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Abstract

This paper uses the synthetic control method to construct comparison units for West-German cities.
We use these as counterfactuals to assess the long-run impact of the WWII bombings on the economic
activity of 52 West-German cities, and the West-German city size distribution. We extend the literature
in that we do not only look for whether cities following the WWII bombing shock are mean-reverting
or not, but the use of counterfactuals allows us to distinguish whether individual cities experienced a
positive or negative impact as well. We find a permanent impact on the majority of cities, where the
ratio of positive to negative impact cities is around 5 to 6. Also higher populated metropolitan cities
before WWII tend to either return or be positive impact cities, while negative impact cities mostly
consist of lower populated places with the exception of Berlin. We also find a non-random decline of the
majority of counterfactual cities around the 1960s. Overall, our findings support a hybrid theory, where
the determinants of a city’s size are underlying mutable locational fundamentals, and increasing returns.

Preliminary and Incomplete

1 Introduction

There is considerable interest in the study of the long-run impact of large and temporary shocks on a
city’s growth, whether they are caused by war or are a cause of nature. Researchers who try to explain
economic activity across space exploit the findings of their long-run impact in order to gauge the relevance
of some fundamental theories. For instance, the seminal paper by Davis & Weinstein (2002) looked at the
WWII bombings on Japanese cities, while the focus of Brakman et al. (2004) and Bosker et al. (2008) were
the WWII bombings on German cities. However, one issue researchers in the study of these shocks face
is a potential change in the trend not caused by the shock, which may simultaneously occur within the
aftermath of the shock. For instance, as Glaeser (2005) argues, there is no reason to remain in a city close
to a productive natural resource once the demand for this particular natural resource declines. In a similar
manner, the development away from a manufacturing to a service economy, the decline of the US rust belt
or suburbanization of cities (Glaeser & Kahn, 2004) come to mind as underlying factors which could induce
the change in trend. For Germany in particular, the starting decline of the coal industry in the German
Ruhr area around the 1960s is one example of such a factor, which could have led to a change in the trend. If
we do not account for this potential change, then we could otherwise wrongly attribute the decline of those
cities to the WWII bombing shock; a decline which may have happened regardless of the shock through the
decline of coal for example.

∗The author thanks Steven Brakman, Harry Garretsen, Dimitrios Soudis, Tristan Kohl and Marcel Timmer for helpful
comments and suggestions, and Maarten Bosker for the provision of the German city population data.
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The goal of this paper is to disentangle the effects of the WWII bombing shock on West-German cities
from these other, underlying drivers of population growth which the literature so far did not explicitly account
for. That is, in the evaluation of WWII bombings, we typically rely on methods which show whether city
population is mean-reverting or not to the post-shock path as linearly extrapolated from the pre-shock path.

Hence, these methods rely on the ’as if WWII did not occur’ counterfactual trend being linear throughout
time. However, if the counterfactual is non-linear, then we run the risk of wrongly concluding no reversion
to the mean which is driven by this non-linear development; yet we may attribute it to the shock itself even
if the shock did not actually have any long-run impact. Vice versa, we may wrongly conclude mean reversion
in the case of the shock actually having a long-run impact, which we do not detect as such because the
non-linear counterfactual development counteracts this impact towards a linear trend. In other words, the
question should not be whether cities are reverting to the mean, but whether they revert to a potential ’new
mean’.

To achieve the disentanglement of the WWII bombing shock from other factors through the use of a
’new mean’, we will employ the synthetic control method (SCM) by Abadie & Gardeazabal (2003) and
Abadie et al. (2010, 2015) to construct the counterfactual/synthetic city for each sampled city, and use this
synthetic city as the comparison unit for the bombed city. As compared to other methods which also use
counterfactuals, the SCM is designed to ameliorate some issues of finding a suitable counterfactual: First, as
the synthetic control method ’constructs’ a comparison unit for the bombed city treatment unit by choosing
a convex combination out of suitable non-treated comparison cities, we do in principle have infinitely many
possible comparison cities.12This ameliorates the problem of not finding a suitable comparison unit, which
is especially important when the treatment unit are cities at the upper tail of the city size distribution for
which suitable single unit counterfactuals are rare. This is one reason why SCM is preferred over the typical
difference-in-difference approach in our case since we can extend the number of potential counterfactual as
we consider a convex combination instead of a single unit.

Second, we add objectivity to the counterfactual selection as this convex combination is selected from a
data-driven procedure, where we minimize a loss function.

As we will exemplify later, the choice now is not about having enough comparison units to choose from,
but the choice of matching covariates which will be minimized to obtain the most suitable counterfactual.
Typical to the literature however is that the SCM is applied in a single treatment unit without much
discussion on the choice of set of matching covariates. Yet the counterfactual and as such the results are
sensitive to the inclusion or exclusion of certain covariates, with no apparent criteria as to which specification
is the best. Since we apply the SCM with the very same set of covariates to many cities in the German city
system, we implicitly add transparency to the whole covariate selection process. In this regard, the SCM
method is especially suitable for our case.

Crucial for our purposes is that the synthetic control counterfactual allows for a non-linear city population
path. That is because in the study of impacts stemming from large, temporary shocks on the location of
economic activity, we need to consider a large time span due to the slow-moving nature of population;
otherwise we cannot distinguish mean reversion from no mean reversion in the data.3 However with a
large time span considered, we increase the influence of underlying factors driving the city population path
away from the supposed linear path. This implies that assuming a linear trend may not be appropriate for
relatively long time spans and that for these purposes, an explicit estimation of the counterfactual path is
more appropriate. The SCM provides one way of doing exactly that.

Suited in particular is the external validity inherent to matching methods such as the SCM, or rather,
that we focus on the internal validity of each individual city. That is because the counterfactual for each
treatment unit is estimated through its own individual SCM model. This stands in contrast to regression-
based approaches for which we may, and for our case in particular, are only able to focus on the internal
validity within a system of cities, where we seek an unbiased estimate based on many cities. It may in

1Of course, due to computation reasons, we only consider the finite case.
2That is, instead of considering a single city, or a single point in a convex hull as a combination chosen by the researcher, we

now consider the entire convex hull as a possibility, where the first two convex combinations are simply a special case within
the convex hull.

3See (Perron, 1991) for the importance of the time span against frequency in unit root tests.
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principle be possible to construct a counterfactual through estimates based on regressions, but at most these
estimates will suit the best for cities in general, but no city in particular.

Furthermore, we will replace the deterministic trend term in the unit root model with the synthetic
control term, so that this simple correction is not very invasive in terms of changing fundamental testing
principles. Thus, we retain some level of comparability with previous results in the literature (Davis &
Weinstein, 2002; Brakman et al., 2004; Bosker et al., 2008; Miguel & Roland, 2011) as our results should not
be driven solely by the different method itself.

We should also emphasize here that the explicit use of a counterfactual makes it possible to have a
benchmark result to directly compare with, which was so far done implicitly in the literature in that the
post-war benchmark would be extrapolated by the pre-war benchmark. This allows us to see, apart from
finding mean reversion or not, whether the individual city population is above or below its synthetic German
city counterpart after WWII. Furthermore, we can compare the actual city size distribution with an explicit
benchmark, which we define here as the synthetic city size distribution. This is one advantage of replacing
the typical deterministic trend with the term estimated by the SCM; and as it turns out, these adjustments
matter:

Our results show that out of the cities for which we find a unit root, around 85% of those in terms
of population end up above its corresponding synthetic city population after around 35 years after WWII.
38 out of 52 of our sample of German cities already in 1960 ’returned’ or were even above the synthetic
population. Nevertheless, finding a positive impact at least for our sample cities, which mostly constitute
the biggest German cities, is not what we would expect from a large negative shock such as the WWII
bombings. This result stands in contrast to the more expected findings of Bosker et al. (2008), who find a
structural break for 17 cities, of which 15 are negative.

This paper mainly contributes to the strand of empirical research on the lasting effect of a large, tempo-
rary shock on a system of cities (Davis & Weinstein, 2002; Brakman et al., 2004; Bosker et al., 2008; Miguel
& Roland, 2011), with the aim of providing a stronger empirical method to distinguish the large, tempo-
rary shock from any other parallel development happening. The results of this particular strand also has
implications on the relevance of some competing fundamental theories on the location of economic activity.
(Davis & Weinstein, 2002) defines those theories as locational fundamentals theory (e.g. Rappaport & Sachs
(2003), also called ’first-nature geography’ in the literature), random growth theory (e.g. Gabaix (1999) and
increasing returns theory (following Krugman (1991)).

This paper is also related to papers on multiple equilibria (Bosker et al. (2007), Davis & Weinstein
(2008), Redding et al. (2011), Bleakley & Lin (2012)), although whether the German city system can be
characterized by multiple equilibria or not is not the focus here.

To a lesser extent, this paper is related to the disaster literature (duPont IV & Noy, 2015; Siodla, 2015),
with the difference that they look at natural disasters typically affecting a single city and not an entire city
system.4

The empirical setup can be roughly categorized into two parts. First, we will construct the synthetic
control for each German city in our sample, which we will describe in section 2. Second, we will replace the
deterministic trend term with the synthetic control term in the typical augmented Dickey-Fuller test model
in section 5.

In section 2, we will also postulate some principles that we will follow given this unique natural experiment.
This very section will also serve as a guide to the data collection of section 3. In section 4, we will present
an example city as well as establish the notion of an inverse U-shaped city population growth from the
beginning of the German Reich of 1871 onwards, which serves as a justification for our empirical strategy.
After we have constructed the synthetic control, sections 6 reports the impact of the WWII bombings on
individual German city population, the city population share of the total German population respectively.
Section 7 shows various robustness exercises. Section 8 is reserved for the robustness of the results. Section

4This distinction could be important in that shocks on the city system may induce relatively little migration given the
magnitude of the shock if most cities experienced some form of destruction. This gives room for the conjecture that as long as
the large, temporary shock on the city system is even, it does not induce migration whereas a shock on a single city in a city
does lead to migration. This notion could explain why we overall find a permanent impact in the disaster literature and usually
none where disasters affect the whole country.
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8 will report some additional characteristics on a group of cities conditional on how the individial city was
impacted, as well as some additional sensitivity analysis. Section 9 will bring the evidence established in the
previous sections together, where we will discuss the aforementioned competing fundamental theories on the
location of economic activity in the light of the new evidence. Section 10 concludes.

2 Synthetic City Construction

Before we turn to the data, it is important to justify the data. Hence, we turn to the construction of the
synthetic control city first. We will follow closely the notation of Abadie et al. (2015) in the following. That
is, the synthetic German city, indexed by i, is represented by a convex combination of donor pool US cities
as indexed by j. Therefore, we have a sample of I + J individual cities, with I number of ’treated unit’
German cities, and J number of ’comparison units’ US cities in the ’donor pool’. Hence, the donor pool is
j = I + 1, ..., I + J + 1.

