:

• DDom represents domestic deforestation (diagonal element);

• DImp represents deforestation embodied in imports (column sum excluding the

diagonal);

• DExp represents deforestation embodied in exports (row sum excluding the diagonal).

We conclude this section by reiterating the distinction between deforestation gener-

ators and deforestation footprints.

Based on input-output theory, when we multiply the vector of deforestation co-

ecients—calculated as the ratio between the deforested area and the gross production

value of a given region and sector—by the Leontief inverse matrix, we obtain the generator

matrix. Summing the columns of this matrix yields the generator vector, where each

element indicates the amount of deforestation generated worldwide as a result of a 1.000

US$ increase in nal demand in a given region and sector. To attribute this value across

regions (or sectors), we apply regional (or sectoral) weights to distribute the 1.000 US$

according to the structure of demand. In this sense, it is a measure expressed in hectares

per US$ ( ha
US$).

On the other hand, when we multiply the generator matrix by the nal demand

matrix, we obtain a matrix that reects the actual deforestation generated by existing nal

demand (rather than a marginal increase in demand). Summing the rows of this matrix

gives us exported deforestation, while summing the columns gives imported deforestation.

The diagonal elements represent the domestic consumption of deforestation. By adding

domestic and imported deforestation and subtracting exported deforestation, we obtain

the deforestation footprint measure.
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4.3 Regulatory scenario simulation – EUDR
Based on the regulatory mechanism described in Section 2.4, this study aims to

apply the methodology presented so far to estimate the impact of the EUDR, in terms of

trade and deforestation mitigation, on the Brazilian beef industry. In 2010, accoding to

ComexStat data, beef and other meat products exported approximately US$ 6,5 billions

and 15,9% was to EU. According to GLORIA data, Brazilian beef exports the equivalent of

US$ 3,4 billions, approximately 20% of this amount was to EU. The methodology applied

here will also serve as a model for application in other commodity markets. Since the data

used in this work cover the period from 2006 to 2010, we simulate a scenario in which the

regulation applies to products originating from areas deforested after December 31, 2005,

and estimate its impact on the Brazilian beef market.

What we will do is derive, from the cattle production in deforested areas measured

by georeferenced data, the amount of beef that would have been produced. This beef,

therefore, would be prevented from entering European markets due to the EUDR. The

main assumptions of the methodology we will apply are: 1) the yield of the land (in

kg/ha) in the deforested area will be equal to the average yield of already productive

land; 2) the export rate to the EU of the production in question will be equivalent to the

average export rate of the total production. In other words, we assume that producers

will not reallocate production to meet the demands of dierent markets. This would be an

irrational choice, given that the expected reaction of producers facing a potential market

loss would be to redirect production from illegal areas to serve markets that do not have

deforestation regulations like the EU’s EUDR. Calculating the eect while accounting for

optimal reallocation choices by producers would be extremely complex, involving market

data collection, land ownership information, and microeconomic modeling. By disregarding

this reaction from producers, the impact we estimate can be interpreted as an upper bound

of the real eect. And this also holds signicant value. Below, we detail the calculations

used to estimate the impact of the EUDR on the Brazilian beef industry.

Based on the yield Y (kg/ha) of each state (i), the production Z of the commodity

(k) in the deforested area D is calculated as follows:

ZD
k,i = Yk,i ·Dk,i (4.21)
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Thus, we can calculate the share of total production that comes from deforested

areas:

sDk,i =
ZD

k,i

Zk,i

(4.22)

This will be the shock factor to be applied in the input-output data.

For derived products, we need to determine how much of the derived product

industry consumes from the original commodity (in quantity) for its production. From

this, we can generate a yield measure for the derived product per hectare. The following

subsession illustrates how we proceeded in the case of the tranformation from cattle to

beef.

Beef Production in 2010

The Table 4.4 presents data on beef production by each of the 27 states of Brazil.

These data are essential for calculating how much beef is produced per hectare. The cattle

stock gures are sourced from IBGE’s Municipal Livestock Survey, while the pasture area

data come from MapBiomas, a land cover and land use database. The ratio of cattle to

pasture area yields the Head Yield (head/ha). Additionally, IBGE’s Quarterly Survey of

Animal Slaughter provides data on slaughter numbers and beef production in kilograms,

enabling the calculation of Beef Yield (kg/ha). With these indicators, we can estimate the

amount of beef being produced in recently deforested areas simply by multiplying the beef

yield (kg/ha) by the deforested area (ha). The result is displayed in Table 4.5.
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Table 4.4: Brazilian beef production by state.

