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Abstract: Over the past decades, many Asian cities - especially, Chinese cities - have shared an unprecedented 

high degree of economic and geographic-demographic dynamics. It is noteworthy however, that cities 

in this region display also much heterogeneity in terms of economic performance, technological 

innovativeness, cultural profiles and spatial interaction. It is, therefore, interesting to develop an 

efficiency ranking of the multi-dimensional performance of these large cities so as to identify ‘super-

cities’, whose (socio-)economic and cultural achievements outperform others. The first aim of this 

paper is now to undertake a multi-faceted performance ranking of 12 large (global) cities in the Asian 

region, with a special focus on Chinese large cities (Hong Kong, Shanghai and Beijing), by using of a 

Super-efficient DEA (Data Envelopment Analysis). In this study, we consider 3 inputs (Number of 

Employees, Research and Development Expenditures and Cultural Resources) and 2 outputs (GDP and 

Volume of Interaction). Based on a large-scale data base and our analysis results, it appears that Hong 

Kong, Kuala Lumpur, Bangkok, Tokyo and Singapore may be regarded as a Super-efficient Cities. It 

also turns out that Osaka, Shanghai, Beijing, Seoul, Fukuoka, Mumbai and Taipei manifest themselves 

as inefficient cities. In these inefficient cities, there is clearly scope for improvement in performance, 

which requires of course an efficiency enhancement strategy, depending on the choice of productive 

inputs and achievement levels (outputs). In our modelling approach, we employ an efficiency-

improving projection model, called a Distance Friction Minimization (DFM) model in DEA. The DFM 

model is based on a generalized distance friction function and serves to improve the performance of a 

Decision-Making Unit (DMU) by identifying the most appropriate movement towards the efficiency 

frontier surface. To design a feasible and realistic improvement strategy for low-efficiency cities, we 

develop a Target-Oriented (TO) DFM model, in order to generate an appropriate efficiency-

improvement projection model. The standard TO approach specifies a target-efficiency score (TES) 

for inefficient DMUs. Next, we also develop an objective target-setting model in our TO-DFM 

approach in DEA, named the Autoconfiguration Target (AT)-DFM model. This approach is able to 

compute an input reduction value and an output increase value in order to achieve an autoconfiguration 

target-efficiency score. The second aim of this paper is to apply this newly develop AT-DFM model 

with a fixed (or indivisible) factor (FF) reflecting more realistic circumstances and requirements in an 

operational strategy for a feasible efficiency improvement. The above-mentioned new AT-DFM-FF 

model will be applied in order to provide an efficiency-improving projection for inefficiency 

enhancement of several large Asian cities, especially focused on the Chinese cities of Shanghai and 

Beijing. 
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1. Introduction: Background, Analysis Framework and Aims 

 

 

Our current world is increasingly moving towards the ‘urban century’, in which the role of large urban systems 

is becoming more and more important. Population dynamics and movement are critical in shaping this ‘New Urban 
World’ (Kourtit 2019). It is noteworthy that Japan is in a transition process towards a depopulating society as a result 

of the structural ageing process. And Korea, Thailand and even China will also become depopulating nations in the 

near future. Despite the resulting population decline in many countries, most cities in our world continue to grow. 

And most likely, Asian countries and cities will continue to be an engine of growth. In general, cities in our world 

tend to increase in number and in size. The unprecedented increases in urban population, in China - and in many 

parts of the world -, have close links with the magnetism and the economic performance of cities. In this context, 

urban agglomerations and metropolitan areas have become the engines of economic, technological, political and 

social power. Consequently, cities are not passive actors in a dynamic and open world geography. Instead, the 

awareness is rapidly growing that major agglomerations – especially mega-cities with more than 10 mln inhabitants 

− become the new ‘control and command centres’ of our world (Sassen 1991). Such large urban areas become 

contemporaneous influential powerhouses of economic activity, in combination with their creative, cognitive and 

innovative ability. Their historically centripetal and centrifugal impact is now extended from their traditional 

hinterlands to a world-wide scale in a globalizing economy. 

Over the past decades, many Asian cities - especially Chinese cities - has exhibited an unprecedented high degree 

of economic and geographic dynamics. Clearly, cities in the Asian region display much heterogeneity in terms of 

economic performance, technological innovativeness, cultural recognition and interaction. It is therefore, interesting 

to develop an efficiency ranking of the multi-dimensional performance of these large cities so as to identify ‘Asian 

super-cities’. 

In recent years, many efforts have been made to create a classification or ranking of cities based on their actual 

performance or their perceived success (see e.g. Taylor et al. 2009, Grosveld 2002, Arribas-Bel et al. 2011; Kourtit 

et al. 2012). A main challenge in current empirical research is the creation of a consistent, quantitative database that 

is suitable for a comparative, strategic urban benchmark analysis. In the extant literature on comparisons of cities 

one finds a great diversity of such approaches. Urban efficiency performance has been assessed from a broad 

perspective based on various quantitative models (Qui, Xu and Zhang (2015), Hao, Zhu and Zhong (2015), Saaty, 

and Sagir (2015), Guan and Rowe (2016), Manijeh (2016)). 

The measurement of urban performance calls for an appropriate methodological approach, in which the output-

input ratio of cities will be interpreted as a performance measure (in economics usually called efficiency or 

productivity). The assessment of urban output achievement and urban input efforts is however, fraught with many 

operational problems. In the past decades, a very effective instrument has been developed and employed, called 

Data Envelopment Analysis (DEA), which is able to confront a multidimensional set of outputs with a 

multidimensional set of inputs (see Charnes et al. 1978). An overview can be found in Suzuki and Nijkamp (2017a) 

DEA has become an established quantitative assessment tool in the evaluation literature. Already more than a 

decade ago, Seiford (2005) mentioned that he found at least 2800 published articles on DEA in various management 

and planning publications. Clearly, nowadays this number is already much higher. The DEA methodology has also 

expanded its scope towards other disciplines. Currently, in the city performance context, there are several assessment 

studies that have applied DEA models to measure economic efficiency among cities, which are regarded as so-called 

Decision-Making Units (DMUs) in the DEA jargon.  