In the following, we will leave out the individual city superscript i for each variable for simplicity. The
synthetic control for the individual city is a convex combination of cities in the donor pool i.e. it can be
represented by the (J × 1) vector of weights W = (wI+1, ..., wI+J+1) for each city, where 0 ≤ wj ≤ 1 and
wI+1 + ...+ wI+J+1 = 1.

Let X1 be a (K × 1) vector which contains the pre-treatment covariate of a treated city and let X0 be a
(K × J) matrix which contains the same pre-treatment covariate but from the donor pool.

We want to minimize the discrepancy between X1 and X0W i.e. minimize

‖X1 −X0W‖ =
√

(X1 −X0W )′V (X1 −X0W ) (1)

which is done in a two-step procedure: Conditional on V , the synthetic controlW ∗(V ) = (w∗I+1, ..., w
∗
I+J+1)

is selected to minimize (1) subject to w∗I+1 + ... + w∗I+J+1 = 1 and 0 ≤ w∗j ≤ 1 ∀j. V is a (k × k) diagonal
matrix with non-negative entries, where its values weights the relative importance of each pre-treatment
covariate. The idea of this approach is that we want the covariates to have strong predictive power over the
outcome of interest, so that relative strong predictors are given relatively larger weights. Equivalently, let
X0jm be the value for the m-th covariate for donor pool unit j and X1m be the value for the treated unit
covariate, where m = 1, ....,K, so that we choose W ∗ which minimizes

K∑
m=1

vm

X1m −
I+J+1∑
j=I+1

wjX0jm

2

(2)

where vm are the diagonal entries of V , i.e. V = diag(v1, ..., vK).
One way to choose V , as done by Abadie & Gardeazabal (2003); Abadie et al. (2010, 2015) is based on

minimizing the mean squared prediction error (MSPE) of the city population outcome variable S given the
chosen W ∗ before:

T0∑
t=1

S1t −
I+J+1∑
j=I+1

w∗j (V )Sjt

2

(3)

where T0 is the treatment period. Summarizing, we first calculate W ∗(V ) for any V in the first step, and
then choose the V that gives us the W ∗(V ) which minimizes the MSPE.

The literature follows the principle in the choice of the covariate in that it should be a good predictor of
the variable of interest, so that often pre-treatment lagged variables of the outcome variable are included.
However, what we are actually interested in are only good predictors of the outcome post-treatment. That
is, we should not assume that predictors do not change in their relative importance over time. This needs
to be especially stressed in our case, as we consider a long time span with various events in history which
may have changed the determinants of individual city growth.
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Hence, it is important to postulate some additional principles in the choice of covariates to be good
predictors of post-WWII city population. First, we want the covariates to be as close as possible in time to
the beginning of WWII as we think that the farther we go away from the treatment period, the worse the
prediction power of the covariate becomes for the post-WWII period.

Hence, we should not be tempted to include all pre-treatment lags of 1870 to 1940 of the outcome as
covariates, as we would otherwise give a relatively high weight towards US cities so that the synthetic control
is a good counterfactual of city population of the German city of interest throughout 1870 to 1940, but a
comparatively bad counterfactual for the post-WWII periods we are actually interested in. As mentioned
before, this exclusion of earlier covariates can also ameliorate the issue of annexations of surrounding mu-
nicipalities by the German city, where significant jumps in the population of some German cities occurred
mostly during the 1920s-30s. In a sense, the likely increasing error going back in time from the extrapola-
tion of the population data to account for the annexation will not be as problematic due to the exclusion
of earlier covariates. Also, some geographical features may be the driver of pre-war growth, but also of
post-war decline. Here, we can take coal as an example of such a feature. If we would not include it, it
could lead to the SCM matching primarily high growth non-coal US cities with high growth German coal
cities. If those high growth non-coal cities are also relatively high growth after the war, a decline of coal
in the post-war years and a subsequent decline of coal cities would suggest that we would match, post-war,
low-growth coal cities with high growth US cities. As such, through SCM we may wrongly and overly find
a decline of those German coal cities. Again, the importance here is to find good post-treatment predictors,
and not necessarily good predictors of the variable of interest in general.

Another potential issue is that German cities in our dataset are much older than US cities and we may
give US cities a weight which did not even exist yet a few years earlier, so that they may not be as comparable
to the historical German cities. One way to account for that is to only consider the historical US regions
in the dataset, and exclude the regions which were not developed. We consider the Mississippi river as a
good demarcation line on which to base this distinction; and as such we keep the principle that the bulk of
covariates should be as close to the treatment period as possible. Therefore, we choose the bulk of covariates
to start with the Weimar Republic in 1918 until the beginning of WWII in 1939. In section 7, we go further
in excluding all US cities which did not exist in 1870. Having established the when and some of the which,
the following data section will further elucidate which type of covariates we will consider.

3 Data

For the outcome of interest, city population, we extend the original German city dataset of Bosker et al.
(2008) by including the years 1871 to 1925 if possible, and as such we exclude 10 cities due to insufficient data
to a total of 52 German cities. Note that the excluded cities are relatively small, reflecting that bigger cities
typically have complete population data throughout history. This data is obtained either from irregular
censuses, or from updates of the population records which occurred annually. As the SCM constructs a
convex combination out of donor pool cities, it is important to have each unit of observation to be of similar
magnitude to the units in the donor pool. Therefore, we consider incorporated places as defined by the US
census as the unit in the donor pool, as it is the most similar in magnitude to the German census cities, and
covers the entire range in terms of population. This data was already partially obtained from the Spatial
History Project of Stanford University for 1790-2010 (US Census Bureau and Steiner, E. (2018)), where we
extend it by the decennial U.S. Census population data. For our purposes, we only consider incorporated
places which had at least a population of 50,000 at some point in the census. There were throughout
history many cases where one bigger incorporated place annexed a smaller one, which we need to account
for. Fortunately, the annexed incorporated place will cease to be mentioned in the following census, so
that we have simply added those up until the year 2010, so that we roughly have the same city boundary
throughout the time analyzed. As for the German cities, we usually do not have the population data for the
surrounding cities which were annexed by the German cities in our sample. To adjust for that, we adapt
the series in the same manner as Bosker et al. (2008), where we assume the same growth rate for annexing
and annexed places and extrapolate it on the additional population; this time with the city boundary fixed
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around WWII. However, this adaptation is likely to be less accurate the farther away we extrapolate from
the time of annexation. We can account for that in the SCM by excluding the covariates which are far away
from the WWII treatment period. Overall, we have decennial population data for the years 1870 until 2000.
The other reason we choose US data is that the level of industrialization of East Coast US cities is very
similar to that of Germany. As such, we are more confident that the, as if WWII did not happen, post-WWII
population development are of similar nature between the German sample and the donor pool.

Since SCM applied to our case requires covariates which are good predictors of (post WWII) population,
we will also consider a coal covariate. As discussed in the previous section, this inclusion is largely motivated
by the decline of the coal industry in the Ruhr area and the coal industry in the US both happening around
the 1960s. For that, we obtain the number of workers in the coal industry from Fischer (1989, 1995) on
a Regierungsbezirk (administration area) level. Similarly, we have county level labor employed in the coal
industry, taken from the historical U.S. Census (available from the US Census Bureau (1900-1930)). Here,
we consider a city a coal city if it is within a significant coal county, producing at least 100,000 short tons or
more in 1929, as it appears in the 1930 U.S. census. In order to have a similar level of magnitude between
treatment and control covariate, we instead assign each of those coal cities the state level aggregate. Lastly,
we include a river and sea-access dummy as simple first-nature determinants, where we consider a city a
’river’ or ’sea’ city if today’s border is 1 kilometer away from either, as determined by the U.S. census bureau
TIGER/Line and Census TIGER, and Google Maps. In data appendix A, the data is described in more
detail.

4 Descriptive Statistics and Inverse U-shaped Growth

To justify our approach to alter the established methodology of the literature towards accomodating a
possible non-linear counterfactual, we will show that the synthetic city population growth throughout time
is found to be typically inverse U-shaped. An inverse U-shaped city population growth for German cities
can be found by looking at the behavior of the synthetically estimated population growth of German cities
over time. That is, we estimate the following simple quadratic model:

Ssynthi,t = αi + β1,iT + β2,iT
2 + εi,t (4)

with time trend T, and where Ssynthi,t is the synthetically estimated city population for the corresponding
German city i at time t. Based on the principles we have postulated in the second section, to construct the
synthetic control for now, we consider the covariates to be 1900 and 1920 to 1940 lagged population, 1900
and 1920 number of coal workers, dummies for sea or river access, and lastly the simple 1940 urban potential
measure, where we consider 80 West-German cities, and the 765 US places:

UPi =

n∑
j

Si,1940

τσ−1i,j

(5)

where we set σ = 2. We consider all US cities east of the Mississipi and Louisiana between 1870-2000 as
comparison cities in the donor pool, as the regions west of the Mississipi were settled much later.5 Hence
we are left with 349 cities (out of 765 US cities with a population of more than 50,000 at some point in the
census).

Table 1 presents the summary statistics of our 52 German sample cities and of our 349 US donor pool
cities. Notice that the mean population is above the mean synthetic population after 1960. In section 6, we
will see that this is not driven by a few single cities, but applies for the majority of cities.

Table 2 presents 3 arbitrarily chosen example cities, Aachen, Lübeck and Dortmund.6 For Aachen, the
discrepancy of the lagged actual and synthetic population is relatively low, while the discrepancy for all other

5We consider Louisiana simply because of New Orleans. Other states west of the Mississipi were not settled, thus are not
considered to be similar to the old German cities.

6Respectively, the criterion of choice are: the city being alphabetically first, the city being the hometown of the author, and
its football team being first in the Bundesliga as of January 2019.
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covariates is relatively high. This does not necessarily mean that the relatively large discrepancy indicate a
poor prediction power of those covariates, but it can also suggest that much of it is already taken away (or
embedded) by the population lag covariates. In the case of coal workers, note that coal is a very localized
resources and thus the number of cities which can be considered a coal city is sparse especially in the USA
7, which can explain the large discrepancy here, as between cities there is a large discrepancy by itself. That
the coal covariate is above zero in this case still indicates that coal cities still match well with other coal
cities, despite the sparseness of the resources or coal being embedded in the population lag covariates.

