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Abstract

This paper compares the size distributions of cities when they are measured using grid-

ded population and nighttime lights data. In doing so, we exploit recent and accurate

satellite imagery to proxy urban economic activity. Our results suggest that, at coun-

try level, urban population is more equally distributed than light emissions. Further,

the degree of urbanization and the availability of natural resources are robustly related

to the parameters that characterize national city size distributions. Calling assump-

tions established for urban nighttime lights into question, our �ndings do not support

a Pareto function for their distribution. Moreover, we obtain evidence of a nonlin-

ear and heterogeneous link between urban population and night lights. Grounded on

our empirical analysis, we also provide a theoretical framework that relates the di�er-

ence between the distributions of population and light emissions to the magnitude of

agglomeration economies.
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1 Introduction

There is a well-established link between population, concentration, and economic activ-

ity at the urban level that, due to its theoretical and policy-making implications, motivates

the study of the city size distribution. Following the seminal contributions of Gabaix (1999)

and Eeckhout (2004), the related literature has mostly focused on testing whether the dis-

tribution of city sizes �ts the rank-size rule, also known as Zipf's law (Rosen and Resnick

1980). This empirical regularity quanti�es the concept of urban hierarchy by stating that

the size of the N-th city is 1/N times the size of the largest one. As pointed out by Ar-

shad, Hu, and Ashraf (2018), Zipf's law is not universal, even if only the upper tail of

the city size distribution is considered. The mixed evidence regarding the rank-size rule

becomes especially apparent when the urban structures of di�erent countries are analyzed,

see Soo (2005) and Puente-Ajovín, Ramos, and Sanz-Gracia (2020) for recent international

comparisons. A shortcoming commonly found in these cross-country studies is that the

de�nition of what is considered as a city di�ers across national data sources. Actually, this

issue may lead to con�icting results even within a single country (Fazio and Modica 2015;

Ioannides and Skouras 2013; Puente-Ajovín et al. 2020). Fortunately, there are several

organizations that have established harmonized de�nitions of cities and settlements that

can represent all the urban areas worldwide in a homogeneous framework.

Despite the relevance of the city size distribution from an urban economics point of

view, most studies dealing with this topic measure the size of cities in demographic terms,

taking for granted that the location of population determines the economic landscape. The

main reasons are that it is di�cult to �nd information about economic outcomes at the

urban level and that, when available, it is not comparable across countries. Cities not only

concentrate a large share of the population of a given country, but also of its economic

activity. Moreover, the urban structure is the outcome of the dynamic interplay between

economic activity and the growth process of cities (Arshad, Hu, and Ashraf 2018). Fol-

lowing Chen and Nordhaus (2011) and Henderson, Storeygard, and Weil (2012), this led

Düben and Krause (2021) to make use of nighttime lights (NTL, hereafter) data compiled

by satellites to proxy urban economic activity. The main conclusion drawn by these au-

thors is that while the distribution of urban population can be characterized by Zipf's law
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in most countries, this is not the case of light emissions. To carry out their empirical anal-

ysis, Düben and Krause (2021) use the data set created by Bluhm and Krause (2022) to

correct the top-coding problem of the `stable night light images' collected by the Defense

Meteorological Satellite Program (DMSP) Operational Linescan System. At this point, it

is worth noting that these NTL data are also a�ected by blurring, geo-location errors, lack

of calibration, and coarse resolution; see Gibson (2021) and Gibson et al. (2021).

Since April 2012, there are available more precise NTL images captured by the Visible

Infrared Imaging Radiometer Suite (VIIRS) of instruments onboard the Suomi NPP satel-

lite. The VIIRS Day/Night Band was designed to measure the radiance of lights on earth

in a wide variety of lighting conditions and covers a dynamic range of about seven orders

of magnitude (DMSP covers less than two), avoiding saturation problems and top-coding.

VIIRS images are comparable over time and space, do not have blurring or geo-location

errors, and display, at least, 45 times greater spatial resolution than DMSP data (Elvidge

et al. 2017). For all these reasons, VIIRS images are superior at attributing lights to the

place where they are emitted and, therefore, are a better proxy for urban economic activity

than DMSP data; see Gibson, Olivia, and Boe-Gibson (2020) for a comparison of these

two alternative NTL satellite imagery.

Taking into account previous arguments, the main aim of this paper is to contribute

to the literature that compares the distributions of urban population and light emissions.

Similarly to Puente-Ajovín, Sanso-Navarro, and Vera-Cabello (2022), we do so by proxying

local economic activity with the NTL captured by VIIRS. Proceeding this way, and as a

byproduct of our analysis, we are able to check the suitability of the top-coding correction

of DMSP data proposed by Bluhm and Krause (2022), based on the assumption of a

Pareto distribution for aggregate urban NTL. We also assess the sensitivity of our results

to the role played by primary cities, and to the use of alternative gridded population and

NTL data sets. Furthermore, we use the estimated power law coe�cients from country

rank-size regressions to search for robust determinants of city size distributions (Modica

2017; Sun et al. 2021; Wang, Wei, and Sun 2022). As another contribution, we explore the

possible presence of a nonlinear and heterogeneous relationship between urban population

and night lights.
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The rest of the paper is structured as follows. Section 2 presents the urban units that

conform our sample, and details the main sources of information from which the data ex-

ploited in our empirical analysis have been extracted. Section 3 studies the distributions of

urban population and aggregate nighttime lights at country level using parametric regres-

sions and nonparametric tests. Adopting a Bayesian model averaging framework, Section 4

investigates the factors that display a robust relationship with the estimated coe�cients

characterizing national city size distributions. Section 5 evaluates the possible presence of

a nonlinear and heterogeneous link between urban population and light emissions using

kernel regression methods. Section 6 develops a simple theoretical framework to discuss of

our main �ndings and, �nally, Section 7 concludes. The Appendix contains further relevant

information and results.

2 Georeferenced data: Urban centers, gridded population,

and nighttime lights

The �rst key issue when carrying out cross-country studies of the distribution of urban

size is to adopt a homogeneous de�nition for cities. Similarly to Düben and Krause (2021),

and for the sake of comparability, we have identi�ed cities using the data contained in

the Global Human Settlement Layer (GHSL), provided by the Joint Research Center of

the European Commission; see Florczyk et al. (2019a) and Florczyk et al. (2019b). This

database combines the information on built-up areas from Landsat images with the fourth

version of the Gridded Population of the World1 (GPW) to divide the globe in pixels (grid

cells) of one square kilometer and classify them as belonging to a rural area or to an urban

center and/or an urban cluster. In fact, GHSL urban centers correspond to the spatial

extent of the cities considered in the present study, referred to the year 2015.

The GHSL consistently de�nes urban centers across geographical locations as areas with

contiguous grid cells, where each of them has, at least, 1,500 inhabitants or 50 per cent

built-up surface. In doing so, this database identi�es contiguous settlements experiencing

common agglomeration economies and congestion costs. Although the GHSL only includes

areas with more than 50,000 inhabitants, this value corresponds to the threshold suggested

1Produced by Center for International Earth Science Information Network (CIESIN), within the
Columbia University Earth Institute.
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by the World Bank (2008) to classify human settlements as urban in both developed and

developing countries. The geo-spatial data with the shape and location of urban centers

reveals that some of them belong to more than one country2. In these cases, we have

assigned an urban area to a single country when it includes more than 75 per cent of the

area. Applying this criterion, as well as only considering countries with more than 10

observations, our sample covers 12,852 urban centers of 100 countries.

The second relevant issue when dealing with urban size is its measurement. In line

with the great majority of studies about the distribution of city size, we calculate it using

population data. Nonetheless, and following Düben and Krause (2021), we also exploit

NTL satellite imagery to proxy urban economic activity. City size will be the sum of

persons, on the one hand, and aggregate light emissions, on the other, in the pixels within

the spatial extent of GHSL urban centers, according to the shape�le made available by this

database. Regarding urban size measured in demographic terms, the GHSL also provides

population estimates at the pixel level (GHS-POP). This information has been constructed

by disagregating GPW administrative area level population data from national censuses

and registers3 to grid cells according to their proportion of built-up area.

In line with Puente-Ajovín, Sanso-Navarro, and Vera-Cabello (2022), and as suggested

by Gibson (2021) and Gibson et al. (2021), we use the current and more precise VIIRS

night lights to proxy urban economic activity. More speci�cally, we have been extracted

the `vcm-orm-ntl' annual composites4 for 2015 from the website of the Earth Observa-

tion Group of the National Oceanic and Atmospheric Administration (US Department of

Commerce)5. This data have been cleaned to exclude background noise, solar and lunar

contamination, cloud cover degradation, and features unrelated to electric lighting (Elvidge

et al. 2017). At the pixel level, reported radiance values are expressed in nano Watts per

square centimeter per steradian, with a resolution of 15 arc seconds (approximately 450

meters at the equator). In the same manner as gridded population, NTL data have been

aggregated for all pixels included within the extents of urban centers to calculate their

2The reason is that GHSL boundaries do not conform to the administrative de�nitions of cities, regions,
or countries. In fact, some of the cities (urban centers) included in our sample contain several administrative
cities.

3Adjusted to match estimates from the United Nations World Population Prospects.
4VIIRS Cloud mask�Outlier removed�Nighttime lights.
5https://www.ngdc.noaa.gov/eog/.
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size. Although the pixels of VIIRS data are smaller than GHSL ones, this is not problem-

atic because the aggregation of light emissions has been carried out considering the larger

GHSL pixels.

[Insert Table 1 about here]

Table 1 reports descriptive statistics for the two measures of city size described above.

This is done for the whole sample as well as by country income group, according to the

World Bank classi�cation6 for 2015. It categorizes countries as `Low income' if their Gross

National Income (GNI) per capita was lower or equal than 1,025 U.S. Dollars (22 out of

100 countries in our sample); `Lower-middle income' if it was between 1,026 and 4,035 USD

(29); `Upper-middle income' between 4,036 and 12,475 USD (27); and `High income' if GNI

per capita was higher than 12,475 USD (22). Average and median city size increase with the

level of income, both in terms of population and aggregate light emissions. Nonetheless,

this increase is more than proportional in the case of NTL as compared to population.