An interesting new endeavour was developed by Anderson and Petersen (1993) who developed the Super-

Efficiency (SE hereafter) model based on the original CCR-I (input oriented) model (Charnes et al. 1978) so as to 

arrive at a complete ranking of all efficient DMUs (even though they have all initially an efficiency score equal to 

1.0). The efficiency scores from an SE-model are then obtained by eliminating the data on the DMU to be evaluated 

from the solution set in order to examine its relative effect. These values are then used to rank the initial efficient 

DMUs, and consequently, efficient DMUs may then obtain an efficiency score above 1.0, while the scores of all 

inefficient DMUs remain identical and below 1.0. This SE-DEA model has coped with a major shortcoming in the 

use of the original DEA model, so that in our application, we will use the SE-DEA model. 

A wealth of introductions into DEA and of applications to city efficiency rankings can be found in Borger et al. 

(1996), Worthington et al. (2000), Afonso et al. (2006), Suzuki et al. (2008), Nijkamp et al. (2009), Kourtit et al. 

(2013), Kourtit et al. (2017), Suzuki and Nijkamp (2016), Suzuki and Nijkamp (2017a), Suzuki et al. (2017b), and 

Suzuki and Nijkamp (2018). This large number of applied studies shows that an operational analysis of city 

efficiency in a competitive environment is an important, but also intriguing research topic in the urban and regional 

science literature. DEA has in the meantime demonstrated its great potential in providing a quantitative basis for 
comparative and benchmark studies in efficiency or productivity analysis. 

It should be noted that DEA was originally developed to analyse the relative efficiency of a DMU by constructing 
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a piecewise linear production frontier, and projecting the performance of each DMU onto that frontier. A DMU that 

is located on the frontier is efficient, whereas a DMU that is below the frontier is inefficient. The idea of DEA is 

that an inefficient DMU can become efficient by reducing its inputs, or by increasing its outputs. In the standard 

DEA approach, this is achieved by a uniform reduction in all inputs (or a uniform increase in all outputs). However, 

in principle, there are an infinite number of possible improvements that could be implemented in order to reach the 

efficiency frontier, and, hence, there are many solution trajectories, if a DMU wants to enhance its efficiency. 

It is noteworthy that, in the past few decades, the existence of many possible efficiency improvement solutions 

has prompted a rich literature on the methodological integration of Multiple Objective Linear Programming (MOLP) 

and DEA models. Here, we provide a concise overview (see for more information Suzuki and Nijkamp 2017a). One 

of the first contributions was offered by Golany (1988), who proposed an interactive MOLP procedure, which aimed 

to generate a set of efficient points for a DMU. This model allows a decision maker to select the preferred set of 

output levels, given the prior input levels. Later on, Thanassoulis and Dyson (1992), Joro et al. (1998), Halme et al. 

(1999), Frei et al. (1999), Korhonen and Siljamäki (2002), Korhonen et al. (2003), Silva et al. (2003), Lins et al. 

(2004), Washio et al. (2012), and Yang and Morita (2013) also developed complementary efficiency improvement 

solutions. In particular, Suzuki et al. (2010) proposed a new projection model, called a Distance Friction 

Minimisation (DFM) model. In this approach, a generalised distance indicator is employed to assist a DMU so as 

to improve its efficiency by a movement towards the efficiency frontier surface. Of course, the direction of the 

efficiency improvement depends on the input/output data characteristics of the DMU. It is then plausible to 

approximate suitable projection functions for the minimisation of distance by using a Euclidean distance in weighted 

space. A convenient form of multidimensional projection functions that serves to improve efficiency is given by a 

Multiple Objective Quadratic Programming (MOQP) model, which aims to minimise the aggregated input 

reductions, as well as the aggregated output increases. Thus, the DFM approach can generate a new contribution to 

efficiency enhancement problems in decision analysis by employing a weighted Euclidean projection function, 

while, at the same time, it might address both an input reduction and output increase. 

The DFM model is able to calculate either an optimal input reduction value or an optimal output increase value 

in order to reach an efficiency score of 1.0. Clearly, in reality this might be hard to reach for low-efficiency DMUs. 

Recently, Suzuki et al. (2015) developed an adjusted DEA model, which emerged from a blend of the DFM and the 

target-oriented (TO) approach based on a Super-Efficiency (SE) model, in order to generate an appropriate 

efficiency-improving projection model. The TO approach specifies a target-efficiency score (TES) for inefficient 

DMUs. This approach is able to compute both an input reduction value and an output increase value in order to 

achieve the pre-defined TES. However, this TO approach assumes that TES is set by a decision-maker or policy- 

maker, which may incorporate subjective elements. Based on this approach, Suzuki and Nijkamp (2019) developed 

an objective target setting model in the TO-DFM approach, namely the Autoconfiguration Target (AT) - DFM model. 

This approach can compute an input reduction value and an output increase value in order to achieve a TES in a 

more objective way. However, in many cases, the input and output factors may not be flexible or adjustable due to 

the indivisible nature or inertia in the input and output factors. For example, if road infrastructure is an input variable, 

it is evident that one cannot build half a road. Usually, the DEA model does not allow for a non-controllable or a 

fixed input factor. Therefore, it is desirable to integrate the AT-DFM model with a fixed factor (FF) model (see 

Suzuki et al. 2011) in order to cope with realistic circumstances in our search for a feasible efficiency improvement 

projection. This will be further pursued in the present paper. 

Based on these backgrounds, the first aim of this paper is now to undertake a multi-faceted performance ranking 

of 12 large cities in the Asian region, especially focused on Chinese large cities (Hong Kong, Shanghai and Beijing) 

by means of a SE-DEA.  

In this paper, we will use a data set on measurable indicators for the cities under consideration, viz. the Global 

Power City Index (GPCI), produced by the Institute for Urban Strategies and organized by the Mori Memorial 

Foundation in Tokyo. We will use here data for the year 2016, which offer a great potential for a comparative 

benchmark analysis for large Asian cities. We have selected as relevant DMUs the available set of 12 Asian cities 

from the GPCI system. For our comparative performance analysis of the cities under consideration, we consider as 

evaluation criteria: economic performance, technological innovativeness, interaction, and cultural resources. In this 

comparative analysis, we will conceive of ‘cultural resource’ as a production factor that cannot be flexibly adjusted. 

The second aim of this paper is to integrate the newly created AT-DFM model with a fixed factor (FF) so as to 

consider realistic circumstances and requirements in an operational strategy for a feasible efficiency improvement. 

The above-mentioned new AT-DFM-FF model will in the present study be applied in order to provide an efficiency-

improving projection for inefficiency enhancement of several large Asian cities, with a special focus on Chinese 

cities. 

The paper is organised as follows. Section 2 will summarise briefly our DFM methodology, while Section 3 

proposes the newly developed model, which is a Fixed Factor (FF) model in the framework of the AT-DFM model. 