Lastly, given that historical events, such as the decline of coal or the beginning of suburbanization
suggests an inverse U-shaped city population growth, which is supported by the results of the individual city
regression of (4) being in favor of the inverse U-shaped city growth rate notion. For individual synthetic
German cities from 1870 to 2000, we find β1,i > 0 for all cities and β2,i < 0 for 50 out of the 52 synthetic
cities (96%), with the mean global maximum to be in 1948. If we restrict the time span from 1920 to 2000,
we still find β1,i > 0 for 48 out of 52, and β2,i < 0 for 51 out of 52 synthetic German cities, with the mean
global maximum around 1964 this time.8

These results indicate that there are underlying, systemic non-random factors which can influence the
patterns of growth of a city system which are not initiated by a large, temporary shock on the city system
itself. That is, the notion of first-nature geographies being constant throughout time is at odds with the
notion established in this section.9 Furthermore, it provides a justification for our approach to accommodate
for a possible non-linear counterfactual.

Table 1: Descriptive Statistics

mean (std. dev.) min / max mean (std. dev.) min / max mean (std. dev.) min / max

Sample covariates German cities Synthetic cities Donor pool
population (1900) 206766 (394690) 11704 / 2712190 197717 (346306) 12569 / 2326866 51037 (224465) 0 / 3437202
population (1920) 296873 (563414) 54736 / 3879409 291657 (536690) 55035 /3653581 85288 (360833) 0 / 5620048
population (1930) 324798 (630359) 58300 / 4332834 325803 (632481) 58848/ 4351073 104314 (441805) 0 / 6930446
population (1940) 336567 (632019) 58713 / 4338756 340999 (663543) 58948 / 4593739 109192 (466640) 0 / 7454995

river access 0.788 (0.412) 0 / 1 0.791 (0.407) 0 / 1
sea access 0.019 (0.139) 0 / 1 0.166 (0.373) 0 / 1

coal worker (1900) 28920 (45031) 0 / 135717 2681 (13302) 0 / 92095
coal worker (1920) 56896 (80206) 0 / 219758 5382 (25137) 0 / 154992
urb. pot. (1940) 492988 (619403) 141020 / 4377748 242884 (485770) 34623 / 7627034

Non-covariates
population (1950) 304948 (501294) 54100 / 3336026 366543 (706337) 59165 / 4877015 121509 (496310) 0 / 7891957
population (1960) 360505 (516693) 80200 / 3274016 354959 (691659) 55809 / 4788218 130726 (486614) 0 / 7781984
population (1970) 363550 (513521) 83300 / 3208719 343965 (691313) 49113 / 4815421 137225 (485596) 0 / 7894862
population (1980) 341610 (484494) 77096 / 3048759 302216 (611862) 44279 / 4283023 132048 (432183) 0 / 7071639
population (1990) 346544 (524886) 78633 / 3433695 295063 (616704) 39959 / 4350805 135037 436943 0 / 7322564
population (2000) 345103 (521048) 78565 / 3382169 295783 (653676) 40205 / 4646081 143370 (470672) 0 / 800827

Sample size 52 52 349

7We consider 20 out of the 349 US cities here as coal city, as compared to the 42 out of 52 German coal cities.
8If we only consider cities for which both β1,i > 0 and β2,i < 0 are statistically significant at the 5% significance level, then

for 1870-2000 we still find 47 cities fulfilling this requirement. Here, the mean global maximum is now around 1960. Similarly
for 1920-2000, we now however only find 31 fulfilling this requirement, with the mean global maximum being almost unchanged
around 1965 in this case.

9Although the notion of changing fundamentals has been explored empirically by Bleakley & Lin (2012) already, where
they found that the relative decline of rivers due to the rise of train transportation did not affect portage sites being relevant
even today, this development may not be considered a creative destruction process as initially thought by the authors. That
is because of their economic importance accumulated over time, portage sites were also connected to railway lines, such that a
creative destruction process may have taken place at the very same place first.
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Table 2: Individual City Examples

Treatment Synthetic Treatment Synthetic Treatment Synthetic
covariates Aachen Aachen Lübeck Lübeck Dortmund Dortmund

population (1900) 142427 133487 82098 82174 233566 249740
population (1920) 151731 154709 118709 118858 513419 481034
population (1930) 154682 158392 129842 130051 535087 544812
population (1940) 162164 158823 154811 155135 542352 544684

river access 0 1 1 1 1 1.001
sea access 0 0 1 0.939 0 0.018

coal worker (1900) 7989 276.285 0 0 135717 51389
coal worker (1920) 15426 464.976 0 0 219758 86486

urban potential (1940) 265614 278847 245207 245052 741768 650725

Donor city Weight Donor city Weight Donor city Weight
Cincinnati, OH 14.6% Charleston, SC 67.9% Cleveland, OH 42.5%
Fall River, MA 71.6% Jacksonville, FL 12.7% Johnstown, PA 55.8%
Mckeesport, PA 0.3% Jersey City, NJ 5.6% New York City, NY 1.8%

Troy, NY 13.5% Miami Beach, FL 0.1%
Miami, FL 3.5%

New Orleans, LA 4.1%
Washington, DC 6.2%

5 Empirical Strategy

To see whether the WWII bombings had any permanent impact or not on a city’s population, we test for
mean-reversion of the (relative) city population by testing for the absence of a unit root. Consider the typical
augmented Dickey-Fuller estimable equation given below:

∆Si,t = ci + δit+ ρSi,t +

p∑
k=1

βi,k∆Si,t−k + εi,t (6)

For the city size Si,t for city i at time t. Equation (6) had been estimated in Bosker et al. (2008), however
by taking the natural log before. In the case of an inverse-U shaped counterfactual city development, taking
the natural log is not necessary as it would not linearize the series. Also taking the log of the size and the
log of the share of a city would make both equivalent with each other.10 Next, we obtain the synthetically
corrected (SC) form as the difference of the actual individual city population Si,t with its corresponding

synthetic city population Ssynthi,t :

SSCi,t ≡ Si,t − S
synth
i,t (7)

Then, equivalent to 6, we write:

∆SSCi,t = ρSSCi,t +

p∑
k=1

βi,k∆SSCi,t−k + εSCi,t (8)

We drop both the trend term δt and the constant ci due to our correction in (7), as by construction they are
assumed to be zero. Note here that since we do not detrend through OLS, the Dickey-Fuller critical values
with trend should not apply as we do not use information after the war: We minimize the discrepancy of
the actual and synthetic population in the years close to the war, but not after the war where we let actual
and synthetic population diverge. Hence by construction, the values for SSCi,t should be close to 0 before the
war and are allowed to diverge from 0 after the war.

In other words, the correct critical values should be close to the Dickey-Fuller critical values with a trend
if we were to only consider the pre-war period. However because SSCi,t is allowed to diverge from 0 after the

10That is, when we subtract the population by the synthetic population for city i as estimated by SCM, Ssynth
i,t .
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war, the critical values should approach the significantly less negative critical values for the model without
a constant or a trend term.

To account for that, we will also test for the presence of a unit root from 1940 instead of from 1920
onwards (cf. Bosker et al. (2008) test from 1925).11

To give us further justification on our approach, we can introduce the notion of the true counterfactual,
where the error of our counterfactual estimation is simply the difference of the true counterfactual S∗i,t and

the counterfactual estimate; in our case Ssynthi,t . For illustrative purposes, we can decompose this error into
the sum of three differences; consisting of a common time component ζ which is the same across similar cities
between similar countries, a country level component χ common across similar cities in the same country and
an individual city component ψ common across similar cities. Note that whenever we say across countries
here, it means between German treatment and the US donor pool in our approach specifically. As such, for
the post-WWII years t+K, we can define:

SSC∗i,t+K ≡ S∗i,t+K − S
synth
i,t+K ≡ (ζ∗i,t+K − ζ

synth
i,t+K) + (ψ∗i,t+K − ψ

synth
i,t+K) + (χ∗i,t+K − χ

synth
i,t+K) (9)

Ideally, we want (9) to equal 0 for the post-war years t+K. 12

The SCM however is designed mostly to reduce the individual city component error. That is, we may
think of ψsynthi,t+K as capturing some common drivers of different cities across countries. For instance, if coal
is an important determinant of pre-war city growth, we match German coal cities with the US coal cities
convex combination of a very similar size. That is, provided that the individual city characteristics across
countries do not differ in impact post-WWII.

The common time component ζsynthi,t+K captures the drivers of city growth which are the same for each
similar city across similar countries. We may think of this time component as technological change which
determines city development among similar regions in terms of technology adoption at the same time; such
as commuting cost reductions through cheaper transportation technology, or other general trends in city
growth common across the world. As compared to the ψsynthi,t+K component, the donor pool choice matters in
this case and not the choice of covariates. Also, as previously discussed, we think that reducing the difference
(ζ∗i,t+K − ζ

synth
i,t+K) is best achieved by restrictung the US donor pool to states East of the Mississippi and

Louisiana, as we think that they have been overall the most similar in terms of having an already developed
city system comparable to Western Europe.

Lastly, we can think of the difference (χ∗i,t+K − χ
synth
i,t+K) of the individual country level component as

a difference in the overall development between countries which they do not have in common. Country
specific policies which affect the growth of cities overall may lead to a divergence of this term, such as the
separation of Germany into two parts, or a divergence due to overall German and US city development
diverging post-WWII.

As such, the approach with SCM accounts for the first two components, so that we are more confident
that the first two terms are closer to 0 post-WWII. The placebo exercise of figure 2 is consistent with this,
as we use the SCM the control US cities as the treatment unit and as the donor pool, so that we have no
cross-country differences here. However the SCM does not account for the last component explicitly. In
other words, individual country events post-WWII, whether they are occuring in the US or in Germany,
could drive (9) away from 0. 13

Lastly, that (9) is equal to 0 is less likely the further we move away from the treatment period. That is,
the SCM counterfactual is less likely to be close to the true counterfactual if we move away from the shock,
either fowards or backwards in time, so that we consider a cutoff year i.e. the year were our analysis ends,
at 1980, 1990 and 2000 in the following section.

11Or rather 1939, before the war since we set 1939 to 1940 for the German data to match it with the US data.
12Note that we do not necessarily want 9 to equal 0 for (all) the pre-war years as a result of the discussion we had about the

principals of covariate selection and that covariates closer to the WWII bombing treatment are assumed to be better post-war
counterfactual predictors

13Note that for the immediate pre-WWII case, if we assume the first two terms of (9) to be 0 then if there is a divergence of
the last term, with a degree of freedom of 1 it starts from 0, since we can assume that due to the SCM, (9) overall is 0 for the
immediate pre-WWII time case.
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Nevertheless, the claim of our approach here is not whether the US city system is considered a good
donor pool to estimate post-WWII German city counterfactuals. Taking the city system of other countries
as a donor pool may be better or worse than previous methods in reducing (χ∗i,t+K − χ

synth
i,t+K), which we do

not know. The claim is that if we are willing to accept the decomposition above, especially in that SCM
is able to reduce the difference of the first two terms appropriately, then we could be closer to the true
counterfactual, as compared to the previous approach in the literature following Davis & Weinstein (2002);
Brakman et al. (2004); Bosker et al. (2008), which does not control for any of the components.