Except in high income countries, there are cities for which no lights are attributed. It can

also be observed that the largest cities in terms of aggregate NTL are located in countries

that belong to the high income group.

3 The distribution of urban population and aggregate night-

time lights at country level

3.1 Rank-size parametric regression

The rank-size rule implies that the city size distribution can be approximated by a

Pareto function with power law exponent equal to one. For this reason, cross-sectional em-

pirical analyses of the Zipf's law are generally based on a log-log linear regression between

the rank of a city and its size. In order to reduce the bias of the OLS estimator in small

samples, Gabaix and Ibragimov (2011) propose the following regression model:

log (Ranki − 0.5) = α − β ⋅ log(Sizei) + εi, i = 1, . . . , n; (1)

6See Table A1 in the Appendix for further details
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where i is a city indicator, and n denotes the sample size. Zipf's law is equivalent to β = 1.

In our context, a coe�cient lower (greater) than one re�ects that population and/or light

emissions are more unequally (equally) distributed across the national urban system than

predicted by the rank-size rule.

[Insert Figure 1 about here]

Figure 1 shows kernel densities for the estimated slope parameter in expression (1) at

country level7, calculating city size in demographic terms (GHSPOP, orange) and when

urban economic activity is proxied using NTL (VIIRS, blue). Estimated power law expo-

nents are centered around values slightly higher than one when city size is calculated using

gridded population. However, Pareto coe�cients tend to be lower than one when urban

size is expressed in terms of aggregate light emissions. Therefore, and corroborating the

�ndings of Düben and Krause (2021) and Puente-Ajovín, Sanso-Navarro, and Vera-Cabello

(2022), urban NTL are more unevenly distributed than population at country level.

3.2 Nonparametric testing

The main purpose of the empirical model in expression (1) is to test the null hypothesis

that the Pareto coe�cient is equal to one; i.e. that Zipf's law holds. As a more �exi-

ble alternative, Gan, Li, and Song (2006) propose to investigate the city size distribution

through the implementation of the Kolmogorov-Smirnov (KS) test statistic. This non-

parametric method can be used to compare the city size distribution with a function of

reference, determining the degree of (dis)similarity. With this aim, we have considered two

references: (i) a Pareto function imposing that the power law exponent is equal to one,

and (ii) a Pareto function with the estimated β coe�cient in expression (1) as the power

law exponent.

The empirical distribution function of the n independent and identically distributed

ordered size observations can be calculated as:

Fn(s) =
1

n

n

∑
i=1

1
(−∞,s](Sizei); (2)

7Papua New Guinea has been omitted as an outlier. The estimated slope parameter in the rank-size
regression for this country is 2.91 when city size is measured in population terms.
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where 1(−∞,s](Sizei) is an indicator function that takes a value equal to one if Sizei ≤ s,

zero otherwise.

The Pareto distribution function is given by:

FP (s, β) = 1 − (
Sizei
s

)

β

. (3)

The calculation of the KS test statistic is based on the maximum di�erence between

the empirical distribution of the data and the reference function:

KS = sup∣Fn(s) − FP (s, β)∣. (4)

The null hypothesis is that the observed data have been obtained from the probability

distribution of reference. The resulting test statistic is compared to the critical values of

the KS distribution to assess the validity of the reference function, such that the smaller the

value of the test statistic the better the reference distribution function describes observed

city sizes.

[Insert Figures 2 and 3 about here]

We have �rst implemented the KS test against the null hypothesis that, at country

level, city sizes are distributed as a Pareto function with power law exponent equal to

one, i.e. the exact Zipf's law. The cumulative distribution function of the p-values that

have been obtained for the two alternative measures of city size are plotted in Figure 2.

In line with the kernel densities of estimated Pareto coe�cients shown in Figure 1, the

null hypothesis that city sizes adjust to Zipf's law can be more easily rejected when they

are measured using light emissions. As noted before, the KS test has also been calculated

using the OLS estimate for the slope parameter in (1) as the power law exponent. The

corresponding cumulative distribution functions displayed in Figure 3 show that, although

there is a slightly higher evidence of a Pareto distribution for aggregate urban NTL, the null

hypothesis can be rejected in more than 70 countries at the 1% signi�cance level. Thus, we

do not �nd supportive evidence using VIIRS images for the Pareto assumption established

by Bluhm and Krause (2022) to correct for top-coding in DMSP data. Nonetheless, this

problem mainly a�ects larger cities which, according to the �gures reported in Table 1,
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tend to be located in more developed countries. For this reason, we also carry out the

analysis of how city sizes are distributed grouping countries by their level of income per

capita.

3.3 Country income groups

Kernel density estimates of Pareto coe�cients by country income group are plotted in

Figure 4. The greatest resemblance between the distributions of urban population and

NTL is found in high income countries. Nonetheless, aggregate urban light emisssions are

more unevenly distributed than population. The similarity between the distributions of

population and night lights is directly related to the national income level. In particular,

estimated Pareto coe�cients for population (NTL) tend to increase (decrease) when GNI

per capita decreases.

[Insert Figure 4 about here]

The upper panel of Table 2 reports, at di�erent signi�cance levels, the percentage of

rejections by the KS test of the null hypothesis that the city size distribution is a Pareto

function with power law exponent equal to one. Corroborating the results in Figures 2

and 3, there is more evidence against the full�lment of Zipf's law in the urban distribution

of aggregate NTL than in the distribution of population when all countries in our sample are

considered. Broadly speaking, high income countries tend to display lower rejection rates

than less developed countries (LDCs). The lower panel of Table 2 shows similar results

when the KS test statistic is performed considering that the distribution of reference is

a Pareto function with the estimated slope parameter in the rank-size regression as the

power law exponent. In this case, and as expected, the evidence of a Pareto distribution

for both urban population and light emissions is slightly higher than that for the exact

Zipf's law. Nonetheless, the rejection rates for aggregate VIIRS night lights at the city

level � higher than 50 per cent � do not support the Pareto assumption established by

Bluhm and Krause (2022) to correct top-coding in DMSP data.

[Insert Table 2 about here]
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3.4 Robustness checks

3.4.1 The role of primary cities

The estimated Pareto coe�cient from a rank-size regression at the country level can be

interpreted as a measure of the degree of hierarchy in the urban system, such that a low

coe�cient is indicative of a high weight of large cities. Düben and Krause (2021) show

that national primary shares are inversely related to the magnitude of estimated Pareto

coe�cients using both population and light emissions to measure city size. Moreover, these

authors suggest that concentration in primary cities makes NTL to be more unevenly

distributed than population. Urban primacy is a well-known feature of urbanization in

LDCs (Duranton 2008), mainly driven by political and institutional factors (Ades and

Glaeser 1995; Davis and Henderson 2003).

Primary cities in developing countries may be outlying observations according to a power

law, hence a�ecting the �t and estimated coe�cients from rank-size regressions (Brakman,

Garretsen, and Marrewijk 2019). To check whether this is the case in our context, we

are re-estimating expression (1) at country level once the largest city is removed from

the sample. Kernel densities of resulting Pareto coe�cients when city size is measured

using population and NTL, grouped by national income per capita levels, are displayed in

Figure 5. The main conclusions drawn in the previous subsections do not change when

primary cities are excluded from national samples. That is, urban aggregate light emissions

are less equally distributed than population, and the similarity between the distributions

of NTL and population increases with national income.

[Insert Figure 5 about here]

As expected, the distributions of estimated Pareto coe�cients shown in Figure 5 tend to

move to the right � re�ecting higher values and, consequently, lower urban concentration

� when primary cities are not included in national samples. Nothetheless, it can be ob-

served that changes mainly a�ect rank-size regression results when city size is measured in

demographic terms. In line with the related literature, the magnitude of the distributional

shift is inversely related to the level of national income per capita. Therefore, this robust-

ness check allows us to claim that the di�erent distributions of urban light emissions and
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population are not driven by an excessive concentration in the largest cities. Actually, not

considering primary cities lead to even greater di�erences between the estimated Pareto

coe�cients from the two alternative measures of urban size, especially in lower income

countries. This is a surprising �nding obtained from the use of more accurate satellite

imagery than related studies.

3.4.2 Alternative nighttime lights data

For comparison purposes, we have also proxied local economic activity with the `stable

night light images' collected by the DMSP, despite their limitations. Given that the pro-

duction of DMSP images ended in 2013, we have used the information for that year. In

addition, the top-coding correction of DMSP data proposed by Bluhm and Krause (2022)

� referred to as DMSP_BK8 in tables and �gures � has been used to provide a broad

perspective of all NTL data sources available, and to check the robustness of the results

about the distribution of city sizes measured by aggregating light emissions in economic

terms to their choice.

[Insert Figures 6 and 7 about here]

Figure 6 shows that the density functions for the estimated slope parameters from

expression (1) at country level using DMSP and VIIRS images are alike. However, the

distribution of Pareto coe�cients obtained using DMSP corrected data is more leptokur-

tic. This �nding suggests that the top-coding correction proposed by Bluhm and Krause

(2022) exerts a non-negligible in�uence on the estimated parameters from country rank-

size rule regressions. Kernel densities plotted in Figure 7 show that the greatest similarity

of estimated Pareto coe�cients for urban aggregate NTL is found in lower-middle income

countries. This result re�ects that this group is less a�ected by the top-coding problem

of DMSP nighttime lights. Even if this was also expected to be the case of low income

countries, the distributions of estimated slope parameters for VIIRS and DMSP-based data

are di�erent in this group. This implies that the higher accuracy of VIIRS images allows

the estimated parameters that characterize the city size distribution to better re�ect the

higher degree of concentration of urban economic activity in LDCs.

8Available at https://lightinequality.com/.
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[Insert Table 3 about here]

Table 3 reports the percentage of rejections by the KS test of the null hypothesis that

the city size distribution is a Pareto function with power law exponent equal to one (Panel

A), and that the distribution of reference is a Pareto function with the estimated slope

parameter in the country rank-size regression as the power law exponent (Panel B). Ob-

tained results for both the uncorrected and corrected DMSP images are similar to those

in Table 2 for VIIRS data. Nonetheless, and with the exception of upper-middle income

countries, there is a larger amount of evidence against Zipf's law and a Pareto distribution

in urban economic activity when it is proxied using VIIRS images than with DMSP-based

data.