Next, Section 4 presents an application of performance assessment of 12 large Asian cities. Then, Section 5 offers 
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the efficiency improvement projection results based on our new AT-DFM-FF model for inefficient cities. Finally, 

Section 6 draws some conclusions. 

 

 

2. Outline of the Distance Friction Minimisation (DFM) Approach 
 

We will first offer a brief description of the normal DFM approach. The standard Charnes et al. (1978) model 

(abbreviated hereafter as the CCR-I (input) model) for a given DMUj (𝑗 = 1, ⋯ , 𝐽) to be evaluated in any trial k 

(where k ranges over 1, 2 …, J) may be represented as the following fractional programming (FPk) problem (see 

for full description Suzuki and Nijkamp 2017a): 

 

 (FPk)     𝑚𝑎𝑥
𝑣,𝑢

  𝜃 =
∑ 𝑢𝑠𝑦𝑠𝑘𝑠

∑ 𝑣𝑚𝑥𝑚𝑘𝑚
 

s.t.      
∑ 𝑢𝑠𝑦𝑠𝑗𝑠

∑ 𝑣𝑚𝑥𝑚𝑗𝑚
≤ 1 (𝑗 = 1, ⋯ , 𝐽)                   (1) 

  𝑣𝑚 ≥ 0, 𝑢𝑠 ≥ 0, 

 

where 𝜃 represents an objective variable function (efficiency score); xmj is the volume of input m (m = 1,…, M) for 

DMUj(j = 1,…,J); ysj is the output s (s = 1,…,S) of DMU j; and vm and us are the weights given to input m and output 

s, respectively. Model (1) is often called an input-oriented CCR model, while its reciprocal (i.e. an interchange of 

the numerator and denominator in the objective function (1) with a specification as a minimisation problem under 

an appropriate adjustment of the constraints) is usually known as an output-oriented CCR model. Model (1) is 

obviously a fractional programming model, which may be solved stepwise by first assigning an arbitrary value to 

the denominator in (1), and next maximising the numerator (see also Cooper et al. (2006) and Suzuki et al. (2010)). 

The improvement projection (�̂�𝑘, �̂�𝑘) can now be defined in (2) and (3) as: 

 

        �̂�𝑘 = 𝜃∗𝑥𝑘 − 𝑠−∗;        (2) 

        �̂�𝑘 = 𝑦𝑘 + 𝑠+∗         (3) 

] 

These equations indicate that the efficiency of (xk, yk) for DMUk can be improved if the input values are reduced 

radially by the ratio 𝜃∗ and the input excesses 𝑠−∗ are eliminated (see Figure 1). It should be noted that the original 

DEA models presented in the literature have focused on a uniform input reduction or on a uniform output increase 

in the efficiency-improvement projections, as shown in Figure 1 (𝜃∗=OC’/OC).  

 

 
Figure 1 Illustration of original DEA projection in input space 

 

The (v*, u*) values obtained as an optimal solution for formula (1) result in a set of optimal weights for DMUk. 

Hence, (v*, u*) is the set of most favourable weights for DMUk , measured on a ratio scale. Thus, vm
* is the optimal 

weight for input item m, and its magnitude expresses how much in relative terms the item is contributing to efficiency. 

Similarly, us
* does the same for output item s. These values show not only which items contribute to the performance 

of DMUk, but also the extent to which they do so. In other words, it is possible to express the distance frictions (or 

alternatively, the potential increases) in improvement projections. 

We use next the optimal weights us
* and vm

* from (1), and then describe the efficiency improvement projection 

model (see also Suzuki et al. (2010)). In this approach, a generalised distance indicator is employed to assist a DMU 

in improving its efficiency by a movement towards the efficiency frontier surface. Of course, the direction of the 

efficiency improvement depends on the input/output data characteristics of the DMU. It is now appropriate to define 

the projection functions for the minimisation of distance by using a Euclidean distance in weighted space. As 

mentioned earlier, a suitable form of multidimensional projection functions that serves to improve efficiency is 

given by a Multiple Objective Quadratic Programming (MOQP) model, which aims to minimise the aggregated 

Input 1 (x1) 

Input 2 (x2) 

O 
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input reductions, as well as the aggregated output increases. This DFM approach can generate a new contribution 

to efficiency enhancement problems in decision analysis by employing a weighted Euclidean projection function, 

and, at the same time, it might address both an input reduction and output increase. Here, we will only briefly sketch 

the various steps (for more details, we refer to Suzuki and Nijkamp 2017a).  

First, the distance function Frx and Fry is specified by means of (4) and (5), which are defined by the Euclidean 

distance. Next, the following MOQP is solved by using 𝑑𝑚𝑘
𝑥  (a reduction of distance for xmk) and 𝑑𝑠𝑘

𝑦
 (an increase 

of distance for ysk) as variables: 

 

         min 𝐹𝑟𝑥 = √∑ (𝑣𝑚
∗ 𝑥𝑚𝑘 − 𝑣𝑚

∗ 𝑑𝑚𝑘
𝑥 )2

𝑚        (4) 

 min 𝐹𝑟𝑦 = √∑ (𝑢𝑠
∗𝑦𝑠𝑘 − 𝑢𝑠

∗𝑑𝑠𝑘
𝑦

)
2

𝑠      (5) 

     s.t.  ∑ 𝑣𝑚
∗ (𝑥𝑚𝑘 − 𝑑𝑚𝑘

𝑥 )𝑚 =
2𝜃∗

1+𝜃∗                          (6) 

∑ 𝑢𝑠
∗(𝑦𝑠𝑘 + 𝑑𝑠𝑘

𝑦
)𝑠 =

2𝜃∗

1+𝜃∗       (7) 

𝑥𝑚𝑘 − 𝑑𝑚𝑘
𝑥 ≥ 0       (8) 

𝑑𝑚𝑘
𝑥 ≥ 0        (9) 

𝑑𝑠𝑘
𝑦

≥ 0,        (10) 

 

where 𝑥𝑚𝑘 is the amount of input item m for any arbitrary inefficient DMUk, while 𝑦𝑠𝑘is the amount of output 

item s for any arbitrary inefficient DMUk. The constraint functions (6) and (7) refer to the target values of input 

reduction and output augmentation. The proportional distribution of the input and output contributions in achieving 

efficiency is established as follows. The total efficiency gap to be covered by inputs and outputs is (1-θ*). The input 

and the output side contribute according to their initial levels 1 and θ*, implying shares θ*/(1+θ*) and 1/(1+θ*) in 

the improvement contribution. Clearly, the contributions from both sides equal (1-θ*) [θ*/(1+θ*)], and (1-θ*) 