State
Cattle

(head)

Pasture

Area (ha)

Head Yield

(head/ha)

Slaughter

(head)

Beef

Production (kg)

Slaughter

Rate

Avg. carcass

Weight (kg/head)

Beef Yield

(kg/ha)

(1) (2) (3) (4) (5) (6) (6) (7)

Mato Grosso 28.757.438 21.702.555 1,33 4.082.705 1.030.711.870 0,14 252,5 47,5

Minas Gerais 22.698.120 22.918.549 0,99 2.393.057 559.345.190 0,11 233,7 24,4

Mato Grosso do Sul 22.354.077 15.497.306 1,44 3.298.044 796.638.088 0,15 241,5 51,4

Goiás 21.347.881 14.596.336 1,46 2.612.313 656.052.878 0,12 251,1 44,9

Pará 17.633.339 18.295.133 0,96 2.105.467 499.488.696 0,12 237,2 27,3

Rio Grande do Sul 14.469.307 20.300.000 1,40 1.938.588 426.564.677 0,13 220,0 41,4

Rondônia 11.842.073 7.323.925 1,62 1.902.369 443.204.227 0,16 233,0 60,5

São Paulo 11.197.697 6.251.195 1,79 3.532.524 887.134.205 0,32 251,1 141,9

Bahia 10.528.419 15.314.625 0,69 1.177.361 268.871.913 0,11 228,4 17,6

Paraná 9.411.380 3.580.204 2,63 1.459.406 338.599.312 0,16 232,0 94,6

Tocantins 7.994.200 7.125.250 1,12 906.479 211.868.603 0,11 233,7 29,7

Maranhão 6.979.844 7.479.471 0,93 589.678 134.078.898 0,08 227,4 17,9

Santa Catarina 3.985.661 981.102 4,06 509.350 116.125.890 0,13 228,0 120,5

Acre 2.578.460 1.690.434 1,53 485.166 109.324.332 0,19 225,3 64,7

Ceará 2.546.134 2.330.974 1,09 332.225 64.043.929 0,13 192,7 27,5

Pernambuco 2.383.268 2.691.353 0,89 401.028 91.018.191 0,17 227,0 33,8

Espírito Santo 2.195.406 2.172.597 1,01 380.421 89.118.238 0,17 234,3 41,0

Rio de Janeiro 2.160.727 1.841.313 1,17 228.771 47.548.109 0,11 207,8 25,8

Piauí 1.679.957 1.660.056 1,01 147.484 26.683.121 0,09 180,9 16,1

Amazonas 1.360.800 1.444.419 0,94 178.358 40.537.354 0,13 227,3 28,1

Paraíba 1.242.579 1.654.931 0,75 74.285 11.446.558 0,06 154,1 6,9

Alagoas 1.219.578 1.399.248 0,87 193.518 44.218.003 0,16 228,5 31,6

Sergipe 1.177.765 1.533.347 0,73 95.791 25.217.923 0,09 263,3 16,4

Rio Grande do Norte 1.064.575 1.270.257 0,84 107.547 21.707.655 0,10 201,8 17,1

Roraima 577.000 682.189 0,85 73.284 16.492.191 0,13 225,0 24,2

Amapá 114.773 76.331 1,50 0 0 0 0 0

Distrito Federal 100.600 89.135 1,13 0 4.471.851 0 0 0

Brazil 209.541.109 181.902.436 1,15 29.205.319 6.960.511.902 0,14 238,3 38,3

Notes: The ratio between columns 1 and 2 provides results in the Head Yield, in column
3. The slaughter rate, in column 6, is the ratio between columns 4 and 1. The average
carcass weight, in column 7, is the ratio between columns 5 and 4. It is the average
weight of the animal’s cold body, without hide, paws, head and entrails. Finally, the
Beef Yield is the product of columns 3, 6 and 7. It indicates the average quantity of

beef (in kg) produced per hectare.
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Table 4.5: Deforested area (ha) by state and its production (kg).