3.4.3 Alternative gridded population data

Apart from GHS-POP, there are other global gridded population data sets intended to

overcome the inconsistencies in the information provided by national censuses. In fact, it

is by decoupling these data from their original administrative boundaries how population

can be aggregated to other units such as urban centers. The di�erences across these

gridded population databases are determined by the nature of the input data and the

modeling approach adopted; see9 Leyk et al. (2019) and Archila Bustos et al. (2020) for

two systematic reviews. In this section, we analyze the sensitivity of our results about the

distribution of urban population at country level to the use of three alternative mainstream

spatialized population data sets: GPW, LandScan, and WorldPop.

GPW implements the simplest method to redistribute the data from the administrative

unit scale to the grid size (areal interpolation) by assuming that population is evenly dis-

tributed in space (areal weighting). Using remote sensing satellite imagery and geographic

information, GSH-POP generates built-up areas and, according to their proportion in

each grid and overlooking administrative boundaries, decomposes GPW data again us-

ing a dasymetric mapping method based on linear regression. LandScan and WorldPop

adopt highly-modeled frameworks to disaggregate subnational census data that consist of

implementing dasymetric mapping with more sophisticated statistical techniques � dynam-

9See also the POPGRID Data Collaborative (https://www.popgrid.org/).
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ically adaptable and random forest algorithms, respectively � and broad ancillary data sets

including land cover, roads, slope, and NTL, inter alia.

[Insert Figure 8 about here]

Figure 8 plots kernel densities for the estimated slope parameters from country rank-

size regressions using the four gridded population data sets to calculate the size of urban

centers. This graph shows that the di�erences between the distributions of estimated

Pareto coe�cients are more evident than those found comparing NTL data sources. More

speci�cally, the use of the three alternative gridded population data sets to measure city

size in demographic terms results in a more uneven distribution of urban population at

country level, similar to that of NTL. This is especially the case of LandScan and WoldPop,

what can be related to their highly-modeled frameworks, and by the correlations between

the variables included in their corresponding ancillary data sets. Furthermore, it is worth

noting that WorldPop relies on DMSP images, among other information, to generate its

population density predictions.

[Insert Figure 9 about here]

The distributions of Pareto coe�cients at country level using the four gridded population

data sets and grouped by income per capita levels are displayed in Figure 9. It can be

observed that the di�erences between kernel densities are inversely related to national

income. Urban sizes calculated using the GPW present the highest level of concentration

and, with the exception of more developed countries, tend to display an average value

around 0.5. As can be inferred from the descriptive statistics reported in Table A2 in the

Appendix, GPW and, to a lesser extent, LandScan and Worldpop tend to underestimate

the size of smaller urban centers as compared to GHS-POP, while this is not the case

for the largest ones. This leads to an apparently more unequal distribution of population

across urban centers and, as a result, lower estimated Pareto coe�cients. Furthermore, the

similarity between the distributions of estimated slopes from rank-size regressions using

LandScan and WorldPop data and the distribution with information from GPW (GHS-

POP) decreases (increases) with national income per capita. This may be a re�ection of

the strong assumption established by GPW that population is equally distributed across
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administrative areas, on the one hand, and the lower data quality of national censuses and

ancillary variables in LDCs, on the other. Corroborating previous �ndings, Table 3 shows

that the rejection rates of the KS test for the three alternative gridded population data

sets considered in this robustness check are much higher than those for GHS-POP data for

both the null hypothesis of exact Zipf's law and of a Pareto distribution function.

Independently of previous resuls, we consider that the analysis based on the information

extracted from GHS-POP is the most trustworthy for several reasons. First of all, the

GHS-POP data set is produced by the same institution that establishes the de�nition of

the urban units that have been studied. In addition, the reliability of GPW estimates

varies across countries, depending on the timeliness, accuracy, and spatial resolution of

the census data used as an input, and on the suitability of the linear interpolation applied

(Archila Bustos et al. 2020). The LandScan database refers to ambient population that, in

contrast to resident population, not only represents where people live, but also where they

work and travel. Leyk et al. (2019) suggest to use gridded population data constructed

using information on human settlements or urban extents, such as GHS-POP, to study the

distribution of urban population. Actually, Chen et al. (2020) claim that this database is

more opportune to analyze highly-urbanized areas.

4 Searching for robust determinants of the city size distribu-

tion

The estimated Pareto coe�cients from the rank-size regression (1) can be further ex-

plored to study the factors that determine the inequality displayed by city size distributions

at the country level (Modica 2017; Sun et al. 2021; Wang, Wei, and Sun 2022). With this

aim, Düben and Krause (2021) applied a selection method grounded on a simplistic algo-

rithm over all models up to seven regressors from a set of 36 potential covariates. As a more

�exible alternative to identify the robust determinants of the city size distribution, and

in order to control for model uncertainty in this context, we have implemented Bayesian

model averaging (BMA); see Raftery, Madigan, and Hoeting (1997). This technique allows

us to investigate the in�uence of a large number of regressors by estimating all candidate

models and then computing a weighted average of their results, taking into account the
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implicit uncertainty conditional on a given model and across di�erent models. In doing so,

model selection, estimation, and inference are handled simultaneously.

Assuming that the estimated Pareto coe�cient linearly depends on a vector of covariates

x, its conditional mean is given by:

E(β̂c∣xc) = x
′

cθ, c = 1, . . . ,C; (5)

where C is the number of countries and θ is a set of parameters, estimated using maximum

likelihood.

Model uncertainty is related to the choice of the regressors to include in x. More

speci�cally, and for a total number of q variables, there are 2q models (sets of regressors)

to be estimated Mj , j = 1, ...,2q; each of them depending on a set of parameters θj with

conditional posterior probability:

g(θj ∣β̂,Mj) =
f(β̂∣θj ,Mj)g(θ

j ∣Mj)

f(β̂∣Mj)
; (6)

with f(β̂∣θj ,Mj) and g(θ
j ∣Mj) denoting, respectively, the likelihood function and the prior.

For a given prior model probability P (Mj), its posterior probability can be calculated

applying Bayes' rule:

P (Mj ∣β̂) =
f(β̂∣Mj)P (Mj)

f(β̂)
(7)

Expressions (6) and (7) show that it is necessary to specify priors, updated according to

the data, for both model parameters and probabilities. Leamer (1978) assumed that θ is

a function of θj in order to obtain the posterior density function of the parameters for all

candidate models using the law of total probability. It is also possible to calculate posterior

inclusion probabilities (PIP) for the q regressors by adding the posterior probabilities of

the models that include them. Actually, Steel (2020) considers these posterior inclusion

and model probabilities as virtues of the BMA methodology. Using the BMS R package

developed by Zeugner and Feldkircher (2015), the estimation of the whole set of 2q models

has been avoided through a Metropolis-coupled Markov-chain Monte Carlo (MC3) sampler.

Given that it should converge to a suitable distribution, the �rst 500,000 draws (`burn-

ins') have been disregarded. As a baseline, our empirical analysis considers two million
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subsequent iterations, a hyper-g prior for model-speci�c parameters, and a uniform prior

over the model space.

[Insert Table 4 about here]

Taking the set of regressors considered by Düben and Krause (2021) as a starting

point, we have excluded those variables with correlation coe�cients higher than 0.70 to

avoid multicolinearity problems. Proceeding this way, we have selected 26 covariates �

four of them continental dummies � as potential determinants of city size distributions at

country level. A description of these variables, as well as their sources10, are included in

Table 4. These regressors capture national demographic and economic structures, physical

geography, and institutional quality. We have also included the square of the percentage

of urban population and of GDP per capita in order to capture the possible presence of

a nonlinear relationship between these variables related to economic development and the

distribution of city sizes11. The �rst three columns of results in Table 5 show, for each

covariate, and when urban size is measured in demographic terms using GHS-POP data,

the PIP and the mean and standard deviation (SD) of estimated parameters12. While

inclusion probabilities re�ect the importance of the variables in explaining the data, the

mean and standard deviation can be interpreted, respectively, as a BMA point estimation

and standard error.

[Insert Table 5 about here]

In line with Modica (2017), the results reported in Table 5 suggest that national city

size distributions are related to economic and geographical factors. In particular, the

urbanization rate, its square, and the Asian continental dummy receive inclusion proba-

bilities higher than 80 per cent. These �ndings imply that urbanization has a nonlinear

relationship with the equality of the distribution of urban population, on the one hand,

10The missing values present in the original sources have been completed using alternative data sets,
mainly the Economic Indicators provided by Moody's Analytics (https://www.economy.com/indicators).

11Table A3 in the Appendix reports descriptive statistics for the variables that have been considered as
potential determinants of the city size distribution both for the whole set of countries as well as by income
group.

12Table A4 in the Appendix shows the results from the BMA analysis when urban size is calculated
using the alternative gridded population and NTL data sources discussed in the previous section.
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and that Asian countries display more uneven city size distributions, on the other. Natu-

ral resource rents and government �nal consumption expenditures also display high PIPs

(0.67 and 0.57, respectively), and are directly related to the magnitude of estimated power

law coe�cients. This last result is in contrast with Sun et al. (2021), who �nd that the

quality of infrastructures has a negative association with the Pareto coe�cient of the city

size distribution in demographic terms. The �gures reported in the lower panel of Table 5

show that more than one million models have been visited by the MC3 sampler, with an

average size of, approximately, nine covariates. The correlation coe�cient between iter-

ation counts and analytical posterior model probabilities for the 500 best models (0.93)

indicates an adequate degree of convergence. In addition, the average shrinkage factor over

all models, which can be interpreted as a Bayesian goodness-of-�t measure, is 0.91.

The last three columns of Table 5 report the results for city sizes calculated using VIIRS

data. The square of the percentage of urban population receives the highest inclusion

probability, also displaying positive average estimated coe�cients. The other two variables

showing high PIPs are latitude (0.66), with positive average coe�cients, and the year of

independence (0.59), inversely related to the estimated slope parameters in country rank-

size regressions. The results for continental dummies suggest that European countries tend

to have a more equal distribution of aggregate light emissions across cities. The degrees

of convergence and the average shrinkage factors using VIIRS are equal to those obtained

when city size is measured using GHS-POP gridded population.