[1/(1+θ*)]. Hence, we derive for the input reduction targets and the output augmentation targets the following 

expressions:  

input reduction target:∑ 𝑣𝑚
∗ (𝑥𝑚𝑘 − 𝑑𝑚𝑘

𝑥 )𝑚 = 1 − (1 − 𝜃∗) ×
1

(1+𝜃∗)
=

2𝜃∗

1+𝜃∗.          (11) 

output augmentation target: ∑ 𝑢𝑠
∗(𝑦𝑠𝑘 + 𝑑𝑠𝑘

𝑦
)𝑠 = 𝜃∗ + (1 − 𝜃∗) ×

𝜃∗

(1+𝜃∗)
=

2𝜃∗

1+𝜃∗
.  (12) 

 
An illustration of this approach is given in Figure 2. 

 
Figure 2 DFM model with an illustration of the relative contribution of inputs and outputs to closing 

the efficiency gap 

 

It is now possible to determine each optimal distance 𝑑𝑚𝑘
𝑥∗  and 𝑑𝑠𝑘

𝑦∗
 by using the MOQP model (4) - (10). The 

distance minimisation solution for an inefficient DMUk can be expressed by means of formulas (13) and (14): 

 

𝑥𝑚𝑘
∗ = 𝑥𝑚𝑘 − 𝑑𝑚𝑘

𝑥∗ ;                                          (13) 

𝑦𝑠𝑘
∗ = 𝑦𝑠𝑘 + 𝑑𝑠𝑘

𝑦∗
.        (14) 

 

By means of the DFM model described above, it is possible to present a new efficiency-improvement solution 

based on the standard CCR projection. This means an increase in new promising options for efficiency-improvement 
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strategies in DEA. The main advantage of the DFM model is that it yields an outcome on the efficient frontier that 

is as close as possible to the DMU’s input and output profile (see Figure 3). 

 

 

   
Figure 3 Degree of improvement of the DFM and the CCR projection in weighted input space 

 

 

3.Design of an AT-DFM-FF Model 

 

As mentioned above, the DFM model is able to calculate either an optimal input reduction value or an optimal 

output increase value in order to reach an efficiency score of 1.0. Clearly, in reality this might be hard to reach for 

low-efficiency DMUs. Recently, Suzuki et al. (2015) presented a newly developed adjusted DEA model, which 

emerged from a blend of the DFM and the target-oriented (TO) approach based on a Super-Efficiency (SE) model, 

in order to generate an appropriate efficiency-improving projection model. The TO approach specifies a target-

efficiency score (TES) for inefficient DMUs. This approach is able to compute both an input reduction value and 

an output increase value in order to achieve the pre-defined TES. However, this TO approach assumes that TES is 

set by a decision or policy maker, which may introduce subjective elements. Based on this background, Suzuki and 

Nijkamp (2019) developed an objective target setting model in the TO-DFM approach, namely the 

Autoconfiguration Target (AT) - DFM model. This approach can compute an input reduction value and an output 

increase value in order to achieve a TES in objective way. However, in many cases, the input or output factor may 

not be flexible or adjustable due to the indivisible nature or inertia in the input or output factor. Usually, the DEA 

model does not allow for a non-controllable or a fixed (integer) factor. Therefore, it is desirable to integrate the AT-

DFM model with a fixed factor (FF) model (see Suzuki et al. 2011) in order to cope with realistic circumstances in 

our search for a feasible efficiency improvement projection. 

This paper proposes a new, so-called AT-DFM Fixed Factor (AT-DFM-FF hereafter) model, which incorporates 

the Autoconfiguration Target concept and Fixed Factor in a statistical way so as to set a TES. The AT-DFM-FF 

approach comprises the following steps: 

 

Step 1. The Autoconfiguration Target Efficiency Score (ATES) with a Fixed Factor of case α for DMUk (hereafter 

𝐴𝑇𝐸𝑆𝑘
𝐹𝐹−𝛼) is set by the following specific statistical method. We compute here an average efficiency score for all 

DMU set μ, and a standard deviation of an efficiency score for all DMU set σ. 

The SE-DEA model usually computes an efficiency score above 1.0 for efficient DMUs, although the original 

CCR model usually compute an efficiency score just equal 1.0 for efficient DMUs. This means that μ and σ depend 

on the specification of the model. Based on these observations, the present paper taken for granted that all efficiency 

scores for all efficient DMUs just hold at the value of 1.0. This helps maintain an objective setting for ATES. 

Based on these statistical values, the ATESFF values for DMUk are set as follows: 

⚫ Case 1: 0 < θ* <μ − 2σ, then 𝐴𝑇𝐸𝑆𝑘 
𝐹𝐹−1= μ − 2σ (if μ − 2σ < 0, then this case is eliminated) 

⚫ Case 2: μ − 2σ < θ* <μ − σ, then 𝐴𝑇𝐸𝑆𝑘
𝐹𝐹−2 = μ − σ  (if μ − 2σ < 0, then we put it 0) 

⚫ Case 3: μ − σ < θ* <μ, then 𝐴𝑇𝐸𝑆𝑘
𝐹𝐹−3 = μ (if μ − σ < 0, then we put it 0) 

⚫ Case 4: μ < θ* <μ + σ, then 𝐴𝑇𝐸𝑆𝑘
𝐹𝐹−4 = μ + σ (if μ + σ > 1, then we put it 1) 

⚫ Case 5: μ + σ < θ* <μ + 2σ, then 𝐴𝑇𝐸𝑆𝑘
𝐹𝐹−5 = μ + 2σ (if μ + 2σ > 1, then we put it 1) 

⚫ Case 6: μ + 2σ < θ* < 1, then 𝐴𝑇𝐸𝑆𝑘 
𝐹𝐹−6=1(this is just same as a normal DFM model).  