Furthermore, consistent with the idea that there is a common time component ζ∗i,t+K , in the previous sec-
tion, we have found an inverse U-shaped city growth over time for almost all synthetic, convex combinations
of US cities. This supports our claim here that there are underlying factors of city growth which changed
over time, consistent with the literature on transport costs and suburbanization for instance (Baum-Snow,
2007; Baum-Snow et al., 2017). Consequently, the same claim could be made for German cities over its entire
counterfactual time span, at least for the upper distribution of cities, provided that the same development
would have happened in Germany around the same time. In the robustness section 7, we will further test
this claim by matching German cities with a 10 year lagged convex combination of US cities, as a case may
be made that the US was an earlier adopter of transportation technology or was slightly more technologically
advanced.

As we will see in the following, given that equation (8) does not depart much from Bosker et al. (2008)
with the exception of the estimation of an explicit counterfactual in our case, our approach will give us
significantly differerent results as compared to the previous literature. At the very least, it shows that the
exercise above matters, regardless on whether we accept the approach of the previous literature, or this
alternative approach.

6 Results

Next, we will report both the impact of WWII on the absolute and relative, to the total West German
population, city population as both results were used to show the consistency of the theories in the face of
this empirical evidence in Bosker et al. (2008). In other words, we do not change in which way the empirical
approach evaluates the fundamental theories, apart from the SCM counterfactual. We will show in section 9
that with only a slightly altered framework, as a consequence, the interpretation of the fundamental theories
of the results obtained here will be very similar as well.

6.1 WWII Bombings Impact on City Size

We keep the same synthetic city as in section 4, where the covariates are 1900 and 1920 to 1940 lagged
population, 1900 and 1920 number of coal workers, dummies for sea or river access, and the 1940 urban
potential measure as above.

Figure 1 shows the gap of the population with the synthetic population for the individual city, where we
have excluded Munich and Berlin as the gap exceeds an absolute value of 500,000 at some point in time.
As expected, the gap is close to 0 for almost all cities between 1920-1940 by construction due to the choice
of lagged covariates. Since we do not consider covariates far away in time from the treatment period, this
manifests itself in figure 1 by the pre-1900 gap diverging from 0. If we consider the principles in section 2,
this does not necessarily indicate that the control cities are not well constructed. Also notice that the linear
fit line (red) until 1940 is close to 0, which reaffirms our exclusion of a trend term and a constant term of
equation (8). Lastly, one thing to take away from the quadratic fits of figure 1 is that a significant number of
cities ended up being better off in terms of population, as compared to its benchmark, synthetic population.

In figure 2 we show the gap of the 43 cities in the donor pool which have a weight of at least 0.05 as a
comparison city for some German city. Here, we show the gap of these individual comparison cities with
its synthetic control, where the donor pool is simply the same US donor pool as before, with the exception
of the comparison city itself. That the quadratic fit is roughly a horizontal line around 0 is reassuring as
this is what we should expect. That is, as the US did not experience a large, temporary shock on its city
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Figure 1: Individual City Gap of Population and Synthetic Population

Note: We exclude cities with a gap larger than 500,000 at some point, which are Berlin and Munich. The linear (blue) and
quadratic fit (red) do not exclude Berlin or Munich. The quadratic fit (green) excludes Berlin.

system and since the donor pool consists of the US cities itself, we should find on average no effect i.e. a
horizontal line at 0. Although this does not necessarily mean that convex combinations of those comparison
cities will behave similarly, it however weakly hints at the post-WWII upward trend in figure 1 to not be
driven systemically by the post-WWII counterfactual going in the opposite direction.

We present the results of the (panel) unit root tests of equation 8 on city size in table 3. The results
of the individual city Dickey-Fuller test show that for about 8% to 12% of the cities in our sample with a
cutoff year of 1980 to 2000, we find no unit root at the 5% significance level. This still leaves us with 88%
to 92% of cities with a unit root. Also note that Bosker et al. (2008) fail to reject the null of a unit root
for any significance level for all cities, so we repeat their exercise in b., as the results could be driven by
us employing decennial data instead of annual data or the reduction of the number of cities from 62 to 52
among other reasons. This seems to be indeed not the case.14

Furthermore, notice that if we change the cutoff year to 1960, we find no unit root for a much larger
proportion of cities, which is in line with figure 1 where we find that already in 1960 for 38 cities, the actual
population is above the synthetic population. For one thing, this may help us explain the different conclusion
of Brakman et al. (2004) of finding mean reversion, against Bosker et al. (2008), who find a unit root for
most cities, as the cutoff year is set at 1963 and 1999 respectively.

In B., we additionally show the panel unit root tests. The one we prefer here is the Levin-Lin-Chu (Levin
et al., 2002) test with a suppressed constant (ci = 0). We have also included the Im-Pesaran-Shin test with

14The difference between taking the log and not is also marginal, as we find a 4%, 12% and 13% rejection of the null
respectively at the 1%, 5% and 10% significance level for 1920-2000 if we take the log.
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Figure 2: ≥ 0.05 Weight Comparison City Gap

Note: We exclude New York from this figure as there is no US city which can match New York in terms of population. The
synthetic New York city is Chicago with a weight of 1, so that the gap is simply the population difference of New York and
Chicago

.

a constant but allows for the test statistic to vary across groups. Yet, a suppressed constant is preferred if
we consider the linear fit of figure until 1940 1. As for the former Levin-Lin-Chu, we reject the null that the
panels contain a unit root against the alternative that the panels are stationary. As for the Im-Pesaran-Shin
test (Im et al., 2003), we fail to reject the null of all panels containing a unit root against the alternative of
some panels being stationary.

Furthermore, for the sake of comparison, we show the OLS detrended panel unit root test results of
equation 6 in b. For one thing, the OLS detrended panel unit root test results change with regard to a
earlier cutoff year of analysis. Even though the individual city OLS detrended unit root results do not
change much with earlier cutoff year of 1990 and 1980, we fail to reject the null when the cutoff is 1980 for
the Im-Pesaran-Shin test. This sensitivity of results is not found for the synthetically detrended panel unit
root.

In any case, the results of the synthetic detrended unit root test stands in contrast to the OLS detrended
results and Bosker et al. (2008), where a unit root is always found for all of their 62 sample cities.

We have seen already in figure 1 that for 43 out of the 52 cities in 2000, the actual population at some
point after the war is above the synthetic population. In the following, we categorize cities as ’positive’
(’negative’) impact cities if we find unit root conditional on the actual population being above (below) the
synthetic population in the given cutoff year. Table 4 presents the share of an individual city of all cities
based on this categorization.

On a 5% significance level, around 70% to 80% of the cities in our sample show a permanent positive
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Table 3: Results of unit root tests on city size

A. Individual City (augmented) Dickey-Fuller test

a. Synthetic detrended (ci = 0)

Period 1920-2000 1920-1990 1920-1980 1920-1970 1920-1960

Significance level % Unit root rej. % Unit root rej. % Unit root rej. % Unit root rej. % Unit root rej.
1% 2 2 2 4 42
5% 8 10 12 19 50
10% 15 17 21 31 60

b. OLS detrended (δit = 0 or δit 6= 0)
1% 0 0 0 2 12
5% 2 0 0 4 17
10% 6 8 8 15 19

B. Panel Unit root test

a. Synthetic detrended

t-stat (p-val) t-stat (p-val) t-stat (p-val) t-stat (p-val) t-stat (p-val)
Levin-Lin-Chu (ci = 0) -2.721 (0.003) -3.274 (0.001) -4.109 (0.000) -5.492 (0.000) -7.383 (0.000)

Im-Pesaran-Shin 1.280 (0.900) 1.898 (0.971) 1.646 (0.950) 1.602 (0.946) -0.265 (0.396)

b. OLS detrended (i.e. with trend term δit)
Levin-Lin-Chu -16.650 (0.000) -16.964 (0.000) -16.206 (0.000) -22.483 (0.000) -23.946 (0.000)

Im-Pesaran-Shin -3.412 (0.000) -2.180 (0.015) -0.303 (0.381) -2.151 (0.016) -2.405 (0.008)

Note: The null hypothesis is a unit root in city size. The individual city unit root number of lags are chosen following Ng &
Perron (1995), where the maximum lag length started at 2 for this procedure. Incidentally, the lag is chosen to be zero for all
cities. ci = 0 indicates a suppressed constant in the regression. δit = 0 or δit 6= 0 indicates an added trend in the regression.
Given the individual city optimal number of lags, we set the lag to 0 for the panel unit root tests.

impact; a result which stays constant throughout the cutoff years. Furthermore, the share among cities with
a unit root for which we find a positive rather than a negative impact in the given cutoff year is around 85%;
and this share seems to be constant with changing significance levels or cutoff years.

One interpretation of the results of this section is that the bombing shock led to a creative destruc-
tion/migration process in cities for which we find a positive permanent impact. In section 7, we will look at
the characteristics of those cities.

This also helps us explain the opposite findings between both the Levin-Lin-Chu and the Im-Pesaran-Shin
test, as the latter allows for the heterogeneity of the ρ while the former does not. Judging from the mixed
results on the individual city unit root test, a heterogenous ρi makes the most sense for us.

In order to determine the impact on the entire city system itself, Bosker et al. (2008) also looked at
the evolution of the city size distribution. They found a more even city size distribution i.e. relatively
more middle sized cities. However, they were only able to compare the post-war distribution to the pre-war
distribution. We think that we are now in a better position for this endeavor, since we have an actual
counterfactual in the synthetic control. That is, we can simply compare the actual city size distribution with
the synthetic city size distribution over time. As such, we will perform the two-sample Kolmogorov-Smirnov
test on the actual and the synthetic city size for each year. We report the results in table 5.

For each year, we fail to reject the null that both distributions are the same. Note that we more strongly
reject the null between 1920 and 1940, which is by construction due to the synthetic control lag covariates
we included in those years. Also note that the p-value declines after the war over time, which may indicate
that the effect of the bombings on the city size distribution did not fully dissipate yet and that we may
reject the null if we extend the cutoff year; and this would go against the very idea of having a cutoff year.
Furthermore, given 38 cities out of 52 in our sample were above to the synthetic city population already in
1960, and heavily based on our estimate of this section, it would seem incredulous that it would take another
50 years for the effect of WWII to fully dissipate.