[Insert Figures 10 and 11 about here]

A visual summary of the results described above is shown in Figures 10 and 11 for urban

population and aggregate light emissions, respectively. Each graph ranks, vertically, the

potential determinants of the city size distribution according to their PIPs. Likewise, the

best 500 models are ordered, horizontally, taking into account their posterior probability.

A colored rectangle re�ects that the covariate is included in the model, and indicates the

sign of its estimated in�uence (blue when positive, red when negative). The variables that

tend to display high PIPs are the percentage of urban population, its squared term, and

natural resource rents. These two variables exert the opposite in�uence on the distributions

of urban population and NTL at country level. While the urbanization rate is directly and
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nonlinearly related to the equality of the city size distribution, a higher percentage of rents

from natural resources over GDP is associated with a more uneven distribution. Therefore,

it can be stated that the degree of urbanization and the availability of natural resources

contribute to the observed di�erences between the distributions of urban population and

light emissions at country level.

The choice of model-speci�c parameters may be determining previous �ndings, see Steel

(2020). In order to assess their sensitivity, Figures 12 and 13 display inclusion probabilities

for the potential determinants of the parameters that characterize the distributions of urban

population and night lights, respectively, under di�erent prior speci�cations; see Zeugner

and Feldkircher (2015), and Forte, Garcia-Donato, and Steel (2018) for a description. It

can be observed that the PIPs of the urbanization rate and its square are not a�ected

by the choice of the prior on model-speci�c parameters. With the exception of the local

empirical Bayes prior (`EBL'), inclusion probabilities for the other regressors are lower

when constant g priors are used. This is especially the case of the risk in�ation criterion

(`RIC') and benchmark (`BRIC') priors. Therefore, this robustness check allows us to state

that the conclusions drawn about the variables that display a more robust relationship with

the estimated power law coe�cients at the country level are not signi�cantly a�ected by

changes in the speci�cation of model-speci�c parameters.

[Insert Figures 12 and 13 about here]

5 The heterogeneous and nonlinear relationship between ur-

ban population and light emissions

This section takes a closer look at the relationship between urban population and light

emissions by assessing the possible presence of heterogeneity and nonlinearities. With

this aim, we implement nonparametric kernel regression methods that do not require a

priori assumptions on the underlying functional form, and that provide observation-speci�c

estimates.

A fully nonparametric speci�cation to estimate the elasticity of urban light emissions

to population is:

Lightsi =m(Populi) + εi, i = 1, . . . , n; (8)
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where Lightsi denotes the logarithm of aggregate NTL in city i, Populi is the logarithm of

its number of inhabitants, εi is a zero-mean additive error, andm(⋅) is the smooth unknown

function for the conditional mean. This function can be estimated by locally averaging the

aggregate night lights of the urban centers with a similar size in demographic terms. This

method is known as the local-constant � or Nadaraya-Watson � kernel estimator:

�m(Popul) =
n

∑
i=1

wiLightsi. (9)

Weights are non-negative, their sum is equal to one, and they are given by:

wi =
K (

Populi−Popul
h )

n

∑
j=1

K (
Populj−Popul

h )

, (10)

with K(⋅) being a kernel function.

The amount of information used to calculate the local average is determined by the

bandwidth h. A data-driven method to select this smoothing parameter is least-squares

cross-validation (LSCV), which consists of choosing h so as to minimize

CV(h) =
1

n

n

∑
i=1

[Lightsi − �m−i(Populi)]
2M(Populi), 0 ≤M(⋅) ≤ 1; (11)

where M(⋅) is a weighting function13, and

�m−i(Populi) =

n

∑
l≠i

LightslK (
Populi−Popull

h )

n

∑
l≠i

K (
Populi−Popull

h )

. (12)

The criterion in expression (11) is a trimmed version of the sum of squared residuals from

a leave-one-out estimator of the conditional mean function. LSCV bandwidth selection,

in conjunction with the local-constant kernel estimator detects irrelevant regressors, which

will be smoothed out as

K(
Populi − Popul

h
)→ K(0) when h→∞. (13)

13Following Racine and Li (2004), we have set M(⋅) = 1
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Instead of the local-constant approximation, a linear regression can be �tted for urban

centers with a similar number of inhabitants. When a weighting function is included with

this purpose, the estimation method is known as the local-linear kernel regression. The

aim is to estimate the following expression:

Lightsi = a + b
′
(Populi − Popul) + ei, i = 1, . . . , n; (14)

In particular, the estimation is based on solving the following optimization problem:

min
a,b

n

∑
i=1

[Lightsi − a − b
′
(Populi − Popul)]

2K(
Populi − Popul

h
) . (15)

It has been demonstrated that the solutions â = a(Popul) and b̂ = b(Popul) are consis-

tent estimators of the conditional mean function, and of its partial derivativem(1)(Popul) =

∂m(Popul)/∂Popul, respectively (Li and Racine 2007).

The local-linear kernel estimator nests OLS as a special case for su�ciently large values

of the bandwidth parameters. Moreover, the LSCV bandwidth selection rule in the local-

linear framework has the ability to assign a small value of h for regressors that have a

nonlinear relationship with the dependent variable. Given that the kernel applied in the

empirical analysis will be the Gaussian function, two times the sample standard deviation

of continuous covariates will be considered as the upper bound for their bandwidth; unity

for the smoothing parameters of discrete regressors.

For the sake of comparability with the results obtained14 by Düben and Krause (2021),

Table 6 reports the estimated elasticities from �tting standard parametric OLS regres-

sions to the relationship between urban light emissions and population in (8). In this

case, the estimations are carried out using the whole sample of urban centers. Given the

cross-sectional nature of our data set, we only include country �xed e�ects to control for

unobserved heterogeneity as additional regressors. The estimated elasticities are of a higher

magnitude than those previously found in the literature. In line with the existing evidence,

the response of light emissions to population is lower in larger cities. However, and as a

14See Table 3, page 201. Estimated elasticities using DMSP data for our sample can be found in Table A5
in the Appendix.
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novelty, we conclude that an increase in population of primary cities is associated with a

less than proportional increase in aggregate NTL.

[Insert Tables 6 and 7 about here]

The upper panel of Table 7 reports the bandwidth parameters selected using the LSCV

method in a local-constant kernel regression framework. The magnitude of this smoothing

parameter is below its upper bound for population in all speci�cations, implying that this

variable is relevant to explain di�erences in urban light emissions worldwide. While this is

also the case of the indicator variables for the primary and the 10 largest cities, as well as

for country income groups, the bandwiths for their interactions with population are above

their corresponding upper bounds. The only exception is the interaction term included

to capture a di�erential response of urban NTL to population in low income countries.

The middle panel of Table 7 shows selected smoothing parameters for a local-linear kernel

estimation. These �gures suggest that, in general, there is a nonlinear relationship between

night lights and population. This result is corroborated by the diagnostic test statistic

developed by Hsiao, Li, and Racine (2007), reported in the lower panel, which rejects both

a standard linear OLS model (HLR1) and a quadratic speci�cation for population (HLR2)

in favor of the estimated nonparametric regression.

Table 8 contains descriptive statistics for the distribution of the estimated partial e�ects

for population using a local-linear kernel regression, and the bandwidth parameter reported

in the middle panel of Table 7 for the speci�cation that only includes country �xed e�ects

as additional regressors. These gradients show that the elasticity of NTL to population is

heterogeneous. Although the response of light emissions to population tends to be lower in

larger cities, the di�erence in the magnitude of estimated elasticies with the whole sample

is less important than when cities are classi�ed according to country income groups. In

particular, the �gures displayed in the lower panel of Table 8 show that the elasticity of

urban night lights to population sharply decreases with the level of development.

[Insert Table 8 about here]
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6 Discussion

The results reported in Table 8, obtained considering all urban centers that conform

our sample, can be theoretically related to the kernel densities of Pareto coe�cients by

income group displayed in Figure 4, estimated from rank-size regressions at the country

level. To do so, let us begin by noting that, abstracting from the error term, expression

(1) is equivalent to

Ranki − 0.5 = eαe
log(Size−βi )

. (16)

Taking into account the two measures of urban size that have been studied throughout

our empirical analysis, it can be stated that

Ranki − 0.5 = ALights−βLi , (17)

and

Ranki − 0.5 = BPopul−βPi ; (18)

with βL and βP being the national Pareto coe�cients that characterize the distributions

of urban light emissions and population, respectively. A = eαL and B = eαP , with αL and

αP two constant terms.

There is a recent strand of the literature showing that most urban properties vary

continuously with population size; see Bettencourt et al. (2007), Bettencourt (2013), and

Lobo et al. (2013). This empirical observation has been described mathematically using

power law scaling relations. On the basis of this formal framework, the relationship between

urban light emissions and population can be written as

Lightsi =DPopul
γ
i , (19)

where D is a normalization constant, and γ denotes the scaling exponent which, in our

context, corresponds to the elasticity of urban aggregate NTL to population at country

level.
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As long as γ > 0, it can be claimed that Lightsi > Lightsj if Populi > Populj . Therefore,

the rank of a given city i will not depend on the measure used to calculate its size:

Ranki − 0.5 = ALights−βLi = BPopul−βPi . (20)

Dividing this expression for the primary city and for an arbitrary urban center of rank

r, and taking into account the scaling relation in (19), it is obtained that

(
Lights1
Lightsr

)

βL

= (
Popul1
Populr

)

γβL

= (
Popul1
Populr

)

βP

. (21)

This implies that there exists a linear relationship between the Pareto coe�cients that

characterize the distributions of urban population and light emissions that depends on the

scaling exponent (elasticity of NTL to population):

βP = γβL. (22)

The results from country rank-size regressions presented in Section 3 show that the

estimated Pareto coe�cients for the distributions of city sizes calculated using gridded

population tend to be higher than those obtained aggregating light emissions within urban

extents. According to expression (22), this is equivalent to saying that the elasticity of NTL

to population is greater than one, and is precisely what we �nd in Section 6 considering

urban centers worldwide in the estimations.