 

An illustration of this ATESFF concept is given in Figure 4. 
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Step 2. Solve 𝐴𝑇𝐸𝑆𝑘
𝐹𝐹−𝛼 =

𝜃∗+
𝑀𝑃𝑘

𝐹𝐹−𝛼(1−𝜃∗)(𝜃∗−∑ 𝑢𝑠
∗𝑦𝑠𝑘𝑠∈𝑁𝐷 )

(1−∑ 𝑣𝑚
∗ 𝑥𝑚𝑘𝑚∈𝑁𝐷 )+(𝜃∗−∑ 𝑢𝑠

∗𝑦𝑠𝑘𝑠∈𝑁𝐷 )

1−
𝑀𝑃𝑘

𝐹𝐹−𝛼(1−𝜃∗)(1−∑ 𝑣𝑚
∗ 𝑥𝑚𝑘𝑚∈𝑁𝐷 )

(1−∑ 𝑣𝑚
∗ 𝑥𝑚𝑘𝑚∈𝑁𝐷 )+(𝜃∗−∑ 𝑢𝑠

∗𝑦𝑠𝑘𝑠∈𝑁𝐷 )

.   (15) 

 

Then we get 𝑀𝑃𝑘
𝐹𝐹−𝛼, which is a Magnification Parameter of 𝐴𝑇𝐸𝑆𝑘

𝐹𝐹−𝛼. The parameter 𝑀𝑃𝑘
𝐹𝐹−𝛼 assumes an 

intermediate role by adjusting the input reduction target and the output increase target in formulas (19) and (20) in 

order to ensure an alignment of the 𝐴𝑇𝐸𝑆𝑘
𝐹𝐹−𝛼  and DFM projection score for DMUk. 

 
Figure 4 An illustration of the concept of ATESFF 

 

Step 3. Solve the AT-DFM-FF model by using formulas (16) – (23). Then, an optimal input reduction value and 

output increase value to reach a 𝐴𝑇𝐸𝑆𝑘
𝛼 can be calculated as follows: 

 

min 𝐹𝑟𝑥 = √∑ (𝑣𝑚
∗ 𝑥𝑚𝑘 − 𝑣𝑚

∗ 𝑑𝑚𝑘
𝑥 )2

𝑚∈𝐷 ;               (16) 

min 𝐹𝑟𝑦 = √∑ (𝑢𝑠
∗𝑦𝑠𝑘 − 𝑢𝑠

∗𝑑𝑠𝑘
𝑦

)
2

𝑠∈𝐷 ;                         (17) 

s.t.   𝐴𝑇𝐸𝑆𝑘
𝐹𝐹−𝛼 =

∑ 𝑢𝑠
∗(𝑦𝑠𝑘+𝑑𝑠𝑘

𝑦
)+∑ 𝑢𝑠

∗𝑦𝑠𝑘𝑠∈𝑁𝐷𝑠∈𝐷

∑ 𝑣𝑚
∗ (𝑥𝑚𝑘−𝑑𝑚𝑘

𝑥 )+∑ 𝑣𝑚
∗ 𝑥𝑚𝑘𝑚∈𝑁𝐷𝑚∈𝐷

;             (18) 

∑ 𝑣𝑚
∗ (𝑥𝑚𝑘 − 𝑑𝑚𝑘

𝑥 ) + ∑ 𝑣𝑚
∗ 𝑥𝑚𝑘𝑚∈𝑁𝐷𝑚∈𝐷 = 1 −

𝑀𝑃𝑘
𝐹𝐹−𝛼(1−𝜃∗)(1−∑ 𝑣𝑚

∗ 𝑥𝑚𝑘𝑚∈𝑁𝐷 )

(1−∑ 𝑣𝑚
∗ 𝑥𝑚𝑘𝑚∈𝑁𝐷 )+(𝜃∗−∑ 𝑢𝑠

∗𝑦𝑠𝑘𝑠∈𝑁𝐷 )
;  (19) 

         ∑ 𝑢𝑠
∗(𝑦𝑠𝑘 + 𝑑𝑠𝑘

𝑦
) + ∑ 𝑢𝑠

∗𝑦𝑠𝑘𝑠∈𝑁𝐷𝑠∈𝐷 = 𝜃∗ +
𝑀𝑃𝑘

𝐹𝐹−𝛼(1−𝜃∗)(𝜃∗−∑ 𝑢𝑠
∗𝑦𝑠𝑘𝑠∈𝑁𝐷 )

(1−∑ 𝑣𝑚
∗ 𝑥𝑚𝑘𝑚∈𝑁𝐷 )+(𝜃∗−∑ 𝑢𝑠

∗𝑦𝑠𝑘𝑠∈𝑁𝐷 )
;   (20) 

𝑥𝑚𝑘 − 𝑑𝑚𝑘
𝑥 > 0;                               (21) 

𝑑𝑚𝑘
𝑥 ≥ 0;         (22) 

𝑑𝑠𝑘
𝑦

≥ 0,           (23) 

 

where the symbols 𝑚 ∈ 𝐷 and 𝑠 ∈ 𝐷 refer to the set of ‘discretionary’ inputs and outputs, and the symbols 𝑚 ∈
𝑁𝐷 and 𝑠 ∈ 𝑁𝐷refer to the set of ‘non-discretionary’ inputs and outputs. 

The meaning of functions (16) and (17) is to consider only the distance friction of discretionary inputs and outputs. 

The constraint functions (19) and (20) are incorporated in the non-discretionary factors for the efficiency gap. The 

target values for input reduction and output augmentation with a balanced allocation depend on all total input-output 

scores and fixed factor situations, as presented in Figure 5 in the case of 𝐴𝑇𝐸𝑆𝑘
𝐹𝐹−𝛼 = 1.000 (i.e. 𝑀𝑃𝑘

𝐹𝐹−𝛼 =
1.000). The calculated result of (19) will then coincide with the calculated result of (20).  

 

Finally, the optimal solution for an inefficient DMUk can now be expressed by means of (24) - (27): 

 

 𝑥𝑚𝑘
∗∗ = 𝑥𝑚𝑘 − 𝑑𝑚𝑘

𝑥∗ − 𝑠−∗∗, 𝑚 ∈ 𝐷;     (24) 

𝑦𝑠𝑘
∗∗ = 𝑦𝑠𝑘 + 𝑑𝑠𝑘

𝑦∗
+ 𝑠+∗∗, 𝑠 ∈ 𝐷;     (25) 

 𝑥𝑚𝑘
∗∗ = 𝑥𝑚𝑘, 𝑚 ∈ 𝑁𝐷;      (26) 

 𝑦𝑠𝑘
∗∗ = 𝑦𝑠𝑘, 𝑠 ∈ 𝑁𝐷.      (27)  

 

0 μ − 2σ μ − σ μ μ + σ μ + 2σ 1 

Case 1 
Case 2 

Case 3 
Case 4 

Case 5 
Case 6 

𝐴𝑇𝐸𝑆𝑘
FF−1 𝐴𝑇𝐸𝑆𝑘

𝐹𝐹−2 𝐴𝑇𝐸𝑆𝑘
𝐹𝐹−3 𝐴𝑇𝐸𝑆𝑘

𝐹𝐹−4 𝐴𝑇𝐸𝑆𝑘
𝐹𝐹−5 𝐴𝑇𝐸𝑆𝑘

𝐹𝐹−6 
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The slacks ,  and ,  are not incorporated in (26) and (27), because these factors 

are ‘fixed ’ or  ‘non-discretionary’ inputs and outputs, in a way similar to the Banker and Morey (1986) model. 