State Deforested Area (ha) Deforested Area Production (kg)

Pará 2.671.401 72.933.853
Mato Grosso 1.800.205 85.496.521
Rondônia 900.019 54.464.257
Minas Gerais 821.119 20.040.059
Maranhão 820.913 14.715.900
Bahia 783.433 13.754.382
Tocantins 421.842 12.543.441
Mato Grosso do Sul 385.880 19.836.150
Amazonas 316.271 8.876.072
Goiás 311.884 14.018.058
São Paulo 192.293 27.289.133
Acre 190.416 12.314.618
Santa Catarina 157.197 18.606.233
Paraná 146.748 13.878.742
Piauí 128.233 2.061.162
Roraima 118.311 2.860.211
Rio Grande do Sul 105.450 4.361.442
Ceará 60.658 1.666.591
Espírito Santo 53.388 2.189.926
Pernambuco 46.700 1.579.328
Sergipe 45.952 755.739
Amapá 32.622 0
Paraíba 31.688 219.171
Alagoas 25.460 804.562
Rio Grande do Norte 21.928 374.735
Rio de Janeiro 15.423 398.222
Distrito Federal 854 0

Brazil 10.606.285 406.038.510

Notes: The table shows the deforested areas for cattle raising and the estimated beef
production for these areas by each of the 27 Brazilian states.

The proportion of Brazilian beef production originating from deforested areas,

relative to the country’s total beef production, is:

sDbeef =
ZD

beef
Zbeef

= 406▷038▷510
6▷960▷511▷902 ⇒ sDbeef = 5,8% (4.23)
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This amount of 5,8% will be reduced from Brazilian beef exports to the 27 EU

member states, then the deforestation footprints will be recalculated. The shock will

be applied both to the intermediate consumption and the nal demand. The Table 4.6

shows the GLORIA estimates of exports from the Brazilian beef industry to EU countries,

broken down into nal demand and intermediate consumption and its respective shares in

the country’s total consumption. It also indicates each country’s share in the total EU

consumption.

Table 4.6: EU consumption pattern of Brazilian beef.

EU

Country

Final

Demand

Intermediate

Consumption

Total

Consumption

% of EU

Consumption

% Final

Demand

% Intermediate

Consumption

Italy 144.553 45.429 189.981 28% 76% 24%

Germany 91.736 29.833 121.569 18% 75% 25%

Netherlands 103.770 9.847 113.617 17% 91% 9%

France 57.567 21.081 78.648 12% 73% 27%

Spain 56.790 1.247 58.037 9% 98% 2%

Romania 46.868 0.37 46.905 7% 100% 0%

Ireland 9.684 4.355 14.039 2% 69% 31%

Sweden 2.848 7.948 10.797 2% 26% 74%

Bulgaria 7.790 215 8.005 1% 97% 3%

Finland 6.048 330 6.377 1% 95% 5%

Belgium 1.567 399 4.966 1% 32% 68%

Denmark 0.22 347 3.369 1% 1% 99%

Greece 2.124 3 2.127 0% 100% 0%

Portugal 1.909 195 2.104 0% 91% 9%

Poland 1.113 220 1.333 0% 84% 16%

Malta 1.137 54 1.190 0% 95% 5%

Slovakia 1.046 62 1.107 0% 94% 6%

Czech Republic 0.654 177 0.831 0% 79% 21%

Cyprus 0.629 2 0.631 0% 100% 0%

Lithuania 0.464 34 0.499 0% 93% 7%

Austria 243 126 370 0% 66% 34%

Hungary 253 14 266 0% 95% 5%

Croatia 120 7 127 0% 94% 6%

Slovenia 71 5 76 0% 94% 6%

Latvia 21 8 29 0% 72% 28%

Estonia 24 2 26 0% 92% 8%

Luxembourg 6 0 6 0% 98% 2%

EU - 27 539.055 127.977 667.032 100% 81% 19%

Notes: The figure shows the consumption of the Brazilian beef industry in EU countries
(in thousands of US dollars) divided into final demand and intermediate consumption.

Final demand accounts, on average, for 81% of total consumption.
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The results related to this simulation will be presented in the next section.