A scaling exponent greater than one is interpreted as evidence of a super-linear urban

scaling regime, illustrated by the concept of agglomeration economies; see Duranton and

Puga (2004). It implies that per capita economic output � as well as other socio-economic

indicators such as wages or new inventions � increases with city population size (Betten-

court et al. 2007). That is, cities of di�erent sizes display di�erent features because, as

complex systems, they are not only concentrations of people, but also of social interac-

tions (Jacobs 1969). This re�ects the role played by the `second nature' factors that shape

the distribution of economic activity across space through the interactions between agents

and the increasing returns to scale created by dense interactions (Krugman 1991, 1993;

Venables 2005). Therefore, it is the importance of population size as a determinant of the
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socio-economic activity that takes place in urban centers what makes the distribution of

aggregate NTL to be more uneven than that of population.

The statistics that describe the distribution of the estimated gradients at the urban

center level displayed in Table 8 show that the elasticities of light emissions to population

signi�cantly change across country income groups. These gradients tend to be slightly

higher than one for cities in high income countries, explaining that this group displays the

greatest similarity between the distributions of estimated Pareto coe�cients for urban pop-

ulation and aggregate NTL. It can also be observed that the magnitude of the elasticities is

inversely related to national income per capita what, in line with expression (22), explains

that the greatest di�erence between the distributions of estimated Pareto coe�cients for

population and light emissions is found in LDCs. Similarly to Henderson et al. (2018), but

with more recent and accurate satellite imagery, the use of NTL as a proxy for economic

activity leads us to conclude that urban agglomeration bene�ts are more important than

congestion costs in developing countries, as re�ected by their higher elasticities estimated

using nonparametric kernel regression methods.

As pointed out by Ribeiro et al. (2021), Zipf's law and urban scaling are two funda-

mental paradigms for the study of cities that, so far, have been investigated independently.

Using data for functional urban areas, these authors show that urban systems with a more

balanced distribution of population tend to have less pronounced increasing returns and,

therefore, to display a smaller degree of agglomeration of economic activities. That is,

Ribeiro et al. (2021) establish a direct relationship between the Pareto coe�cient charac-

terizing the distribution of city sizes in demographic terms βP with the scaling exponent

γ. As a further contribution, we have shown that this exponent determines the di�erence

between the national distributions of urban population and light emissions, characterized

by βL.

7 Concluding remarks

This paper compares the distributions of urban population and nighttime lights at

country level. The sample that has been analyzed covers 12,852 urban centers in 100

countries of di�erent levels of development. In line with the results obtained by related

studies, but using more recent and accurate satellite imagery to proxy economic activity, we
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show that aggregate urban light emissions are more unevenly distributed than population.

In fact, the null hypothesis that city sizes adjust to Zipf's law can be more easily rejected

when they are measured using VIIRS night lights. Furthermore, there is a higher similarity

between the distributions of urban population and light emissions the higher the level of

national income per capita. As a byproduct of our analysis, we also provide evidence that

casts doubt on the Pareto assumption adopted to correct the top-coding problem inherent

to DMSP images.

Using Bayesian model averaging techniques, we show that the urbanization rate has a

robust, direct, and nonlinear relationship with the size distribution of cities. To a lesser

extent, the availability of natural resources at country level is also associated with the

parameters that characterize city size distributions. We also �nd a nonlinear and hetero-

geneous relationship between urban population and aggregate nighttime lights. In this

regard, it is worth noting that the nonparametric estimation framework adopted has led

us to obtain higher estimated elasticities of urban light emissions to population than those

previously established in the related literature. Moreover, the heterogeneity displayed by

these elasticities seems to be driven by the level of national income per capita rather than

by urban hierarchy. The empirical analysis carried out has allowed us to theoretically es-

tablish the magnitude of agglomeration economies � re�ecting super-linear scaling � as a

determinant of the di�erence between the national distributions of urban population and

night lights.
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Tables and �gures

Table 1: Descriptive statistics of city sizes by country income group.

All countries High income Upper-middle Lower-middle Low income

Countries 100 22 29 27 22
Urban centers 12,852 1,298 3,795 6,213 1,546

Mean

GHSPOP 268,247 410,864 312,484.40 237,467.40 163,612.50
VIIRS 6,202.14 29,660.31 8,419.74 1,420.58 279.35

Median

GHSPOP 99,755.16 108,721.70 106,719.20 97,808.61 90,814.05
VIIRS 460.99 8,257.89 2,060.96 162.58 7.93

Minimum

GHSPOP 50,002.46 50,056.39 50,007.17 50,012.63 50,002.46
VIIRS 0 190.17 0 0 0

Maximum

GHSPOP 4.06E+07 3.30E+07 4.06E+07 3.63E+07 5.62E+06
VIIRS 1.20E+06 1.20E+06 1.01E+06 4.01E+05 32,146.45

Note: GHSPOP is measured in number of persons, and VIIRS refers to aggregate nano
Watts per square centimeter per steredian. Countries grouped according to the World
Bank classi�cation for the year 2015, see Table A1 in the Appendix for further details.
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Table 2: Kolmogorov-Smirnov test. Percentage of rejections at di�erent signi�cance levels.

Panel A. H0: Exact Zipf's law

GHSPOP VIIRS

1% 5% 10% 1% 5% 10%

All countries 17.00 30.00 37.00 85.00 88.00 92.00
High income 0.00 9.09 18.18 63.64 77.27 81.82
Upper-middle 11.11 22.22 25.93 81.48 81.48 88.89
Lower-middle 20.69 44.83 55.17 96.55 96.55 100.00
Low income 36.36 40.91 45.45 95.45 95.45 95.45

Panel B. H0: Pareto distribution function

GHSPOP VIIRS

1% 5% 10% 1% 5% 10%

All countries 9.00 17.00 24.00 75.00 80.00 84.00
High income 0.00 0.00 4.54 50.00 63.64 68.18
Upper-middle 7.41 18.52 25.93 77.78 77.78 85.19
Lower-middle 13.79 24.14 34.48 86.21 89.66 89.66
Low income 13.64 22.73 27.27 81.82 86.36 90.91
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Table 5: Determinants of the city size distribution at country level. Bayesian model averag-
ing.

GHSPOP VIIRS

Variable PIP Mean SD PIP Mean SD

popgr 0.36 0.01 0.02 0.32 -4.66E-03 0.01
urban 0.99 -0.02 0.01 0.39 4.04E-04 2.34E-03
urbansq 0.81 8.92E-05 6.47E-05 0.80 3.16E-05 2.28E-05
pop1400 0.44 1.12E-09 2.03E-09 0.23 -3.32E-11 7.38E-10
netmigr 0.37 7.73E-09 2.05E-08 0.24 -5.95E-10 9.19E-09
ethnic 0.43 -0.05 0.09 0.27 -0.01 0.04
rugged 0.35 0.01 0.02 0.25 1.79E-03 0.01
coastprox 0.51 -0.04 0.06 0.33 -0.01 0.03
coastbord 0.31 4.53E-08 6.44E-07 0.24 1.00E-10 3.87E-07
area 0.32 1.20E-09 7.24E-09 0.40 -3.44E-09 6.13E-09
extreme 0.40 -4.93E-03 0.01 0.23 -5.46E-04 4.32E-03
resourents 0.67 4.82E-03 4.84E-03 0.46 -1.62E-03 2.41E-03
latitude 0.33 1.88E-04 8.99E-04 0.66 1.09E-03 1.04E-03
colonherit 0.33 -0.01 0.05 0.28 0.01 0.03
govexp 0.57 4.03E-03 0.01 0.25 4.04E-04 1.68E-03
democracy 0.52 -4.66E-03 0.01 0.28 8.47E-04 2.64E-03
intwar 0.35 -0.01 0.03 0.23 -1.55E-05 0.01
indep 0.42 -4.85E-05 9.20E-05 0.59 -6.90E-05 7.75E-05
trade 0.31 4.28E-05 3.91E-04 0.25 4.01E-05 2.44E-04
gdp 0.31 1.95E-11 7.56E-09 0.24 -2.94E-10 4.21E-09
gdppc 0.33 -6.71E-07 3.24E-06 0.24 -3.58E-08 1.36E-06
gdppcsq 0.32 6.48E-12 3.94E-11 0.24 2.59E-12 1.73-11
manuf 0.34 5.22E-04 2.76E-03 0.29 5.18E-04 1.58E-03
services 0.40 -1.11E-03 2.42E-03 0.23 3.33E-05 9.54E-04
africa 0.55 -0.06 0.09 0.32 0.01 0.03
asia 0.81 -0.13 0.10 0.42 -0.02 0.04
europe 0.34 -0.01 0.07 0.49 0.04 0.06
northam 0.33 1.72E-04 0.06 0.25 -2.72E-03 0.03

Models 1,363,101 1,364,142
Size 9.43 9.43
Correlation 0.93 0.93
Shrinkage 0.91 0.91

Note: The dependent variable is the estimated slope parameter from a rank-
size OLS regression at country level. The number of observations is 100.
The birth-death MC3 sampler has been implemented with 500,000 burn-ins
and two million iteration draws. The hyper-g and uniform priors have been
established, respectively, for parameters and models. PIP denotes the
posterior inclusion probability of each variable. Mean and SD are the
posterior mean and standard deviation from model averaging. The lower
panel reports the number of models visited, their average size, the correlation
between iteration counts and analytical posterior model probabilities, and the
mean of the shrinkage factor.
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Table 6: VIIRS-GHSPOP elasticities. OLS estimation.

(1) (2) (3)

GHSPOP (in logs) 1.50*** 1.52*** 1.54***
(0.08) (0.09) (0.10)

Primacy 12.64***
(4.19)

GHSPOP*Primacy -0.85***
(0.27)

Top10 5.71***
(1.25)

GHSPOP*Top10 -0.41***
(0.09)

Intercept -17.09*** -17.29*** -17.53***
(0.93) (1.01) (1.11)

R2 0.63 0.63 0.63

Note: The dependendent variable is aggregate VIIRS
nighttime lights (in logs). The sample is made up of
12,852 observations. All estimations include country
�xed e�ects. Clustered standard errors are reported
in parentheses.*p < 0.10, **p < 0.05, ***p < 0.01.
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Table 7: VIIRS-GHSPOP elasticities. Least-squares cross-validation bandwidths and diag-
nostic test statistics for nonparametric kernel regressions.