This approach will hereafter be described as the AT-DFM-FF approach. 

An illustration of the AT-DFM-FF model is given in Figure 6. 

From Figure 6, we also note that the AT-DFM-FF projection does not reach the efficiency frontier; thus, it may 

be one of the improvement goal projections to reach ATESFF lower than 1.0. 

 

 
Figure 5 Distribution of the total efficiency gap (in the case of 𝑨𝑻𝑬𝑺𝒌

𝑭𝑭−𝜶 = 𝟏. 𝟎𝟎𝟎 (𝑴𝑷𝒌
𝑭𝑭−𝜶 = 𝟏. 𝟎𝟎𝟎)) 

 

 
Figure 6 Illustration of the AT-DFM-FF model in input space 
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4.  Performance Assessment of Asian Super-Cities 

4.1 Database and analytical framework 

 

For a systematic operational comparison of the Asian cities’ performance outcomes, our empirical approach uses 

a unique and extensive data set on measurable indicators for the cities under consideration, viz. the Global Power 

City Index (GPCI), produced by the Institute for Urban Strategies and organized by the Mori Memorial Foundation  

in Tokyo. We will use here data for the year 2016, which offer a great potential for a comparative benchmark 

analysis for the Asian super cities. The GPCI database will thus be used here as a strategic tool to evaluate and to 

rank the comprehensive strategic power determinants of 12 large cities in this region, in terms of their strengths and 

their weaknesses.  

The GPCI data base is a multi-annual world-wide data system on large cities, in which the comprehensive 

performance scores and rankings of these global cities are based on six main assessment categories, namely: 

Economy, Research & Development, Cultural Interaction, Livability, Environment, and Accessibility. Each of these 

main indicators classes is subdivided into a set of appropriate and measurable sub-indicators, so that finally a strictly 

consistent and carefully tested database on approx. 70 sub-indicators related to many world cities (40 in total) is 

created. The 70 indicators break down into 59 indicators based on statistics or numerical data, and 11 indicators 

using original questionnaires, some of which combine the scores from the questionnaires with additional  

numerical data. Thus the composition of data is as follows: 

(1) Statistical sources (59 indicators) 

• Whenever possible, official statistics are used as main sources of data. 

• Quantitative data not derived from official statistics are taken from reliable sources such as academic 

research    papers or other forms of publications which are clearly sourced. 

(2) Original questionnaires (11 indicators) 

• Questionnaires on residents and workers aimed at those living and/ or working in a target city. 

• Questionnaires of experts aimed at those with experience living in and /or visiting multiple target cities. 

This database is published annually since 2009. The 12 Asian cities used in our analysis are taken from this 

database. All further details are available in the above mentioned GPCI report.  

In this paper we refer now to the “score by indicator” datasets in the GPCI report. Most of these indicator data 

are converted into a standardized indicator value, falling in between 100 and 0, so that the data can be evaluated 

according to a uniform standard measurement. The highest performance of an indicator receives a score equal to 

100, and the poorest a score of 0.  

The DMUs (decision-making units or cities) used in our comprehensive analysis are listed in Table 1. 

 

Table 1 A list of Asian super cities 

Bangkok Osaka 

Beijing Seoul 

Fukuoka Shanghai 

Hong Kong Singapore 

Kuala Lumpur Taipei 

Mumbai Tokyo 

 

For our comparative performance analysis of the cities under consideration, we consider as evaluation criteria: 

economic performance, technological innovativeness, cultural resource and interaction. Based on this viewpoint, 

we will select and introduce now 3 relevant input and 2 relevant output items as follows: 

Input (I): 

• (I1) Number of Employees 

• (I2) Research and Development Expenditures 

• (I3) Cultural Resources (The value of this indicator was calculated by adding up the 'Environment of 

Creative Activities' and 'Opportunities of Cultural, Historical and Traditional Interaction') 

Output (O): 

• (O1) Nominal GDP 

• (O2) Volume of Interaction (The score of this indicator was calculated by adding up the indicator scores 

'Number of Visitors from Abroad' and 'Number of International Students') 
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Based on this background information, this paper will analyze the performance of Asian large cities based on 3 

input and 2 outputs, as shown in Figure 7. 

 

 
Figure 7 Input and Output items 

 

 

4.2 Efficiency evaluation based on the Super-Efficiency CCR-I model 

 

 The performance assessment results for the 12 Asian large cities based on the SE-CCR-I model are presented in 

Figure 8. 

 

 
Figure 8 Efficiency scores for Asian large cities based on the SE-DEA model 

 

From this figure, it can be seen that Hong Kong, Kuala Lumpur, Bangkok, Tokyo and Singapore may be regarded 

as super-efficient cities in the Asian context. It also appears that Osaka, Shanghai, Beijing, Seoul, Fukuoka, Mumbai 

and Taipei are evaluated to be inefficient cities. 

We will now especially focus on Chinese cites. It can be seen that Hong Kong is a top performing city in the 

Asian region. On the other hand, Shanghai and Beijing are evaluated to be inefficient cities. Thus, these inefficient 

Chinese cities may need an efficiency enhancement strategy. 

 

 

 

 

12 Asian cities 

(I) Number of Employees 

(O) Volume of Interaction 

(I) Research and Development Expenditure 

(O) GDP 

(I) Cultural Resources 
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4.3 Optimum weights for input and output items 

 

As mentioned in the above section, Chinese cities may have similar characteristics. We will especially focus on 

the Chinese context here, and we will analyze and consider this from the viewpoint of optimum weights for input 

and output items. The optimum weight is the set of most favorable weights for each DMU, so that we can find the 

relative importance of each indicator with reference to the value of each input and output items for each DMU. 

These values show not only which items contribute to the performance of a DMU, but also to what extent they do 

so. The optimum weights for input and output items for each city are presented in Figure 9 and 10. 