To conclude this section, despite the widespread bombings on German cities, the city size distribution did
not diverge from its supposed counterfactual. Instead, based on the evidence in this section, it points towards
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Table 4: Number of positive (negative) impact individual cities with a unit root

Synthetic detrended (ci = 0)

Period 1920-2000 1920-1990 1920-1980

Significance level % Unit root |Si,t − SSC
i,t > 0 (% Unit root|Si,t − SSC

i,t < 0)

1% 81 (17) 83 (15) 83 (15)
5% 79 (13) 77 (13) 73 (15)
10% 75 (10) 71 (12) 69 (10)

ratio of positive to positive and negative cities
1% 0.82 0.84 0.84
5% 0.85 0.85 0.83
10% 0.89 0.86 0.88

Table 5: Actual and synthetic city equality of distributions

Kolmogorov-Smirnov

Year p-value Year p-value
1870 0.998 1940 1.000
1880 0.998 1950 0.734
1890 0.998 1960 0.570
1900 0.970 1970 0.291
1910 0.734 1980 0.195
1920 1.000 1990 0.195
1930 1.000 2000 0.195

Note: The null hypothesis is the equality of both distributions.

the distribution results of Bosker et al. (2008) to be driven by underlying factors which are not captured by
their method. This however does not suggest that there is no permanent effect stemming from the WWII
bombings, but that it did not induce a change in the distribution. Whether however the WWII bombings
were indeed not ’enough’ to induce a change in the distribution i.e. that this change in the distribution
would even be possible in the first place, cannot be answered here.

6.2 Results City Share

Following Davis & Weinstein (2002), who looked at the impact of WWII bombings on the relative city size
of Japanese cities, other papers (Brakman et al. (2004), Bosker et al. (2008)) followed suit in looking at the
impact of WWII on the relative city size of German cities. That is with the total West German population15

stotali,t , the relative city size is si,t

si,t =
si,t
stotali,t

(10)

ssynthi,t ≡
ssynthi,t

stotali,t

(11)

We consider the synthetic relative city size to be the ratio of the same synthetic control as in the previous
section, and the actual total West German population stotali,t . The synthetically detrended relative city size
is

sSCi,t ≡ si,t − s
synth
i,t (12)

15We consider the territory of 1957-90 and keep it constant for the total population between 1870-2000.
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Then, equivalent to (1), we write:

∆sSCi,t = ρsSCi,t +

p∑
k=1

βi,k∆sSCi,t−k + νSCi,t (13)

Table 6: Results of unit root tests on city share

A. Individual City (augmented) Dickey-Fuller test

a. Synthetic detrended (ci = 0)

Period 1920-2000 1920-1990 1920-1980 1920-1970 1920-1960

Significance level % Unit root rej. % Unit root rej. % Unit root rej. % Unit root rej. % Unit root rej.
1% 4 4 4 8 40
5% 13 17 21 23 52
10% 23 29 29 38 63

b. OLS detrended (δit = 0 or δit 6= 0)
1% 13 12 6 4 2
5% 23 17 13 15 6
10% 33 27 17 21 17

B. Panel Unit root test

a. Synthetic detrended

t-stat (p-val) t-stat (p-val) t-stat (p-val) t-stat (p-val) t-stat (p-val)
Levin-Lin-Chu (ci = 0) -4.758 (0.000) -5.024 (0.000) -5.677 (0.000) -6.818 (0.000) -8.071 (0.000)

Im-Pesaran-Shin -0.166 (0.434) 0.583 (0.720) 0.571 (0.716) 0.610 (0.729) -0.486 (0.313)

b. OLS detrended (δit = 0 or δit 6= 0)
Levin-Lin-Chu -15.245 (0.000) -17.923 (0.000) -21.527 (0.000) -23.274 (0.000) -28.792 (0.000)

Im-Pesaran-Shin -2.349 (0.009) -2.920 (0.002) -3.249 (0.001) -3.393 (0.000) -3.263 (0.001)

Note: The null hypothesis is a unit root in city size. The individual city unit root number of lags are chosen following Ng &
Perron (1995), where the maximum lag length started at 2 for this procedure. Incidentally, the lag is chosen to be zero for all
cities. ci = 0 indicates a suppressed constant in the regression. δit = 0 or δit 6= 0 indicates an added trend in the regression.
Given the individual city optimal number of lags, we set the lag to 0 for the panel unit root tests.

Table 6 reports the results of the relative city size. Overall, we now find a higher share of cities where we
reject the null of a unit root as compared to the non-relative results of previous section. For the synthetically
detrended unit root test on the relative city, we fail to reject the null of a unit root for 13% of cities at the
5% significance level if we set the cutoff year to 2000. This increases to 17% and 21% if we set the cutoff
year to 1990 or 1980 respectively, and even to 52% if the cutoff year is 1960. This pattern stands in contrast
with the OLS detrended series for which we more often find a unit root as we go to earlier cutoff years.

The most relevant Levin-Lin-Chu test with a suppressed constant (ci = 0) also reports that we reject the
null of the panels containing a unit root against the alternative of the panels being stationary for all cutoff
years. As for the Im-Pesaran-Shin test on the synthetically detrended series, we reject the null of all panels
containing a unit root against the alternative of some panels being stationary for all cutoff year.

Furthermore as compared to Bosker et al. (2008), we find a higher share of cities rejecting a unit root
when we employ the OLS detrended series for the later cutoff years. This is likely not driven by the lower
frequency as this would imply a lower power of the test, thus implying a higher incidence of rejecting the
null hypothesis of a unit root. It could however be driven by not including lags due to the decenniality of
the time series. Nevertheless, we find that looking at the relative city size increases the share of individual
cities rejecting the null of a unit root, as compared to looking at the absolute city size.

Table 7 presents the share of individual cities with a unit root on the relative size, conditional on the
actual population being above (below) the synthetic population in the given cutoff year. We again find that
the share among cities with a unit root for which we find a positive rather than a negative impact in the
given cutoff year is around 85%, which stays constant throughout significance levels or cutoff years.
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Table 7: Positive (negative) relative impact individual city unit root

Synthetic detrended (ci = 0)

Period 1920-2000 1920-1990 1920-1980

Significance level % Unit root |si,t − sSC
i,t > 0 (% Unit root |si,t − sSC

i,t < 0)

1% 81 (15) 81 (15) 81 (15)
5% 75 (12) 69 (13) 67 (12)
10% 67 (10) 62 (10) 62 (10)

ratio of positive to positive + negative cities
1% 0.84 0.84 0.84
5% 0.87 0.84 0.85
10% 0.88 0.86 0.86

Overall, the evidence based on the individual city and panel unit root test is mixed, but can be ratio-
nalized. First, notice the difference in inference between the Levin-Lin-Chu and the Im-Pesaran-Shin panel
unit root tests. As in section 6, the mixed results of the individual city unit root test indicate that ρ should
be heterogeneous i.e. the Im-Pesaran-Shin test being the more appropriate test in our case even if we do
not suppress the constant. Nevertheless, the evidence from the individual city unit root test points towards
a permanent effect especially after the 1970s.

7 Robustness

As mentioned, one caveat of the SCM as used in the literature is that the counterfactual, and as such the
results itself, are sensitive to the choice of the covariates. Since we are applying the same set of covariates
to all German cities, we are arguably more transparent as compared to if we were to use the SCM on only
one treatment unit. Nevertheless, a systemic difference in results within the set of treatment units stemming
from a different set of covariates may still occur. The purpose of this section is to find out whether there is
such a systemic change in results.

7.1 Covariates Closer to Treatment Period

The approach here is to go towards better educated guesses in the choice of covariates and to restrict the
number of comparison cities in the donor pool towards cities we think are even more likely to be similar to
the sample German cities. As such, we remove all cities which had a population of 0 in 1870 since all German
cities in the sample already existed so that we now have 220 cities in the donor pool. As a consequence, we
exclude the population and the number of coal worker covariates of 1900 in order to shift even more towards
covariates close to the beginning of WWII, while we keep the other covariates as before.

Figure 3 shows the gap of the population with the synthetic population given this alternative specification.
As compared to figure 1, we see that a majority, 43 of the 52 cities in 2000 in terms of population are above
its synthetic population. Figure 4 compares the first model with the second model. Most cities are located
around the 45 degree line i.e. there is little systemic difference.16 The initial look here suggests that the
adjustments made here have little effect on the results.

Table 8, the individual city results of the second specification in I-III now show a higher rejection rate
of the unit root null hypothesis as compared to the first specification. However, among the individual cities
for which we find a unit root, we still find that around 85% of those are positive impact cities.
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7.2 No Coal Covariates

We may ’wrongly’ match US coal cities, which are located mostly around the less dense Appalachian basin,
with the more dense Ruhr area cities. Hence, in the third specification, we further exclude the number of
coal workers covariate. In figure 5, we again see that 43 of the 52 cities end up above the synthetic population
in 2000. In figure 6, the mass is slightly left the 45 degree line towards the first specification, suggesting a
less ’positive’ overall effect but not very significant.

Table 8 IV-VI shows the individual city results of the no coal specification, and we slightly less often reject
the unit root null hypothesis as compared to the previous second specification. In any case, the exclusion of
coal does not change the results much.

7.3 Unit Root from 1940 onwards

By construction, the gap of the population is close to 0 in the 20 years before the war. As discussed before,
this may result in critical values being too low, as we have not considered the artificial set trend before the
war. Table 8, VII-IX reports the results of the unit root test on the specification of section 7.1, where we
instead start in 1940 and thus sacrifice some statistical power. Overall, we reject the unit root null hypothesis
for around 90% of the sample cities.

Interestingly, we now fail to reject the Im-Pesaran-Shin panel unit root null hypothesis for all cutoff years.

7.4 Forced Matches between Geographic Characteristics

In this exercise, we will force a match of river cities with other river cities, and cities with sea access with
other sea access cities. That is, we split the donor pool up into 4 separate ones. In a sense, we will rely less
on the lagged population as a predictor of post-war population and more on the geographic characteristics.
For cities which have both river and sea access, this reduces the donor pool to 47 US places, and 1 German
city, Lübeck. We did not count Hamburg or Bremen for instance as a sea-access city, as the part to the sea
is technically still the Elbe/Weser river.17

As for cities with sea access, but no river access, there is only Flensburg in the larger sample which we
did not consider in our sample. In any case, the donor pool would have consisted of 11 cities altogether i.e.
sea access cities without river access are quite rare, which has probably something to do with fresh-water
access.

As for cities with river access, but no sea access, there are now 40 German cities which fits this criteria,
and 229 US places in the donor pool. Note that with this restriction, we fit Berlin with Chicago with a
weight of 1, as New York is thrown out of the sample here.