Upper Local-constant estimation

bound (1) (2) (3) (4)

GHSPOP (in logs) 1.74 0.24 0.23 0.24 0.24
Primacy 1.00 0.04
GHSPOP*Primacy 2.66 6.21E+06*
Top10 1.00 0.50
GHSPOP*Top10 7.06 2.16E+06*
Upper-middle 1.00 0.26
GHSPOP*Upper-middle 10.48 1.79E+06*
Lower-middle 1.00 0.03
GHSPOP*Lower-middle 11.76 1.57E+05*
Low income 1.00 0.43
GHSPOP*Low income 7.54 0.16

Upper Local-linear estimation

bound (1) (2) (3) (4)

GHSPOP (in logs) 1.74 1.16 1.29 1.48E+06** 1.21
Primacy 1.00 0.50
GHSPOP*Primacy 2.66 1.71E+06**
Top10 1.00 0.50
GHSPOP*Top10 7.06 0.80
Upper-middle 1.00 0.50
GHSPOP*Upper-middle 10.48 1.03E+06**
Lower-middle 1.00 0.50
GHSPOP*Lower-middle 11.76 1.31E+06**
Low income 1.00 0.40
GHSPOP*Low income 7.54 5.29E+05**

R2 0.65 0.65 0.43 0.65
HLR1 8.08 8.25 8.22 4.76

(0.00) (0.00) (0.00) (0.00)
HLR2 11.57 11.57 10.00 6.85

(0.00) (0.00) (0.00) (0.00)

Note: The dependendent variable is aggregate VIIRS nighttime lights (in logs). The sample
is made up of 12,852 observations. All estimations include country �xed e�ects. * denotes
that the variable is smoothed out of the regression, and ** indicates that the regressor
enters linearly. The Hsiao, Li, and Racine (2007) test statistic has been calculated for a standard
OLS model (HLR1) and a quadratic speci�cation (HLR2). P-values are reported in
parentheses.
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Table 8: VIIRS-GHSPOP elasticities. Local-linear kernel regression.

Mean Q1 Q2 Q3

All countries 1.76 1.25 1.40 1.52
(0.37) (0.06) (0.05) (0.03)

Primary cities 1.50 0.98 1.18 1.56
(0.03) (0.06) (0.07) (0.22)

10 largest cities 1.77 1.07 1.27 1.85
(0.40) (0.06) (0.08) (0.42)

High income 1.07 1.00 1.07 1.11
(0.44) (0.06) (0.06) (0.04)

Upper-middle 1.31 1.11 1.36 1.42
(0.15) (0.11) (0.10) (0.04)

Lower-middle 1.69 1.38 1.41 1.53
(0.24) (0.06) (0.04) (0.28)

Low income 3.73 3.33 3.43 4.59
(0.84) (0.33) (0.39) (0.46)

Note: Reported partial e�ects are the estimated
derivatives from a local-linear kernel regression
using GHSPOP urban population (in logs) and
country �xed e�ects as covariates, and the
bandwidths displayed in Table 7. Bootstrap
standard errors (399 replications) in parentheses.
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Figure 1: Kernel densities of estimated Pareto coe�cients from a rank-size OLS regression
at country level.
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Figure 2: Cumulative distribution function of Kolmogorov-Smirnov test p-values using exact
Zipf's law as a reference.
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Figure 3: Cumulative distribution function of Kolmogorov-Smirnov test p-values using a
Pareto distribution as a reference.
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Figure 4: Kernel densities of estimated Pareto coe�cients from a rank-size OLS regression
at country level by income group, World Bank classi�cation 2015.
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Figure 5: Robustness check: Kernel densities of estimated Pareto coe�cients from rank-size
OLS regressions at country level including (solid) and excluding (dashed) primary cities.
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Figure 6: Robustness check: Kernel densities of estimated Pareto coe�cients from rank-size
OLS regressions at country level using alternative nighttime lights data.
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Figure 7: Robustness check: Kernel densities of estimated Pareto coe�cients from country
rank-size OLS regressions by income group using alternative nighttime lights data.
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Figure 8: Robustness check: Kernel densities of estimated Pareto coe�cients from rank-size
OLS regressions at country level using alternative gridded population data.

43



.5
1

1.
5

2
2.

5
.4 .6 .8 1 1.2

 

High income

0
1

2
3

4

0 .5 1 1.5
 

Upper-middle income

.5
1

1.
5

2
2.

5
3

0 .5 1 1.5
 

Lower-middle income

0
1

2
3

4
5

0 .5 1 1.5 2
 

Low income

GHSPOP GPW WorldPop LandScan

Figure 9: Robustness check: Kernel densities of estimated Pareto coe�cients from country
rank-size OLS regressions by income group using alternative gridded population data.
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Cumulative Model Probabilities
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Figure 10: GHSPOP urban population: MC3 sampler results of the 500 best models. Colored
areas re�ect the inclusion of variables in the model, and whether their estimated parameters
are positive (blue) or negative (red).
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Figure 11: VIIRS nighttime lights: MC3 sampler results of the 500 best models. Colored
areas re�ect the inclusion of variables in the model, and whether their estimated parameters
are positive (blue) or negative (red).
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Figure 12: GHSPOP urban population: Posterior inclusion probabilities. Sensitivity analysis
to alternative speci�cations of the prior for model-speci�c parameters.
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Figure 13: VIIRS nighttime lights: Posterior inclusion probabilities. Sensitivity analysis to
alternative speci�cations of the prior for model-speci�c parameters.
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Table A2: Robustness check: Descriptive statistics of city sizes by country income group.

All countries High income Upper-middle Lower-middle Low income

Countries 100 22 29 27 22
Urban centers 12,852 1,298 3,795 6,213 1,546

Mean

DMSP 3,458.43 14,123.17 4,482.78 1,371.28 375.15
DMSP_BK 8,522.06 44,610.24 10,346.06 13,909.08 400.51
GPW 142,001.90 335,741.70 209,846.50 85,462.46 40,019.59
WorldPop 191,171.60 390,319 271,547.70 133,642.30 57,865.73
LandScan 207,950.10 413,222.70 274,650.80 156.315.80 79,380.55

Median

DMSP 689 4,665 1,713 258 15
DMSP_BK 694 8,099.96 1,901.52 258 15
GPW 12,329.90 77,282.58 39,938.60 6,477.77 806.80
WorldPop 43,980.82 98,391.75 80,787.69 25,587.56 6,411.31
LandScan 53,406 110,747 79,606 37,847 14,335.50

Minimum

DMSP 0 194 0 0 0
DMSP_BK 0 194 0 0 0
GPW 0.58 18.54 5.03 1.08 0.58
WorldPop 3.16 817.94 53.32 3.16 3.24
LandScan 0 1,144 9 0 2.90

Maximum

DMSP 509,507 509,507 505,237 269,129 29,844
DMSP_BK 2.37E+06 2.37E+06 1.55E+06 5.69E+05 35,082.50
GPW 3.71E+07 3.15E+07 3.71E+07 2.69E+07 5.27E+06
WorldPop 3.98E+07 3.34E+07 3.98E+07 3.26E+07 6.06E+06
LandScan 3.49E+07 3.24E+07 3.49E+07 2.83E+07 8.18E+06

Note: DMSP light intensities are recorded at the pixel level as integerized digital numbers
(DN) ranging from 0 to 63 in the original (truncated) version, and from 0 to 2,000 in the
corrected data set created by Bluhm and Krause (2022). City sizes have been calculated by
aggregating the DN of the pixels within the spatial extent of urban centers. WorldPop,
GPW, and LandScan refer to the number of persons.

51



T
a
b
le

A
3
:
P
o
te
n
ti
a
l
d
et
er
m
in
a
n
ts

o
f
th
e
ci
ty

si
ze

d
is
tr
ib
u
ti
o
n
a
t
co
u
n
tr
y
le
v
el
:
D
es
cr
ip
ti
v
e
st
a
ti
st
ic
s
b
y
in
co
m
e
g
ro
u
p
.