5 Results

First, we present the main drivers of deforestation by sector and region, followed by

an analysis of deforestation footprints by region. This concludes the section on deforestation

indicators. We then discuss the results of the EUDR economic scenario by comparing the

EU’s deforestation footprints with and without the regulation.

5.1 Deforestation Generators
Sectoral results: This sector-specic index measures the amount of deforestation

caused by a US$ 106 increase in nal demand. It highlights the most extractive sec-

tors—those that contribute most signicantly to global deforestation, both directly and

indirectly through the activation of other sectors along their supply chains.

47
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Figure 5.1: Deforestation generator by sector.

Notes: This chart presents the 30 most deforestation-intensive sectors among the 120
analyzed from GLORIA-MRIO. It reveals that an increase of US$ 1.000.000 in the final
demand for the cattle raising sector leads to 241,24 hectares of deforestation worldwide.

Regional results: This region-specic index measures the amount of deforestation

generated by a US$ 106 increase in a country’s nal demand. It highlights the most

extractive regions — those that contribute most, both directly and indirectly, to global

deforestation through their demand and the activation of supply chains. However, it is

important to note that this is a relative metric. It reects the extractive intensity of a

country’s demand structure. For instance, a poorer country whose economy relies heavily

on directly deforesting extractive sectors will tend to have a higher index than a wealthier

country, whose demand is more concentrated in industrialized goods.
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Figure 5.2: Deforestation generator by region.

This chart presents the 30 most deforestation-intensive regions among the 164 analyzed
from GLORIA-MRIO. It reveals that an increase of US$ 1.000.000 in Liberia’s final

demand generates 93,24 ha of deforestation in the world.

We can see that the poorest countries lead the ranking of the relative index of

deforestation generation. To measure how much deforestation each country has actually

caused globally through its nal demand, we use the concept of deforestation footprint,

which attributes responsibility for deforestation to the volume of a country’s consumption

(domestic and imported).

5.2 Deforestation Footprints
The footprints represent how much deforestation is embedded in the products

consumed by each country. It is a country-specic measure. To calculate it, the nal

demand vector must be decomposed into multiple vectors according to their origin. This
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allows us to assess how much deforestation a country consumes domestically, how much it

imports, and how much it exports through its products. It is a measure with area units.

Next, we present maps highlighting global deforestation footprints, as well as per capita

footprints, deforestation consumed domestically, imported and exported deforestation.

Figure 5.3: Deforestation footprint in millions of hectares (Mha).

The countries highlighted on the map, ranked from highest to lowest deforestation
footprint, are: Brazil, China, Indonesia, Russia, USA and Colombia.
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Figure 5.4: Deforestation footprint per capita in ha/hab.

The countries highlighted on the map, ranked from highest to lowest deforestation
footprint per capita, are: Luxembourg, Bolivia, Brazil, Finland, Nicaragua, and

Paraguay.

Figure 5.5: Deforestation consumed domestically in millions of hectares
(Mha).

The countries highlighted on the map, ranked from highest to lowest in domestically
consumed deforestation, are: Brazil, China, Indonesia, Russia, Argentina, and Bolivia.
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Figure 5.6: Imported deforestation in millions of hectares (Mha).

The countries highlighted on the map, ranked from the largest to the smallest importer
of deforestation, are: China, United States, India, Japan, Germany and Venezuela.

Figure 5.7: Exported deforestation in millions of hectares (Mha).

The countries highlighted on the map, ranked from the largest to the smallest exporter
of deforestation, are: Brazil, Indonesia, China, Argentina, Paraguay, and USA.

It is evident that Brazil stands out in terms of both absolute and per capita defor-

estation footprints. This result is mainly driven by domestic deforestation consumption.
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This fact was addressed by Haddad et al. (2024), in a paper showing that meat consumption

by Brazilians is one of the main drivers of deforestation in the Amazon. Other countries

such as Indonesia and China also have large footprints due to domestic consumption.

China’s footprint is further aggravated by imported deforestation. Brazil and Indonesia

stand out as major exporters of deforestation. This is more related to the stock of forests

these countries possess. From the deforestation import perspective, a country’s level of

wealth explains the volume of deforestation it imports. This makes sense, as wealthy

countries consume larger quantities of products, particularly commodities that come from

extractive economies and are later industrialized in their own territories. To observe

these correlations between extractivism and wealth levels, we plotted graphs showing the

correlation between deforestation measures and GDP. We used logarithmic scales on the

axes to facilitate the visualization of patterns.
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Figure 5.8: Correlations of deforestation indicators and GDP.