As for cities with neither river access or sea access, 11 German cities of this type are in the sample, with
62 US places in the donor pool.

Table 9, X-XII reports the results of this exercise. The conclusions drawn from previous specifications still
hold here. As compared to the baseline model, we slightly more often reject the unit root null hypothesis, and
find an overall higher rate of positive to negative impact cities. Also, given that we have split up the donor
pool into 4 different once, which severely restricted the number of units in the donor pool for some cases, it
did not change the results much. This is not too surprising given that the synthetic city for most cases are
heavily weighted towards the given geographical characteristic in any case, which is simply even closer or as
close as possible in this exercise. The corresponding figures are 7 and 8. Note here that we have included
Bremen and Hamburg as if they were also sea-access cities with the grey squared symbol. Considering

16We have again excluded Berlin and Munich from this figure. The gap for Berlin for the first model is -1263912 and -1335310
for the second, so that the difference here is 71938. The gap for Munich is 525026.6 and 502199, so that the difference here is
22827.6.

17If they would be considered sea-access cities, then Bremen would now be considered a negative impact city, and not a
positive impact city, except if the cutoff year is 1980 where we reject the null hypothesis of a unit root at the 5% significance
level. As for Hamburg, we would now reject the null hypothesis of a unit root at the 5% significance level for the cutoff years
1980-2000, as compared to the X-XII case where we would reject it if the cutoff year is 1980, but not if the cutoff year is
1990-2000.
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Bremen as a sea-access city in this case creates a significantly different synthetic Bremen post-WWII, which
is not so much the case for Hamburg. Arguably, Hamburg is more so a sea-access place than Bremen, as
Bremen has its designated Bremerhaven as its port while the Hamburg port is located in Hamburg. That is,
considering Bremen as having de facto sea-access may have been wrong after all. Also, the one city which
did not reduce the gap in figure 7 is Bochum, which is not surprising since Bochum is bigger than any of
the 62 donor pool cities in the restricted pool of having neither sea or river-access. Fortunately, this seems
to be the case for Bochum and Berlin alone, so that the results are not too distorted due to that.

Note also that a majority of cities are on the 45 degree line in figure 8, which simply reflects that in
any case, the typical synthetic city in the baseline model was created out of US cities with the very same
geographic characteristic, making the restriction not binding most of the time.

7.5 Matching German Cities with 10 Year Earlier US Cities

”Uncle August showed me around his self-directed factory, a small, simple iron foundry. They
had around 15 to 20 workers and employees. But the fascinating thing was: There were as many
cars in front as there were people employed, everyone owned a car! We did not dare to dream
about such things in Germany; in fact the motorization of the ordinary Joe in our country was
achieved on similar scale at first only in the 1970s.” - Helmut Schmidt (2011) about his first visit
to the US in 1950 in Duluth, MN.

We may think that the US is more technologically advanced in certain aspects, leading for instance to an
earlier urbanization and suburbanization due to earlier widescale adaptation of transportation technology as
compared to the true counterfactual Germany. That is, there may had been a delay of technology adaptation
which is, at least, not only caused by WWII itself. We will thus consider US incorporated places 10 years
earlier as comparison units within the donor pool.18 That is, we will match present German covariates with
the US covariates 10 years earlier, including 10 year earlier coal covariates and urban potential measures.
Table 9, XIII-XV reports the results, showing a lower rate of rejection of the unit root null hypothesis as
compared to the baseline specification. The corresponding figures of this specification are 9 and 10.

Since we are also, more or less, building a synthetic control out of US cities a decade earlier, then it
suggests that the inverse U-shaped development that we have described in section 4 should similarly occur
earlier as well. That is, the decline around the 1960s of the synthetic city should now occur closer to the
1950s, which now coincides more with WWII. Thus, we should find that the gap of population to not be
as negative in this specification as compared to the baseline specification right after WWII. The average
gap of population in 1950 is -61595 in the baseline specification and -62534 in this specification. However,
excluding Berlin here, we now find -32587 and -21121 respectively as conjectured. Interestingly in figure
10, the points are above the line indicating that for 1980, 41 out of 52 cities were above 45 degree line. To
compare, this is the case for 33 out 52 German cities in figure 4, 35 out of 52 in figure 6 and 25 out of 51 in
figure 8. Nonetheless, we would still draw a similar conclusion as previous specifications.

18We may interpret this approach as relaxing the first term in equation 9 and while trying to instead reduce the third term.
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Figure 3: Individual City Gap of Population and Synthetic Population: Covariates Closer to Treatment
Period

Note: We exclude cities with a gap larger than 500,000 at some point, which are Berlin and Munich. The linear (blue) and
quadratic fit (red) do not exclude Berlin or Munich. The quadratic fit (green) excludes Berlin.

Figure 4: Difference in Gap of Figure 1 and Figure 3 in 1980

Note: We exclude cities with a gap larger than 500,000 at some point, which are Berlin and Munich.
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Figure 5: Individual City Gap of Population and Synthetic Population: No Coal Covariates

Note: We exclude cities with a gap larger than 500,000 at some point, which are Berlin and Munich. The linear (blue) and
quadratic fit (red) do not exclude Berlin or Munich. The quadratic fit (green) excludes Berlin. As compared to figure 1, this
figure represents the model which excludes any city which had a population of 0 at any time between 1870-2000, and excludes
any covariate related to 1900 or to coal.

Figure 6: Difference in Gap of Figure 1 and Figure 5 in 1980

Note: We exclude cities with a gap larger than 500,000 at some point, which are Berlin and Munich.
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Figure 7: Individual City Gap between Population and Synthetic Population: Baseline Model Forced Matches
between Geographic Characteristics

Note: We exclude Berlin and Munich. The linear (blue) and quadratic fit (red) estimation include Berlin or Munich. The
quadratic fit (green) excludes Berlin. This specification considers the baseline specification of section 6, but where we match
German cities towards 4 different donor pools whether it has sea and/or river access.

Figure 8: Difference in Gap of Figure 1 and Figure 7 in 1980

Note: We exclude cities with a gap larger than 500,000 at some point, which are Berlin and Munich. The grey diamond points
are when we consider Hamburg and Bremen as also having sea-access, and not only river-access.
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Figure 9: Individual City Gap between Population and Synthetic Population: Matching with 10 Year Earlier
US Cities

Note: We exclude Berlin and Munich. The linear (blue) and quadratic fit (red) estimation include Berlin or Munich. The
quadratic fit (green) excludes Berlin. We consider the baseline specification of section 6, but where we match German covariates
with the US covariates 10 years earlier.

Figure 10: Difference in Gap of Figure 1 and Figure 9 in 1980

Note: We exclude cities with a gap larger than 500,000 at some point, which are Berlin and Munich.
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Table 8: Robustness on city size I

A. Individual City (augmented) Dickey-Fuller test

a. Synthetic detrended (ci = 0)

Second Specification Third Specification Second Specification

I II III IV V VI VII VIII IX

Period 1920-2000 1920-1990 1920-1980 1920-2000 1920-1990 1920-1980 1940-2000 1940-1990 1940-1980

Significance level % Unit root rejected
1% 12 10 10 8 8 6 2 0 0
5% 17 21 25 15 17 23 12 10 10
10% 19 31 35 19 25 27 15 13 17

B. Panel Unit root test

a. Synthetic detrended

t-stat (p-val) t-stat (p-val) t-stat (p-val) t-stat (p-val) t-stat (p-val) t-stat (p-val) t-stat (p-val) t-stat (p-val) t-stat (p-val)
Levin-Lin-Chu (ci = 0) -3.055 (0.001) -3.521 (0.000) -4.149 (0.000) -3.954 (0.000) -4.232 (0.000) -4.415 (0.000) -2.611 (0.005) -2.937 (0.002) -3.266 (0.001)

Im-Pesaran-Shin 0.752 (0.774) 1.329 (0.908) 1.197 (0.884) 0.085 (0.534) 0.748 (0.773) 0.912 (0.819) -5.222 (0.000) -4.596 (0.000) -5.942 (0.000)

% Unit root |si,t − sSC
i,t > 0 (% Unit root |si,t − sSC

i,t < 0)

1% 77 (12) 77 (13) 79 (12) 79 (13) 79 (13) 83 (12) 83 (15) 83 (17) 87 (13)
5% 73 (10) 69 (10) 65 (10) 71 (13) 71 (12) 65 (12) 77 (12) 77 (13) 79 (12)
10% 71 (10) 60 (10) 56 (10) 69 (12) 63 (12) 62 (12) 75 (10) 75 (12) 71 (12)

ratio of positive to positive and negative cities
1% 0.87 0.85 0.87 0.85 0.85 0.88 0.84 0.83 0.87
5% 0.88 0.88 0.87 0.84 0.86 0.85 0.87 0.85 0.87
10% 0.88 0.86 0.85 0.86 0.85 0.84 0.89 0.87 0.86

Donor pool N 220 220 220 220 220 220 349 349 349
Note: The null hypothesis is a unit root in city size. The lag is chosen to be zero for all cities. ci = 0 indicates a suppressed constant in the regression. We set the lag
to 0 for the panel unit root tests.
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Table 9: Robustness on city size II

A. Individual City (augmented) Dickey-Fuller test

a. Synthetic detrended (ci = 0)

Fourth Specification Fifth Specification

X XI XII XIII XIV XV

Period 1920-2000 1920-1990 1920-1980 1920-2000 1920-1990 1920-1980

Significance level % Unit root rejected
1% 0 0 2 2 2 4
5% 13 13 21 4 4 8
10% 21 25 27 6 10 15

B. Panel Unit root test

a. Synthetic detrended

t-stat (p-val) t-stat (p-val) t-stat (p-val) t-stat (p-val) t-stat (p-val) t-stat (p-val)
Levin-Lin-Chu (ci = 0) -2.443 (0.007) -2.533 (0.006) -5.313 (0.000) -2.142 (0.016) -2.507 (0.006) 0.461 (0.678)

Im-Pesaran-Shin 1.744 (0.960) 2.083 (0.981) 1.259 (0.896) 0.954 (0.830) 0.9135 (0.820) 2.1241 (0.983)

% Unit root |si,t − sSC
i,t > 0 (% Unit root |si,t − sSC

i,t < 0)

1% 87 (13) 88 (12) 88 (10) 87 (12) 87 (12) 81 (15)
5% 77 (10) 77 (10) 69 (10) 87 (10) 87 (10) 77 (15)
10% 73 (6) 65 (8) 56 (10) 87 (8) 81 (10) 71 (13)

ratio of positive to positive and negative cities
1% 0.87 0.88 0.90 0.88 0.88 0.84
5% 0.89 0.89 0.88 0.90 0.90 0.83
10% 0.93 0.92 0.89 0.92 0.89 0.84