A
ll
co
u
n
tr
ie
s

H
ig
h
in
co
m
e

U
p
p
er
-m

id
d
le
in
co
m
e

L
ow

er
-m

id
d
le
in
co
m
e

L
ow

in
co
m
e

V
ar
ia
b
le

M
ea
n

M
ed
ia
n

M
in
im
u
m

M
ax
im
u
m

M
ea
n

M
ed
ia
n

M
in
im
u
m

M
ax
im
u
m

M
ea
n

M
ed
ia
n

M
in
im
u
m

M
ax
im
u
m

M
ea
n

M
ed
ia
n

M
in
im
u
m

M
ax
im
u
m

M
ea
n

M
ed
ia
n

M
in
im
u
m

M
ax
im
u
m

p
op
gr

1.
49

1.
36

-3
.8
9

5.
79

0.
79

0.
55

-0
.6
6

5.
79

1.
12

1.
19

-0
.4
9

3.
44

1.
55

1.
69

-3
.8
9

3.
07

2.
55

2.
79

0.
40

3.
88

u
rb
an

56
.3
3

55
.6

12
.0
8

97
.8
8

80
.4
3

81
.3
0

60
.2
8

97
.8
8

69
.5
2

73
.3
6

47
.6
9

91
.5
0

43
.5
8

46
.2
8

13
.0
1

69
.0
6

32
.8
2

33
.3
9

12
.0
8

61
.2
8

u
rb
an
sq

3,
66
6.
18

3,
09
1.
15

14
5.
88

9,
57
9.
71

6,
53
2.
81

6,
61
0.
42

3,
63
3.
44

9,
57
9.
71

4,
97
2.
35

5,
38
1.
40

2,
27
4.
72

8,
37
2.
80

2,
12
0.
15

2,
14
2.
21

16
9.
31

4,
76
9.
42

1,
23
4.
45

1,
11
6.
07

14
5.
88

3,
75
4.
87

p
op
14
00

3.
43
E
+
06

9.
91
E
+
05

39
,1
45

8.
09
E
+
07

2.
80
E
+
06

1.
06
E
+
06

17
4,
11
0

1.
25
E
+
07

4.
39
E
+
06

9.
31
E
+
05

39
,1
45

8.
09
E
+
07

4.
79
E
+
06

1.
32
E
+
06

1.
00
+
05

7.
72
E
+
07

1.
09
E
+
06

74
07
86

51
95
4

37
76
35
0

n
et
m
ig
r

-2
1,
45
0.
43

-5
0,
00
1

-5
.3
9E

+
06

4.
96
E
+
06

7.
32
E
+
05

3.
78
E
+
08

-5
20
,4
42

4.
96
E
+
06

66
,9
92
.9
6

-3
8,
00
1

-1
.5
5E

+
06

1.
80
E
+
06

-5
.6
2E

+
05

-1
.5
0E

+
05

-5
.3
9E

+
06

1.
32
E
+
05

-1
70
83
2.
23

-8
5,
00
0.
50

-2
.0
4E

+
06

5.
22
E
+
05

et
h
n
ic

0.
47

0.
49

0
0.
93

0.
24

0.
16

0.
01

0.
71

0.
48

0.
54

0.
15

0.
79

0.
48

0.
48

0
0.
86

0.
66

0.
72

0
0.
93

ru
gg
ed

1.
19

0.
87

0.
04

5.
3

1.
41

0.
99

0.
04

4.
76

1.
07

0.
94

0.
16

2.
62

1.
20

0.
76

0.
19

5.
30

1.
11

0.
68

0.
14

5.
04

co
as
tp
ro
x

0.
44

0.
31

0.
02

2.
21

0.
25

0.
15

0.
02

1.
43

0.
54

0.
38

0.
02

2.
21

0.
38

0.
28

0.
02

1.
65

0.
57

0.
48

0.
02

1.
25

co
as
tb
or
d

6,
02
3.
51

1,
31
4

0
2.
02
E
+
05

15
,5
71
.0
2

2,
92
9

0
2.
02
E
+
05

4,
24
5.
48

2,
41
4

0
37
,6
53

4,
41
6.
62

85
3

0
54
,7
16

77
6.
27

18
.5
0

0
4,
82
8

ar
ea

1.
20
E
+
06

4.
43
E
+
05

25
,6
80

1.
64
E
+
07

1.
48
E
+
06

30
7,
84
5

30
,2
80

9.
15
E
+
06

2.
11
E
+
06

88
2,
05
0

48
,3
10

1.
64
E
+
07

6.
07
E
+
05

4.
46
E
+
05

61
,8
93

2.
97
E
+
06

5.
95
E
+
05

4.
84
E
+
05

25
,6
80

2.
27
E
+
06

ex
tr
em

e
1.
22

0.
41

0
7.
95

0.
58

0.
03

0
7.
95

0.
92

0.
17

0
7.
95

1.
65

0.
83

0
6.
64

1.
66

0.
86

0
7.
53

re
so
u
re
n
ts

5.
89

3.
04

0.
01

34
.2
5

2.
72

0.
29

0.
01

24
.1
1

7.
60

3.
68

0.
21

34
.2
5

4.
48

2.
96

0.
12

22
.1
8

8.
81

10
.3
2

0.
10

20
.1
2

la
ti
tu
d
e

19
.7
2

18
.9
2

-3
7.
94

62
.7
8

37
.3
3

46
.1
4

-3
7.
94

62
.7
8

18
.6
1

23
.9
4

-3
5.
40

61
.9
9

16
.1
7

14
.8
2

-1
6.
71

49
.0
1

8.
15

9.
14

-1
9.
38

40
.1
4

co
lo
n
h
er
it

0.
16

0
0

1
0.
45

0
0

1
0.
19

0
0

1
0

0
0

0
0.
05

0
0

1
go
ve
x
p

15
.0
6

14
.3
8

5.
15

32
.2
1

19
.9
0

19
.5
7

11
.3
9

30
15
.4
0

14
.6
0

7.
41

32
.2
1

12
.2
2

11
.7
6

5.
40

19
.8
2

13
.5
2

13
.3
5

5.
15

25
.9
3

d
em

o
cr
ac
y

5.
26

6
-7

10
8.
86

10
0

10
4.
22

5
-7

9
4.
69

7
-7

9
3.
68

5
-7

7
in
tw
ar

0.
60

1
0

1
0.
91

1
0

1
0.
70

1
0

1
0.
45

0
0

1
0.
36

0
0

1
in
d
ep

1,
83
7.
76

1,
94
7.
50

0
1,
99
3

1,
61
4.
18

1,
80
0.
50

0
1,
99
3

1,
82
5

1,
84
4

1,
36
8

1,
99
1

1,
94
3.
31

1,
95
6

1,
82
5

1,
99
1

1,
93
7.
86

1,
96
0

1,
76
8

1,
97
5

tr
ad
e

67
.4
8

59
.2
4

7.
36

17
8.
77

83
.4
5

68
.6
4

27
.7
6

16
7.
24

65
.0
1

59
.7
0

22
.4
9

13
1.
37

65
.5
5

53
.9
2

7.
36

17
8.
77

57
.0
9

57
.4
3

16
.5
4

12
4.
11

gd
p

7.
11
E
+
06

89
,0
81
.9
8

3,
10
4.
39

1.
82
E
+
07

2.
01
E
+
06

9.
51
E
+
05

68
,4
20
.2
6

1.
82
E
+
07

7.
62
E
+
05

1.
84
E
+
05

27
,8
42
.1
3

1.
11
E
+
07

1.
98
E
+
05

62
,1
86
.1
9

8,
27
1.
45

2.
10
E
+
06

19
,7
89

13
,9
81
.0
8

3,
10
4.
39

64
,5
89
.3
3

gd
p
p
c

10
,7
18
.3
2

3,
92
8.
16

29
3.
46

84
,7
76
.1
4

35
,5
37
.4
5

35
,7
99
.4
1

12
,5
78
.5
0

84
,7
76
.1
4

7,
60
2.
34

6,
22
9.
10

4,
16
6.
98

17
,3
00

2,
30
3.
46

2,
08
5.
10

97
8.
40

3,
99
4.
64

81
5.
68

76
0.
36

29
3.
46

1,
70
0

gd
p
p
cs
q

3.
6E

+
08

1.
54
E
+
07

86
,1
15
.9
4

7.
19
E
+
09

1.
58
E
+
09

1.
28
+
09

1.
58
E
+
08

7.
19
E
+
09

6.
74
E
+
07

3.
88
E
+
07

1.
74
E
+
07

2.
99
E
+
08

6.
13
E
+
06

4.
35
E
+
06

9.
57
E
+
05

15
95
71
24

7.
99
E
+
05

5.
78
E
+
05

86
,1
15
.9
4

2.
89
E
+
06

m
an
u
f

13
.7
3

12
.6
9

1.
78

47
.6
0

15
.2
5

12
.6
9

6.
29

36
14
.8
7

14
.4
2

2.
18

28
.9
5

13
.1
3

13
.6
9

1.
78

21
.3
1

11
.5
8

9.
36

2.
78

47
.6
0

se
rv
ic
es

52
.1
7

52
.1
2

23
.3
6

76
.7
8

63
.9
4

66
.9
9

50
.2
0

76
.7
8

52
.9
4

53
.4
8

34
.9
0

72
.7
6

48
.7
1

48
.5
7

23
.3
6

61
.4
5

44
.0
1

44
.7
9

27
.4
2

58
.6
5

af
ri
ca

0.
32

0
0

1
0

0
0

0
0.
15

0
0

1
0.
34

0
0

1
0.
82

1
0

1
as
ia

0.
27

0
0

1
0.
23

0
0

1
0.
22

0
0

1
0.
45

0
0

1
0.
14

0
0

1
eu
ro
p
e

0.
21

0
0

1
0.
59

1
0

1
0.
26

0
0

1
0.
03

0
0

1
0

0
0

0
n
or
th
am

0.
09

0
0

1
0.
09

0
0

1
0.
11

0
0

1
0.
10

0
0

1
0.
05

0
0

1

52



T
a
b
le

A
4
:
R
o
b
u
st
n
es
s
ch
ec
k
:
D
et
er
m
in
a
n
ts

o
f
th
e
ci
ty

si
ze

d
is
tr
ib
u
ti
o
n
a
t
co
u
n
tr
y
le
v
el
.
B
ay
es
ia
n
m
o
d
el
av
er
a
g
in
g
.