(a) Log of Deforestation Footprint x log of GDP.

(b) Log of Domestic Deforestation x log of GDP.

(c) Log of Imported Deforestation x log of GDP.

(d) Log of Exported Deforestation x log of GDP.
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The scatter plot that shows the strongest correlation with GDP is, as mentioned

above, the one of deforestation imports. The export plot is noisier because deforestation

exports—as well as domestic consumption—depend heavily on a country’s forest stock

rather than on its income. Since the footprint is composed of both export and domestic

consumption components, it ends up being “contaminated” by them.

5.3 EUDR Impact on Brazilian Beef Industry and

Deforestation
We applied the shock value obtained from Equation 4.23 to both nal demand

and intermediate consumption to assess the trade impact. The corresponding values are

shown in Table 4.6. The reduction in exports due to the nal demand shock amounts to

US$31,4 million, while the shock to intermediate consumption leads to a further reduction

of US$7,5 million.

Although we assess the trade shock on both intermediate consumption and nal

demand, only the nal demand shock is used to calculate the deforestation impact, as

explained in Section 4.3.

We detail the nal demand shock used to estimate the eect of the EUDR on

deforestation footprints in Table 5.1.
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Table 5.1: Final demand shock by country.

Countries Final Demand Shock New Final Demand

Italy 144.553 8.432 136.120
Germany 91.736 5.351 86.385
Netherlands 103.770 6.053 97.716
France 57.567 3.358 54.209
Spain 56.790 3.313 53.477
Romania 46.868 2.734 44.134
Ireland 9.684 0.565 9.119
Sweden 2.848 0.166 2.682
Bulgaria 7.790 454 7.335
Finland 6.048 353 5.695
Belgium 1.567 91 1.476
Denmark 0.22 1 0.21
Greece 2.124 124 2.001
Portugal 1.909 111 1.797
Poland 1.113 65 1.048
Malta 1.137 66 1.070
Slovakia 1.046 61 0.985
Czech Republic 0.654 38 0.616
Cyprus 0.629 37 0.592
Lithuania 0.464 27 0.437
Austria 243 14 229
Hungary 253 15 238
Croatia 120 7 113
Slovenia 71 4 67
Latvia 21 1 19
Estonia 24 1 22
Luxembourg 6 0 5

EU-27 539.055 31.446 507.609

Final demand, shock value and new final demand of EU-27 countries (in thousands of
US dollars).

After obtaining the new values of the EU’s nal demand for Brazilian beef, we

recalculated the deforestation footprint. The updated values of the EU’s deforestation

footprint are presented in Table 5.2. This reduction of 202 hectares in the EU’s footprint
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comes exclusively from the import channel, which declined due to the blockage of beef

produced in deforested areas in Brazil between 2006 and 2010.
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Table 5.2: Impact of EUDR on the EU Deforestation Footprint (ha).

Region Without EUDR With EUDR ∆

Germany 612.784 612.749 -34
Netherlands 212.599 212.56 -39
France 224.154 224.133 -22
Italy 307.305 307.251 -54
Spain 365.957 365.936 -21
Romania 77.874 77.857 -18
Ireland 4.103 4.1 -4
Austria 61.999 61.999 0
Finland 220.624 220.622 -2
Sweden 251.435 251.434 -1
Bulgaria 8.236 8.233 -3
Czech Republic 39.753 39.753 0
Belgium 79.239 79.238 -1
Greece 86.599 86.598 -1
Portugal 119.211 119.21 -1
Slovakia 4.546 4.546 0
Cyprus 6.361 6.36 0
Poland 215.516 215.515 0
Denmark 85.742 85.742 0
Malta 1.622 1.622 0
Lithuania 21.237 21.237 0
Slovenia 13.331 13.331 0
Hungary 7.352 7.352 0
Croatia 14.733 14.733 0
Luxembourg 93.13 93.13 0
Estonia 3.925 3.925 0
Latvia -5.778 -5.778 0

EU-27 3.133.588 3.133.386 -202
The table shows the impact of the EUDR on the EU’s deforestation footprint linked
to the Brazilian beef industry. The regulation results in a reduction of 202 hectares,
driven by decreased EU demand for Brazilian meat sourced from deforested areas used
for cattle production. The overall effect would likely be much larger if all commodities

and trading partners were taken into account.