Donor pool N 349 349 349 349 349 349

Note: The null hypothesis is a unit root in city size. The lag is chosen to be zero for all cities. ci = 0 indicates a suppressed constant in the regression. We set the lag
to 0 for the panel unit root tests.
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8 City Characteristics Conditional on Impact

The purpose of this section is to show the 1940 characteristics of cities for which we find either a stationary
series (below a 5% significance level), or otherwise a positive or a negative impact unit root of the relative
city size with a cutoff year of 1980. For that, we use our baseline, first specification of section 6. In table 10, if
we exclude Berlin, then the average size of cities which experienced a negative impact is around 62% smaller
than the average positive impact city, and about 64% smaller than the positive impact cities excluding
the Ruhr area cities. Remarkably, they are also about 79% smaller than those cities for which we find a
stationary series. The same pattern holds for the urban potential measure in that stationary cities have
a higher urban potential in 1940 as compared to positive impact cities, both with and without Ruhr area
cities, and in particular a much higher measure than the negative impact cities barring Berlin. Similarly,
only two cities within a metropolitan area are negative impact cities, Berlin and Hildesheim.19 On the other
hand, the 12 cities which are not considered within the EMR metropolitan area contribute 4 out of 6 the
negative impact cities. Lastly, figure 11 shows the location of all sample cities within Germany, separated
by impact. Note that the positive impact cities in figure 11a are highly localized in the Rhein-Ruhr area,
and stationary cities in figure 11b both in the Rhein-Ruhr and the Rhein-Main/Rhein-Neckar area. Second,
although there are only 6 negative impact cities in figure 11c, they are relatively spread out from each other.
Given these patterns and that the Rhein-Ruhr area is the biggest and most dense German metropolitan
region, it suggests that relatively bigger cities and metropolitan areas better deal with a shock on the city
system. Furthermore, since stationary cities are on average much bigger, it points towards a natural limit
to the size of German cities, and is consistent with models of sequential growth (Cuberes, 2011; Henderson
& Venables, 2009).

Furthermore, the rate of internal refugees and displaced people (Vertriebene) due to WWII that are
residing in this particular city in 1960 is about the same for negative and positive impact cities, but lower for
stationary cities. As such, we think that on average, the discrepancy between positive and negative impact
cities is not driven too much by a heterogeneous refugee choice of settlement. For instance, apart from
Berlin for which we do not have data, the only cities which in 1960 had a rate of refugees relative to its total
population below 10% were Trier and Ludwigshafen, at 6.9% and 9.6% respectively. Similarly, the only city
above 25% is Lübeck, with 32.4%. If we were to adjust it 17.5±5%, we would add Aachen, Koblenz, Köln,
Mainz and Mönchengladbach to the cities with a rate below 12.5%, and Bielefeld, Braunschweig, Hannover
and Wiesbaden to the ones above 22.5%. Note that initially after WWII, the French occupied zone restricted
the number of refugees. They only received 60,000 at the end of 1947, around 1% of the total population, as
compared to the total 4.379 million in the Soviet (around 24.3% of the total at that time), 2.957 million in
the US (around 17.7%) and 3.320 million in the British (around 14.5%) occupied zones (Volkmann, 1995),
which more than compensated for the total German deaths during WWII. Yet, even though refugees were
hindered initially to settle in the French occupied zone, we still find that the average rate is already 11% in
1960 for the 6 French occupied cities in our sample, Freiburg, Koblenz, Kaiserslautern, Ludwigshafen, Mainz
and Trier.20 Also, the mean rate of housing lost is lowest for positive impact cities at around 39%, but
highest for stationary cities at 52%, with negative impact cities being in between. We would have expected
that cities which lost relatively more housing would be negative impact cities, which would also suggest a
more even city size distribution. Also note that the variation is significantly larger for housing lost rate as
compared to refugee rate variation for each impact group. This indicates that the number of refugees are
remarkably evenly distributed across Germany, given that the housing lost is not.

Nevertheless, it does not suggest that cities which were hit relatively harder are among the group of cities
that did not recover, although this idea seem to at least still hold if we were to only compare positive and
negative impact cities. If we were to go even further, given these patterns, we would tend to think of WWII
more as an overall reset of the city system itself, and not as initial intuition might suggest, a readjustment
of the city size system in favor of the city hit less severely by WWII. In that sense, one could think of the
immediate aftermath of the war as a Stunde Null, an Hour Zero of the city system.

19The German metropolitan areas here are the Europäische Metropolregionen (EMR) as defined by the Ministerkonferenz
für Raumordnung (MKRO).

20In fact, the other city not making it below 12.5% are Freiburg and Kaiserslautern with 12.8% and 12.6%.
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Table 10: 1939 city characteristics conditional on impact with cutoff year 1980

Impact Positive Positive no Ruhr Stationary Negative no Berlin Negative
N 35 23 11 5 6
mean Pop 230233 242627 423962 88198 796624
Std. Err. 31169 41446 147991 6654 708447
mean Urb. Pot. 408402 360189 554845 172048 872998
Std. Err. 31831 39798 149540 10522 701003
mean Urb Pot. - Pop 178168 117563 130883 83850 76373
Std. Err. 16891 10996 21827 9775 10936
mean Coal Worker (1920) 78914 29352 17875 3 3
Std. Err. 14708 11525 12616 2 2
mean Vertriebenenrate (1960) 0.173 0.179 0.137 0.177 0.177
Std. Err. 0.007 0.010 0.013 0.016 0.016
mean housing lost 0.387 0.380 0.520 0.460 0.445
Std. Err. 0.026 0.031 0.038 0.113 0.093

Metropolitan regions
Rhein-Ruhr (19) 17 5 2 0 0
Rhein-Main (5) 4 4 1 0 0
Rhein-Neckar (3) 1 1 2 0 0
Braunschweig (3) 1 1 1 1 1
München (2) 2 2 0 0 0
Hamburg (2) 1 1 1 0 0
Oberrhein (2) 2 2 0 0 0
Nürnberg (1) 1 1 0 0 0
Bremen (1) 1 1 0 0 0
Stuttgart (1) 1 1 0 0 0
Berlin (1) 0 0 0 0 1
Not Metropolitan 4 4 4 4 4

List of cities in the corresponding sample
Aachen Aachen Essen Hildesheim Berlin
Augsburg Augsburg Hamburg Koblenz Hildesheim
Bielefeld Bielefeld Hannover Regensburg Koblenz
Bochum Bonn Kaiserslautern Ulm Regensburg

Bonn Braunschweig Kassel Würzburg Ulm
Bottrop Bremen Köln Würzburg

Braunschweig Darmstadt Ludwigshafen
Bremen Düsseldorf Mainz

Darmstadt Frankfurt Mannheim
Dortmund Freiburg Pforzheim
Duisburg Heidelberg Trier

Düsseldorf Karlsruhe
Frankfurt Krefeld
Freiburg Lübeck

Gelsenkirchen M’Gladbach
Gladbeck München

Hagen Münster
Heidelberg Nürnberg

Herne Offenbach
Karlsruhe Osnabrück
Krefeld Remscheid
Lübeck Stuttgart

M’Gladbach Wiesbaden
Mülheim
München
Münster
Nürnberg

Oberhausen
Offenbach

Osnabrück
Recklinghausen

Remscheid
Stuttgart

Wiesbaden
Witten

Note: Metropolitan region Oberrhein is a trinational metropolitan region with Switzerland and France. The cities not in
a metropolitan area are marked as bold. The full names of some cities are Freiburg am Breisgau, Frankfurt am Main,
Ludwigshafen am Rhein, Mülheim an der Ruhr and Offenbach am Main. We consider a city stationarity in this table at a 5%
significance level and a unit root if the significance level is above the 5% significance level.
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Figure 11: City Location by Impact

(a) Positive Impact (b) Stationary (c) Negative Impact
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9 Discussion

9.1 Link between the Evidence and Theory

Although this paper is meant to primarily be a methodological contribution, we can say some things about
the links between the evidence and the fundamental theories. The original purpose of the seminal paper
by Davis & Weinstein (2002) was to evaluate the three competing fundamental theories on the location
of economic activity, namely locational fundamentals theory, increasing returns theory and random growth
theory. One crucial element in that evaluation is whether cities are mean-reverting or not. In the following,
we will have another look at the link between the theories and the empirical evidence. Then, based on the
evidence we have found here, we will evaluate these different theories.

First, it is useful to present the set of stylized facts we have found so far: (1) In the absence of a large,
temporary shock, city population between 1870-2000 behaves in an inverse U-shaped way. (2) We find a
unit root for most cities after WWII. (3) The ratio of positive to negative impact unit root cities is around
5 to 6. (4) In 1940, cities for which we find reversion to the ’new’ mean were on average the largest, while
positive impact cities were comparatively smaller, and negative impact cities the smallest. (5) There is no
statistically significant difference between the synthetic and the actual distribution, before or after WWII.

9.1.1 Locational Fundamentals

To start, we will first describe the typical characteristics and predictions of each mentioned theory, begin-
ning with locational fundamentals theory (also called first-nature geography), which explain the location of
economic activity through the spatial distribution of geographic features. This is probably most prominent
if we look at the typical birthplace of ancient civilizations which are often found along rivers, such as the
Indus Valley Civilization along the Indus river, ancient China along the Yellow river, Egypt along the Nile
river, or the Mesopotamia between the Tigris and Euphrates rivers. Even today, these regions are heavily
populated; and through that it is earning locational fundamentals its name.

Now, locational fundamentals theory would predict the WWII bombings to dissipate in effect in the long-
run i.e. reversion to the mean. As our contribution here is that we consider a potential new mean defined
by the synthetic control, being consistent with locational fundamentals theory in our case is equivalent to
the the synthetic control detrended time series process being stationary even after a large, temporary shock.

In section 4, we have found evidence in favor of an inverse U-shaped city growth notion at least for the
cities in our sample. Furthermore, the estimated turning point is on average around the year 1960. Together,
it indicates that there are underlying non-random factors at play here, regardless of a large, temporary shock.
These patterns can be explained by locational fundamentals being mutable throughout time, an idea which
was already entertained by Michaels & Rauch (2017) and Bleakley & Lin (2012). That is, stylized fact (5)
is consistent with locational fundamentals theory, but not (1), unless we consider locational fundamentals
as mutable. Stylized fact (2), and by extension, (3) and (4), are however not consistent with it, at least not
as a standalone theory.