D
M
S
P

D
M
S
P
_
B
K

G
P
W

W
or
ld
P
op

L
an
d
S
ca
n

V
ar
ia
b
le

P
IP

M
ea
n

S
D

P
IP

M
ea
n

S
D

P
IP

M
ea
n

S
D

P
IP

M
ea
n

S
D

P
IP

M
ea
n

S
D

p
op
gr

0.
22

1.
37
E
-0
3

0.
01

0.
36

-9
.0
3E

-0
4

0.
01

0.
38

-0
.0
1

0.
01

0.
57

-0
.0
1

0.
02

0.
28

-1
.1
6E

-0
3

0.
01

u
rb
an

0.
33

5.
25
E
-0
5

2.
27
E
-0
3

0.
45

3.
15
E
-0
5

1.
24
E
-0
3

0.
55

-1
.1
7E

-0
3

1.
89
E
-0
3

0.
52

1.
05
E
-0
3

1.
86
E
-0
3

0.
58

1.
69
E
-0
3

2.
37
E
-0
3

u
rb
an
sq

0.
88

3.
91
E
-0
5

2.
23
E
-0
5

0.
50

5.
70
E
-0
6

1.
26
E
-0
5

0.
47

-3
.9
9E

-0
6

1.
71
E
-0
5

0.
47

5.
99
E
-0
6

1.
69
E
-0
5

0.
58

1.
54
E
-0
5

2.
19
E
-0
5

p
op
14
00

0.
20

3.
67
E
-1
1

6.
21
E
-1
0

0.
37

1.
48
E
-1
0

6.
55
E
-1
0

0.
29

7.
38
E
-1
1

8.
49
E
-1
0

0.
32

3.
60
E
-1
0

1.
06
E
-0
9

0.
28

3.
08
E
-1
2

9.
27
E
-1
0

n
et
m
ig
r

0.
20

-3
.5
5E

-1
0

7.
42
E
-0
9

0.
35

-2
.3
7E

-1
0

7.
47
E
-0
9

0.
38

6.
54
E
-0
9

1.
47
E
-0
8

0.
29

1.
79
E
-1
1

1.
25
E
-0
8

0.
31

-4
.0
9E

-0
9

1.
30
E
-0
8

et
h
n
ic

0.
21

2.
56
E
-0
3

0.
03

0.
35

-1
.2
9E

-0
4

0.
03

0.
29

-4
.7
9E

-0
3

0.
04

0.
45

-0
.0
4

0.
07

0.
34

-0
.0
2

0.
05

ru
gg
ed

0.
22

1.
64
E
-0
3

0.
01

0.
36

2.
37
E
-0
4

0.
01

0.
33

-3
.0
5E

-0
3

0.
01

0.
27

-5
.1
6E

-0
4

0.
01

0.
50

-0
.0
1

0.
02

co
as
tp
ro
x

0.
20

1.
71
E
-0
4

0.
02

0.
37

-2
.2
8E

-0
3

0.
02

0.
51

-0
.0
3

0.
04

0.
29

-4
.4
1E

-0
3

0.
03

0.
29

-1
.3
4E

-0
3

0.
03

co
as
tb
or
d

0.
22

-5
.6
8E

-0
8

3.
42
E
-0
7

0.
39

-1
.1
1E

-0
7

3.
48
E
-0
7

0.
37

2.
56
E
-0
7

5.
69
E
-0
7

0.
27

-3
.0
5E

-0
8

4.
38
E
-0
7

0.
47

-5
.2
2E

-0
7

8.
08
E
-0
7

ar
ea

0.
20

-2
.8
8E

-1
0

2.
97
E
-0
9

0.
37

-6
.6
4E

-1
0

3.
19
E
-0
9

0.
38

2.
60
E
-0
9

6.
14
E
-0
9

0.
33

2.
15
E
-0
9

5.
50
E
-0
9

0.
42

-3
.9
6E

-0
9

7.
26
E
-0
9

ex
tr
em

e
0.
28

-2
.0
2E

-0
3

5.
28
E
-0
3

0.
42

-1
.8
9E

-0
3

4.
39
E
-0
3

0.
29

-6
.6
4E

-0
4

4.
80
E
-0
3

0.
28

-1
.0
8E

-0
3

5.
28
E
-0
3

0.
31

-1
.8
3E

-0
3

0.
01

re
so
u
re
n
ts

0.
24

3-
47
E
-0
4

1.
29
E
-0
3

0.
38

-3
.2
7E

-0
4

1.
14
E
-0
3

0.
61

-2
.5
9E

-0
3

2.
87
E
-0
3

0.
40

-1
.2
2E

-0
3

2.
32
E
-0
3

0.
53

-2
.2
3E

-0
3

2.
95
E
-0
3

la
ti
tu
d
e

0.
89

2.
02
E
-0
3

1.
06
E
-0
3

0.
73

7.
88
E
-0
4

6.
99
E
-0
4

0.
74

1.
26
E
-0
3

1.
04
E
-0
3

0.
79

1.
68
E
-0
3

1.
22
E
-0
3

0.
88

2.
06
E
-0
3

1.
16
E
-0
3

co
lo
n
h
er
it

0.
23

-3
.7
5E

-0
3

0.
03

0.
40

-0
.0
1

0.
03

0.
63

-0
.0
6

0.
06

0.
33

-0
.0
1

0.
04

0.
51

-0
.0
5

0.
07

go
ve
x
p

0.
35

1.
26
E
-0
3

2.
39
E
-0
3

0.
47

9.
65
E
-0
4

1.
73
E
-0
3

0.
35

8.
35
E
-0
4

2.
14
E
-0
3

0.
35

1.
02
E
-0
3

2.
40
E
-0
3

0.
29

4.
55
E
-0
4

1.
98
E
-0
3

d
em

o
cr
ac
y

0.
21

4.
87
E
-0
5

1.
81
E
-0
3

0.
41

8.
00
E
-0
4

2.
07
E
-0
3

0.
44

2.
15
E
-0
3

3.
80
E
-0
3

0.
41

2.
09
E
-0
3

3.
86
E
-0
3

0.
39

1.
93
E
-0
3

3.
89
E
-0
3

in
tw
ar

0.
22

3.
40
E
-0
3

0.
02

0.
35

9.
78
E
-0
4

0.
01

0.
68

0.
04

0.
04

0.
31

0.
01

0.
02

0.
28

-2
.8
9E

-0
3

0.
02

in
d
ep

0.
47

-4
.7
9E

-0
5

6.
71
E
-0
5

0.
61

-4
.2
3E

-0
5

5.
15
E
-0
5

0.
84

-1
.4
8E

-0
4

9.
92
E
-0
5

0.
64

-8
.6
6E

-0
5

9.
01
E
-0
5

0.
57

-8
.1
6E

-0
5

9.
97
E
-0
5

tr
ad
e

0.
26

8.
48
E
-0
5

2.
58
E
-0
4

0.
37

3.
54
E
-0
5

1.
91
E
-0
4

0.
30

2.
79
E
-0
5

2.
58
E
-0
4

0.
27

-4
.2
7E

-0
6

2.
56
E
-0
4

0.
27

2.
10
E
-0
5

2.
73
E
-0
4

gd
p

0.
21

-1
.9
5E

-1
0

3.
51
E
-0
9

0.
36

3.
21
E
-1
0

3.
45
E
-0
9

0.
32

1.
37
E
-0
9

5.
37
E
-0
9

0.
28

8.
76
E
-1
0

5.
16
E
-0
9

0.
30

1.
41
E
-0
9

5.
86
E
-0
9

gd
p
p
c

0.
21

-5
.4
4E

-0
8

1.
10
E
-0
6

0.
42

-5
.0
7E

-0
7

1.
93
E
-0
6

0.
49

1.
09
E
-0
6

2.
27
E
-0
6

0.
31

-5
.3
9E

-0
7

2.
26
E
-0
6

0.
29

2.
77
E
-0
7

1.
99
E
-0
6

gd
p
p
cs
q

0.
21

1.
24
E
-1
2

1.
39
E
-1
1

0.
46

1.
13
E
-1
1

2.
53
E
-1
1

0.
45

1.
07
E
-1
1

2.
76
E
-1
1

0.
29

6.
27
E
-1
2

2.
79
E
-1
1

0.
29

-4
.8
4E

-1
2

2.
53
E
-1
1

m
an
u
f

0.
21

7.
46
E
-0
5

1.
05
E
-0
3

0.
41

4.
24
E
-0
4

1.
16
E
-0
3

0.
30

-5
.0
9E

-0
6

1.
40
E
-0
3

0.
40

1.
13
E
-0
3

2.
19
E
-0
3

0.
40

1.
15
E
-0
3

2.
28
E
-0
3

se
rv
ic
es

0.
24

2.
50
E
-0
4

9.
94
E
-0
4

0.
37

1.
88
E
-0
4

8.
51
E
-0
4

0.
76

3.
16
E
-0
3

2.
49
E
-0
3

0.
34

6.
15
E
-0
4

1.
53
E
-0
3

0.
29

2.
10
E
-0
4

1.
25
E
-0
3

af
ri
ca

0.
29

0.
01

0.
03

0.
45

0.
01

0.
02

0.
38

0.
02

0.
04

0.
35

0.
01

0.
04

0.
30

0.
01

0.
03

as
ia

0.
30

-0
.0
1

0.
03

0.
51

-0
.0
2

0.
03

0.
33

-2
.7
8E

-0
3

0.
03

0.
50

-0
.0
3

0.
05

0.
37

-0
.0
2

0.
04

eu
ro
p
e

0.
49

0.
04

0.
06

0.
51

0.
02

0.
04

0.
43

0.
03

0.
05

0.
50

0.
05

0.
07

0.
36

0.
02

0.
05

n
or
th
am

0.
42

-0
.0
3

0.
05

0.
42

-0
.0
1

0.
03

0.
32

0.
01

0.
04

0.
31

0.
01

0.
04

0.
29

4.
82
E
-0
3

0.
04

M
o
d
el
s

1,
18
0,
22
7

1,
89
8,
09
4

1,
57
1,
54
3

1,
56
8,
66
4

1,
51
8,
18
0

S
iz
e

8.
59

11
.9
3

12
.6
1

10
.8
7

10
.9
6

C
or
re
la
ti
on

0.
98

0.
98

0.
57

0.
69

0.
75

S
h
ri
n
ka
ge

0.
93

0.
93

0.
85

0.
87

0.
86

N
ot
e:

S
ee

T
ab
le
5

.

53



Table A5: DMSP-GHSPOP elasticities. OLS estimation.

DMSP DMSP_BK

(1) (2) (3) (5) (5) (6)

GHSPOP (in logs) 1.62*** 1.66*** 1.71*** 1.75*** 1.79*** 1.82***
(0.15) (0.16) (0.20) (0.13) (0.15) (0.18)

Primacy 17.46*** 17.34***
(5.53) (5.36)

GHSPOP*Primacy -1.21*** -1.19***
(0.36) (0.35)

Top10 10.85*** 9.82***
(2.24) (2.08)

GHSPOP*Top10 -0.80*** -0.72***
(0.18) (0.16)

Intercept -19.22*** -19.68*** -20.36*** -20.78*** -21.19*** 1.82***
(1.70) (1.88) (2.32) (1.50) (1.67) (0.18)

R2 0.54 0.54 0.54 0.56 0.56 0.56

Note: The dependendent variable is aggregate DMSP nighttime lights (in logs). The sample
is made up of 12,852 observations. All estimations include country �xed e�ects. Clustered
standard errors are reported in parentheses.*p < 0.10, **p < 0.05, ***p < 0.01.
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Figure A1: Robustness check: Cumulative distribution function of Kolmogorov-Smirnov test
p-values using exact Zipf's law as a reference and alternative nighttime lights data.
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Figure A2: Robustness check: Cumulative distribution function of Kolmogorov-Smirnov test
p-values using a Pareto distribution as a reference and alternative nighttime lights data.
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Figure A3: Robustness check: Cumulative distribution function of Kolmogorov-Smirnov test
p-values using exact Zipf's law as a reference and alternative gridded population data.
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Figure A4: Robustness check: Cumulative distribution function of Kolmogorov-Smirnov test
p-values using a Pareto distribution as a reference and alternative gridded population data.
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