6 Conclusion

The work presented here proposed a methodology for measuring global deforestation

driven by trade, with a particular application to assessing the potential impact of the

EUDR on the Brazilian beef market. It is crucial to develop methodologies to measure

environmental indicators in order to propose policies that mitigate climate change and to

simulate and assess the eectiveness of such policies.

Our results highlighted facts such as the dependency of poorer countries like Liberia,

Mozambique, and Bolivia on extractive sectors, which leads to more deforestation per

dollar added to their demand structure. The most extractive sectors are those that directly

generate deforestation or that most activate, in their production chains, the sectors that

deforest directly—thus, they deforest indirectly. In our study, the sectors responsible for

direct deforestation are those producing agricultural and livestock commodities. This

deforestation was measured using georeferenced data on agricultural production and forest

loss. Therefore, sectors that consume more from these tend to have higher deforestation

indices.

The analysis of the deforestation footprint provided relevant insights for designing

regulations such as the EUDR, as it shows a strong correlation between deforestation

driven by imports and GDP. On the other hand, the export of deforestation content

depends not on income, but on forest stock. Mechanisms like the EUDR aim to reduce the

deforestation footprint of the countries implementing it, primarily by decreasing imported

or domestically consumed deforestation. It is a way to extend local regulation to the global

scale and "educate" market agents. However, its eectiveness depends on minimizing eects

such as production relocation, or "deforestation leakage"—when producers export products

from deforested areas to unregulated markets. This is a likely outcome, considering the

costs of complying with the regulation, the so-called compliance costs. Moreover, since it

is a regulation not yet in force at the time of writing, it is not possible to assess its ex-post

impacts. What can be done, then, is to simulate impact scenarios, as we did for beef

produced in Brazil. Disregarding producer responses, we obtained an estimated impact of

59
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approximately US$ 38,9 million in reduced trade ow of Brazilian beef to the EU—US$ 31,4

million in nal demand and US$ 7,5 million in intermediate consumption. The impact on

deforestation was a reduction of the EU’s footprint by 202 hectares, due to the nal demand

shock. If the shock to intermediate consumption is also considered, the footprint reduction

could be between 200 and 300 hectares, based on a simple proportionality analysis, but

not calculated via input-output techniques. Considering intermediate consumption shocks

for impact calculation opens up avenues for future research.

Indeed, the scope of this work aligns with the magnitude of the issue. Despite

its dierent local dynamics, deforestation is a global-scale problem that also requires

globally conceived solutions. However, due to the breadth of the work, many details could

be further explored. What we have so far is a prototype of a deforestation generation

calculator based on trade shocks, but it can be enhanced and rened to incorporate more

details and explore additional applications.

For future research, this work oers some natural extensions. Some relate to physical

measurement improvements, aimed at enriching the satellite account: both by including

other sectors that can cause deforestation—such as mining and construction—and by

increasing satellite image resolution to more accurately allocate deforestation to com-

modities. The study also sheds light on important issues regarding how deforestation is

measured within the production cycle. In this regard, it paves the way for research that

could propose new methods of accounting for both deforestation and reforestation ows,

taking into account the land-use cycle for dierent crops over the years, thereby avoiding

absolving crops that subsequently occupy deforested areas of responsibility.

As for the economic analysis, other approaches could be used, such as general

equilibrium models, which incorporate agents’ decision-making and account for market

reallocations-aspects omitted in our analysis—as well as econometric approaches to mea-

suring shocks in other markets and bilateral trade ows, estimating trade elasticities and

calculating tari eects to support the design of deforestation reduction policies.

In addition to robust technical tools, it is important to consider new deforestation

mitigation policies that do not further penalize the poorest countries. Those who deforested

long ago and who now consume products originating from deforested areas also bear

responsibility. The sustainable use of environmental resources must transcend notions of

political boundaries. It is a challenge for our species.
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