9.1.2 Increasing Returns

Next, increasing returns theory (Krugman, 1991) explain agglomeration by the interaction and proximity of
people. Theories in this manner leave the possibility for a permanent effect from a large, temporary shock,
a shift in equilibria, and a change in the shape of the city size distribution open. This also means that if we
find none of those possibilities, we are still consistent with increasing returns theory. In other words, it is
not possible to falsify it, but only to show consistency with the empirical findings.

Given however that there was no large, temporary shock on the US city system at least in the 20th
century, stylized fact (1) is not at all explainable by increasing returns theory. Rather, the opposite is the
case in that one other prediction of increasing returns theory is the increasing concentration of economic
activity over time or in history.21 What that boils down to is that stylized facts (2) to (4) can be explained

21Of course, we may not find this prediction if we were to consider metropolitan areas definition instead of a city definition.
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by increasing returns theory, but not (1) at least as a standalone theory. Stylized fact (5) is at least still
consistent with increasing returns theory; although if we were to find the opposite case, it would be considered
evidence in favor of increasing returns being at play here via the exclusion of the other two theories.

9.1.3 Random Growth

Lastly, random growth theory considers the urban growth process as a random process that will follow a
random walk. Here, the prediction is that the shape of the city size distribution remains the same given
any temporary shock, but that the rank of cities within the distribution is allowed to change. Unless we
set the mean of this random process to follow a non-random inverse U-shaped development throughout the
late 19th and across the entire 20th century, then we can also not explain this notion with random growth
theory.

Now given the evidence on the impact of WWII itself, we find that the distribution does not change after
WWII, which hinges on the Kolmogorov-Smirnov test. Furthermore, the unit root results on the city size
suggests that individual city growth follows a random walk.

However, there are two caveats: First, we do not find a balanced number of cities with a positive and
negative impact, but rather a ratio of about 5 to 6. Second, the higher populated places in metropolitan
areas before WWII tend to be either not affected or positively affected, whereas lower populated places
in non-metropolitan areas before WWII tend to be negatively affected by the WWII bombings. The case
against random growth theory here is that randomness predicts the ratio to be close to 1, and the impact
to be independent of the city size.

Hence, random growth theory is consistent with (2) through a random walk, but extensions (3) and (4)
refute it. Furthermore it is consistent with (5), but cannot explain (1) at least not as a standalone theory.

9.1.4 Evaluation of the Theories Together

Serving as additional evidence and to be consistent with the previous literature, we have also considered the
WWII bombings and the relative size of cities: For mutable locational fundamentals theory to be relevant
alone, it would also require that the cities return to the relative size as predicted by SCM, apart from the
distribution returning. Initially, most cities indeed seem to return if we consider the cutoff year of 1960, but
we find more and more cities with a unit root if set a later cutoff year.

This brings us to the issue that the conclusion depends on the cutoff year, with the trade-off of a more
likely correct counterfactual if the cutoff year is early, against a more likely WWII shock to dissipate fully if
the cutoff year is late. A later cutoff year also introduces the risk of other shocks affecting the results, such
as the division of Germany (Redding & Sturm, 2008) However, that we find more positive impact cities with
a unit root suggests that choosing a later cutoff year matters; and this result seems to not be driven by the
later cutoff year as otherwise, the ratio of positive to negative impact cities would then be around 1.

To summarize and to give an interpretional overview of the results in the previous section, we think that
although the unit root results indicate a rejection of the basic locational fundamentals theory, the overall
counterfactual, without any bombings involved, decline of cities around the 1960s indicate that locational
fundamentals are mutable and relevant as an underlying factor, and can explain a great deal of the locational
patterns of today. This conclusion is however by exclusion of all other alternative theories which are not
capable of explaining this decline pattern without the need for a large, temporary shock. The previous
literature on WWII bombings in a sense were unfortunate in that the decline happened in the immediate
years after the war, so that two events coincided.

The evidence in favor of increasing returns theory against random growth theory is also not as straight-
forward to see, given that increasing returns theory cannot be falsified. For one thing, the figures on the gap
of the population, figure 1, 3 and 5, would already indicate that the city size distribution changes towards
even larger cities. The Kolmogorov-Smirnov results however indicate otherwise. Nevertheless, we come to a
conclusion here through the non-random patterns which are not compatible with random growth.

In the end, our preferred theory is a hybrid theory similar to Davis & Weinstein (2002), with the difference
that we consider locational fundamentals now as mutable, and that the source of evidence consistent with
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increasing returns theory is not alone stemming from the concentration of economic activity over time, but
from the failure of mean-reversion and a non-random pattern of concentration after WWII.

10 Conclusion

We began by outlining the potential problem of and arising from separating the WWII bombing shock from
other underlying factors, which can determine the city size. By creating a synthetic control for each of the 52
German cities in our sample, we obtain a benchmark to which we compare the corresponding city evolution
after WWII, thus explicitly controlling for underlying factors. We find that the synthetic city population
is typically characterized by an inverse U-shaped development i.e. there are underlying non-random factors
at play which are not driven by a large, temporary, negative shock. We also find that German cities are
permanently affected after WWII, of those the majority are actually better off in terms of population as
compared to the benchmark. The immediate pre-war characteristics show that the most populated places
recover fully, while the impact on slightly lesser populated, metropolitan places is mostly positive. The
negative impact cities are usually the lesser populated, non-metropolitan places. We use this information
to evaluate some fundamental theories on the location of economic activity. The non-random pattern of
behavior strike out random growth theory as relevant. In the end, we support a hybrid theory as it is the
most consistent with our findings: a mutable locational fundamentals theory, in which the importance of
individual geographic characteristics can change, combined with increasing returns theory. However, this
conclusion does not stem from a direct test on each individual theory or any combination of theories, but
through the exclusion of given existing theories. This means that the introduction of other theories could
simply nullify the conclusions we have made here, making the quest of constructing direct tests ever so
important.
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A Data appendix

Table 11: List of all sample cities

Aachen Essen Kassel Oberhausen
Augsburg Frankfurt am Main Koblenz Offenbach am Main

Berlin Freiburg im Breisgau Köln Osnabrück
Bielefeld Gelsenkirchen Krefeld Pforzheim
Bochum Gladbeck Ludwigshafen am Rhein Recklinghausen

Bonn Hagen Lübeck Regensburg
Bottrop Hamburg Mainz Remscheid

Braunschweig Hannover Mannheim Stuttgart
Bremen Heidelberg Mönchengladbach Trier

Darmstadt Herne Mülheim an der Ruhr Ulm
Dortmund Hildesheim München Wiesbaden
Duisburg Kaiserslautern Münster Witten

Düsseldorf Karlsruhe Nürnberg Würzburg

Table 11 shows the West German cities in our sample. As compared to the 62 cities in the sample in
Bosker et al. (2008), we have excluded 10 cities based on not having complete population data before 1920
for each 10 years until 1871. The excluded cites are: Bamberg, Flensburg, Fürth, Hamm, Kiel, Oldenburg,
Solingen, Wanne-Eickel, Wattenscheid, Wuppertal.

Furthermore, we have excluded the following 18 cities, which we have also included for the urban po-
tential measure as there is census data for 1939 for all the 80 cities: Bergisch Gladbach, Bremerhaven,
Erlangen, Göttingen, Heilbronn, Ingolstadt, Leverkusen, Moers, Neumünster,Neuss, Paderborn, Reutlingen,
Saarbrücken, Salzgitter, Siegen-Wittgenstein, Wilhelmshaven, Wolfsburg and Worms. As for the US incor-
porated places data, we have rechecked the dataset from the US Census Bureau and Steiner, E. (2018) with
the original US census data from the US census bureau. This dataset had for every incorporated place the
population if it was above 2500 inhabitants i.e. if the inhabitants were below 2500 in the particular year,
this particular year had a missing value. We have filled those missing values for those years from the official
census publications.

We have dealt with annexations of surrounding places by adding the incorporated places for which the
population suddenly went to 0 for years before 2010 to the corresponding annexing incorporated place. That
is, the disappearance of the incorporated place from the census indicates which place was annexed. Typically
however, the annexations did not change population of US incorporated places not significantly.

This is different for the German cities in our sample. Typically, we find city fusions, such as Wuppertal
from Barmen, Elberfeld, Ronsdorf, Cronenberg and Vohwinkel, mostly in the 1920s and to a lesser degree in
the 1930s. The immediate pre-war fusions and annexations were also typically significant, and a significant
distortion more frequent than the annexations and fusion of the Gemeindereform of the late 1960s and the
1970s. For instance in the post-war wave for the 62 cities dataset, we find that for 48 out 62 cities (or 44
out of our 52 sample cities), the added population is below 20%, and 10% for 32 out of 62 cities (or 28 out
of our 52 sample cities).
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In contrast, the pre-war annexations and fusions were typically more significant, where the added popu-
lation is below 20% for 17 out of 62 (and 17 out of 52) cities, and below 10% for 9 out of 62 (and 9 out of
52) cities.

Also, we know very well how many people were added after an annexation or fusion, as we typically have
records available. If this was not the case, we simply took the difference of the year before the annexation or
fusion happened with the year after, which is likely a very good estimate if the population growth around the
annexation or fusion year was not too far away from 0. Typically, the 1920s and 1930s, and the 1960s and
1970s have a low growth rate as compared to the pre-WWI periods, or the immediate post-WWII period,
so that this simple estimation seems appropriate enough.

With this information, we can adjust for the annexation or fusion with the simple adjustment as done by
Bosker et al. (2008). That is, we take the city boundaries during WWII as the reference point, in contrast
to the city boundaries of 2010 we take for the US sample. That means that pre-WWII, we add to the given
city the population of the added areas. On the other hand in the post-WWII period, we deduct the added
population from the given city. Furthermore, we add the simplifying assumption that the population growth
rate of the original city and the added areas are the same. Keeping the notation of Bosker et al. (2008), we
can more formally write for the pre-WWII case:

ŜiT = SiT
SiT−k

SiT − Sinew
(14)

with SiT being the population of city i with the added population at time T , Sinew is the (estimated)
population of the new areas which we know, SiT−k is the population in year T − k before the change of the
city’s boundary. Finally ŜiT is the adjusted population with the population of the newly added areas being
extrapolated in the past.

As for the post-WWII case Gemeindereform happening at time T, we write:

ŜiT = SiT − Sinew (15)

so that we simply deduct the population from the new area post-WWII at time T. For each subsequent
years, as we do not know the (estimated) population of the new areas, we will extrapolate according to:

ŜiT+k = ŜiT
SiT+k

SiT
(16)

The assumption that the growth rate of the usual surrounding, newly added areas being the same as the
core, original city is implemented in equations (13)-(15). Lastly, to compare the same years between the
German and US sample, we set the German year of 1871 to 1870 and 1939 to 1940.
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