 

 
Figure 9 Optimum weights for input items 

 

 
Figure 10 Optimum weights for output items 
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From Figure 9 and 10, it can be seen that, for instance, Hong Kong obtains a weight for Cultural Resources equal 

to 1.000 in its inputs, while it obtains for GDP a weight of 5.085 in its output. It can also be seen that Shanghai 

obtains a weight for R&D equal to 0.879 and for Cultural Resource equal to 0.121 in its inputs, while it obtains for 

GDP a weight of 0.814 in its output, while Beijing obtains a weight for Number of Employees equal to 0.274 and 

for R&D equal to 0.726 in its inputs, while it obtains for GDP a weight of 0.706 in its output. 

From these findings, we notice that Chinese cities reveal features similar to optimum weights, especially since these 

cities have a commonality feature that have a high value for R&D in input items and for GDP in output items. Based 

on this fact, Chinese cities, especially Hong Kong have a feature that has an advantage for GDP as an output item 

compared to other cities. 

 

 

5. Efficiency improvement projection based on the SE-CCR-I, DFM and AT-DFM-FF models 

 

Next, the above-mentioned AT-DFM-FF model is used to analyse realistic circumstances and to determine the 

requirements for an operational strategy for a feasible efficiency improvement in inefficient cities in Asia. In this 

comparative analysis, we will conceive of ‘cultural resource’ as a production factor that cannot be flexibly adjusted. 

In generally, the TES (Target Efficiency Score) may be set by a policy- or decision-maker based on public 

promises or the actual situation. Our DFM model maintains flexibility of the value setting by such changing 

situations. However, if the TES may require a value setting in a less arbitrary way, our new AT-DFM-FF model is 

more appropriate. Based on the AT-DFM-FF model as a new foundation, we computed the ATESFF values as shown 

in Table 2 and Figure 11. 

 

Table 2 List of statistical values 

Items Denotation Score 

Average μ 0.780 

Standard deviation σ 0.071 

ATESk
FF-1 μ-2σ 0.637 

ATESk
FF-2 μ-σ 0.708 

ATESk
FF-3 μ 0.780 

ATESk
FF-4 μ＋σ 0.851 

ATESk
FF-5 μ＋2σ 0.922 

 

 
Figure 11 An illustration of ATESFF and position for each DMU 

 

 

0 μ − 2σ 

(0.637) 
μ − σ 

(0.708) 

μ 

(0.780) 
μ + σ 

(0.851) 

μ + 2σ 

(0.922) 
1 

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

𝐴𝑇𝐸𝑆𝑘
FF−1 𝐴𝑇𝐸𝑆𝑘

𝐹𝐹−2 𝐴𝑇𝐸𝑆𝑘
𝐹𝐹−3 𝐴𝑇𝐸𝑆𝑘

𝐹𝐹−4 𝐴𝑇𝐸𝑆𝑘
𝐹𝐹−5 𝐴𝑇𝐸𝑆𝑘

𝐹𝐹−6 

Fukuoka 

(0.576) 

Mumbai 

(0.417) 

Taipei 

(0.294) 

Beijing 

(0.706) 

Seoul 

(0.697) 

Shanghai 

(0.814) 
Osaka 

(0.854) 
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We will use here Seoul as an illustrative Case 2 and point of reference, and present an efficiency improvement 

projection result. The efficiency score appears to be 0.697 (see Figure 11). We assume now that the ATESFF-2 value 

is automatically set for Case 2 at 0.708 (𝐴𝑇𝐸𝑆𝑘
𝐹𝐹−2). The resulting input reduction values and the output increase 

values based on the SE-CCR-I, the standard DFM and the AT-DFM-FF model are presented in Figure 12.  

From Figure 12, it appears that the standard DFM model shows clearly that a different – and likely more efficient 

– solution than the SE-CCR-I projection is available for reaching the efficiency frontier. For instance, the SE-CCR-

I projection shows that a reduction in Number of Employees by 30.34%, in R&D Expenditure by 52.91% and in 

Cultural Resources by 30.34% are required to become efficient. On the other hand, the standard DFM results show 

that a reduction in Number of Employees by 19.50% and R&D Expenditure by 34.08%, together with an increase 

in the Nominal GDP of 21.60%, is needed to become efficient. 

The AT-DFM-FF model is clearly able to provide a more realistic efficiency-improvement plan, as compared to 

the results of the SE-CCR-I and the standard DFM model. For instance, the AT-DFM-FF results show that a 

reduction in Number of Employees of 0.88 %, and an increase in Nominal GDP of 1.06 % are required to reach the 

𝐴𝑇𝐸𝑆𝑘
𝐹𝐹−2 level of 0.708. 

 

 
Figure 12 Efficiency-improvement projection results based on the SE-CCR-I, standard DFM and AT-DFM-

FF model (Seoul) 

 

The results of an efficiency improvement projection based on the application of our SE-CCR-I model and the AT-

DFM models for Chinese cities will now be presented Figure 13 and 14. 

 Regarding Beijing, the efficiency score appears to be 0.706 (see Figure 11). We assume now that the ATESFF-2 

value is endogenously set for Case 2 at 0.708 (𝐴𝑇𝐸𝑆𝑘
𝐹𝐹−2 ). From Figure 11 we can now infer that, if Beijing 

implements an efficiency improvement plan based on the SE-CCR-I model, a reduction in Number of Employees 

by 29.38%, the R&D Expenditure by 29.38% and the Cultural Resources by 58.34%, together with an increase in 

the Volume of Interaction of 221.31%, is needed to become efficient. Furthermore, the standard DFM results in 

Figure 11 show that Beijing should reduce its R&D Expenditure by 23.72% and the Cultural Resources by 30.25%, 

together with an increase in the Nominal GDP of 17.22% and the Volume of Interaction of 335.89%, in order to 

become efficient. On the other hand, the AT-DFM-FF results in Figure 11 show that a reduction in R&D Expenditure 

of 0.22%, and an increase in Nominal GDP of 0.16% would be needed. From the above finding, we note that the 

AT-DFM-FF model is able to provide a more realistic efficiency-improvement plan, compared to the SE-CCR-I and 

the standard DFM. Note also that also here Cultural Resources is interpreted in the application as a fixed factor in 

the AT-DFM-FF model. 

Regarding Shanghai, the efficiency score appears to be 0.814 (see Figure 11). We assume here that the ATESFF-4 

value is set for Case 4 at 0.851 (𝐴𝑇𝐸𝑆𝑘
𝐹𝐹−4 ). From Figure 12 we can derive that, if Shanghai implements an 

efficiency improvement plan based on SE-CCR-I model, a reduction in Number of Employees by 41.65%, the R&D 
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Expenditure by 18.65% and the Cultural Resources by 18.65%, together with an increase in the Volume of 

Interaction of 198.30%, is required to become efficient. Furthermore, the normal DFM results in Figure 12 show 

that Shanghai should reduce should reduce its Number of Employees by 32.59%, the R&D Expenditure by 11.66% 

and the Cultural Resources by 0.21%, together with an increase in Nominal GDP of 10.28% and in Volume of 

Interaction of 240.47%, in order to become efficient. On the other hand, the AT-DFM-FF results in Figure 12 show 

that a reduction in R&D Expenditure of 2.40%, and an increase in Nominal GDP of 2.40% would be needed. From 

the above finding, we also note that the AT-DFM-FF model is able to offer a more realistic efficiency-improvement 

plan, compared to the SE-CCR-I and standard DFM. It is noteworthy that also here Cultural Resources is interpreted 

in our illustrative application as a fixed factor in the AT-DFM-FF model. 

From these facts, we may draw the conclusion that the AT-DFM-FF model is able to produce a reasonable realistic 

efficiency improvement projection than the previous SE-CCR-I and standard DFM models. 

 

 
Figure 13 Efficiency-improvement projection results based on the SE-CCR-I, standard DFM and AT-DFM-

FF model (Beijing) 

 

 
Figure 14 Efficiency-improvement projection results based on the SE-CCR-I, standard DFM and AT-DFM-

FF model (Shanghai) 
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The aggregate results of an efficiency improvement projection based on the application of SE-CCR-I, standard 

DFM and AT-DFM-FF models for other inefficient Asian cities are presented in Table 3 (θ** in Table 3 expresses 

the efficiency score after the improvement projection). 

 

Table 3 Efficiency-improvement projection results of the SE-CCR and AT-DFM model 

 
 

 

6. Conclusion 

 

In this paper, we have designed an empirical assessment framework and presented findings on the efficiency of 

large Asian cities. From these results, it is clear that Hong Kong, Kuala Lumpur, Bangkok, Tokyo and Singapore 

may be regarded as super-efficient cities in the Asian context. It also appears that Osaka, Shanghai, Beijing, Seoul, 

Fukuoka, Mumbai and Taipei are evaluated here as inefficient cities. It is also clear that Hong Kong is a prime super 

city in the Asian region.  

We have presented in our study also a new DEA methodology, the AT-DFM-FF model. Its feasibility for 

improving the efficiency of Asian large cities was tested. From the above findings, we note that the AT-DFM-FF 

model is able to present a realistic efficiency-improvement programme which incorporates a more objective way to 

set a target efficiency score including fixed factor. Our AT-DFM model is able to programme a realistic efficiency-

improvement city development plan, and may thus provide a meaningful contribution to planning for efficiency 

improvement of large cities in Asia, but also for other cities in mature or emerging economies. 

DMU Score

 I/O Data Difference % Difference % Difference %

Fukuoka 0.576

(I)Number of  Employees 5.4 -2.290 -42.40% -1.453 -26.90% -0.272 -5.04%

(I)R&D Expenditure 8.5 -5.114 -60.16% -3.829 -45.04% 0.000 0.00%

(I)Cultural Resources 6.2 -2.722 -43.90% -2.725 -43.96% 0.000 0.00%

(O)Nominal GDP  4.6 0.000 0.00% 1.647 35.81% 0.308 6.70%

(O)Volume of Interaction 10.1 0.000 0.00% 0.000 0.00% 0.000 0.00%

Mumbai 0.417

(I)Number of  Employees 35.9 -23.333 -65.00% -18.159 -50.58% 0.000 0.00%

(I)R&D Expenditure 0.4 -0.233 -58.33% -0.165 -41.18% -0.084 -20.92%

(I)Cultural Resources 28 -19.133 -68.33% -15.482 -55.29% 0.000 0.00%

(O)Nominal GDP  3.4 0.000 0.00% 1.400 41.18% 0.711 20.92%

(O)Volume of Interaction 0.9 23.533 2614.81% 33.594 3732.68% 0.000 0.00%

Osaka 0.854

(I)Number of  Employees 16.1 -2.355 -14.63% -1.277 -7.93% -0.623 -3.87%

(I)R&D Expenditure 22.1 -6.753 -30.56% -4.856 -21.97% 0.000 0.00%

(I)Cultural Resources 14.9 -2.179 -14.63% -1.107 -7.43% 0.000 0.00%

(O)Nominal GDP  21 0.000 0.00% 2.145 10.22% 1.052 5.01%

(O)Volume of Interaction 40.1 0.000 0.00% 0.000 0.00% 0.000 0.00%

Seoul 0.697

(I)Number of  Employees 36.7 -11.136 -30.34% -7.157 -19.50% -0.323 -0.88%

(I)R&D Expenditure 38 -20.105 -52.91% -12.951 -34.08% 0.000 0.00%

(I)Cultural Resources 10.9 -3.307 -30.34% 0.000 0.00% 0.000 0.00%

(O)Nominal GDP  36.8 0.000 0.00% 7.948 21.60% 0.391 1.06%

(O)Volume of Interaction 76.8 0.000 0.00% 0.000 0.00% 0.000 0.00%

Taipei 0.294

(I)Number of  Employees 8.5 -6.003 -70.63% -5.547 -65.26% -3.748 -44.10%

(I)R&D Expenditure 6.3 -4.450 -70.63% -2.868 -45.52% 0.000 0.00%

(I)Cultural Resources 7.5 -6.714 -89.52% -6.702 -89.36% 0.000 0.00%

(O)Nominal GDP  3.8 0.000 0.00% 2.075 54.59% 1.402 36.89%

(O)Volume of Interaction 4.2 1.445 34.40% 1.704 40.57% 0.000 0.00%

1.000 1.000 0.637

1.000 1.000 0.708

1.000 1.000 0.637

1.000 1.000 0.922

1.000 1.000 0.637

SE-CCR-I Nomal DFM AT-DFM-FF

Score(θ**) Score(θ**) Score(θ**)
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The present study has clearly demonstrated the great potential of DEA for comparative and decision-making 

purposes. In particular, the new DEA variants proposed and tested in this paper have clearly proven the power of 

advanced DEA methods. It is also evident that the DEA methodology offers a new and innovative spectrum for 

further evidence-based comparative studies. 
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