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1. Introduction 

Agricultural systems face the challenge of increasing productivity while ensuring resilience 

to environmental and economic shocks. Conventional farming strategies emphasize 

specialization, benefiting from economies of scale but increasing vulnerability to market 

volatility, pests, and climate variability. Diversification offers an alternative, enhancing 

stability, resource efficiency, and resilience. Functional crop diversification, which is the 

practice of cultivating a combination of crops with distinct and complementary ecological 

functions, has been shown to enhance both ecosystem services and farm economic 

performance (Bommarco et al., 2013; Nilsson et al., 2022). 

While diversification’s benefits are well studied, its spillover effects on neighbouring farms 

remain less explored. Research on spatial spillovers in agriculture highlights how 

neighbouring farms influence decision-making (Case, 1992; Conley & Udry, 2010), with 

studies showing significant spatial dependencies in diversification choices (Vroege et al., 

2020). However, much of this work focuses on agri-tourism or on-farm sales, shaped by 

landscape and market factors (Walford, 2001; Pfeifer et al., 2009; Hassink et al., 2016). Less 

attention has been given to spillover effects in functional crop diversification, which can 

affect economic outcomes. Understanding whether functional diversification influences not 

only the farm that adopts it but also its neighbours is critical for assessing its broader impact 

on agricultural productivity and sustainability at the regional level 

This study examines whether functionally diverse cropping practices diffuse across farms and 

influence farm-level TFP, with potential heterogeneity across regions with different 

preconditions for agriculture. Using farm-level TFP estimation and spatial econometric 

modelling, it identifies both direct effects of diversification and indirect effects through 

spatial networks. Knowledge spillovers may arise as farmers learn from neighbours adopting 

functionally diverse cropping systems. 

The analysis uses a panel dataset of around 30,000 Swedish crop farms from 2009 to 2021, 

integrating farm-level crop data from the Swedish Land Parcel Identification System (LPIS), 

financial data from Statistics Sweden (SCB), and geospatial coordinates. TFP is estimated 

using a production function approach (Rovigatti & Mollisi, 2018) and in a second step the 

estimated TFP is used as the dependent variable in a spatial Durbin model. This allows for the 

identification of both direct effects from a farm’s own crop diversification, and indirect 

effects from the diversification of neighbouring farms on productivity (Vroege et al., 2020). 

Following Nilsson et al. (2022), functional crop diversity is quantified using a decomposition 

of the Shannon diversity index where crops are categorized into nine ecological functional 

groups. 

2. Conceptual framework 

2.1 Functional diversity 

The approach to measuring crop diversity is based on the framework in Nilsson et al. (2022), 

wherein the Shannon diversity index is decomposed into functional diversity (HF) and related 

diversity (HR). For this analysis, the focus is on functional diversity which is the diversity 



among crop groups with distinct ecological functions. This includes crops such as legumes, 

grasses, or forbs, which provide complementary ecosystem services (de Bello et al., 2010; 

Westoby and Wright, 2006). Functionally diverse cropping systems enhance key ecosystem 

functions by promoting ecological complementarity among crop groups with distinct traits 

(Bommarco et al., 2013; Gagic et al., 2015). These systems can also reduce yield variability 

and vulnerability to shocks (Isbell et al., 2017; Watson et al., 2017). Additionally, they can 

support on-farm biodiversity and ecosystem services, contributing to long term 

environmental sustainability of the farm (de Bello et al., 2010; Kremen and Miles, 2012). 

These combined ecological and economic advantages highlight the relevance of functional 

diversity in agricultural research and policy (Altieri et al., 2015; Bowles et al., 2020). 

2.2. Farm Total Factor Productivity  

The economic benefits of functional diversification are closely linked to its ability to enhance 

resource use efficiency and support economies of scope in crop production. By cultivating 

crops with complementary ecological functions, farms can leverage synergies that allow the 

same inputs, such as fertilizers or labour, to support multiple crops more efficiently than in 

less diverse systems (Chavas and Kim, 2007; de Roest et al., 2018). This reduces reliance on 

costly external inputs, as functionally diverse systems provide a broader range of growth 

factors internally, such as natural pest control and nutrient cycling (van der Ploeg et al., 

2019). Moreover, functionally diverse farms can better stabilize yields and mitigate 

production and market risks (Altieri et al., 2015; Bowles et al., 2020). These mechanisms 

position functional diversity as key for farm economic performance and resource self-

sufficiency.  

Total Factor Productivity (TFP) offers a comprehensive measure of farm performance by 

capturing the efficiency from incorporating capital, labour, and intermediate inputs in the 

production process (Rovigatti and Mollisi, 2018). Unlike value-added-based measures, TFP 

reflects improvements arising from efficiency gains, technological progress, or innovative 

practices. This makes it particularly suited for assessing the role of functional diversity as an 

innovative strategy that enhances resource use efficiency. Furthermore, TFP can be 

decomposed to isolate efficiency improvements, allowing for a clearer identification of 

whether innovation is present at the individual farm level. Without such farm-level 

innovation, the foundation for knowledge spillovers to other farms would be absent, making 

TFP a critical tool for understanding both the presence and potential diffusion of innovative 

practices.  

3. Data and Methodology 

This study constructs a panel dataset covering around 30,000 Swedish crop farms from 2009 

to 2021. The Swedish Land Parcel Identification System (LPIS) provides crop data, enabling 

the calculation of functional diversity at the farm level. Financial data from Statistics Sweden 

(SCB) farm financial accounts includes net sales, input use, and financial indicators, allowing 

for TFP estimation. Additionally, geospatial data identifying farm locations at a 1000x1000 

meter resolution facilitates the spatial econometric analysis. Since financial data does not 

cover all farms in LPIS, the final dataset consists of medium to large-sized farms, which are 

more relevant for analysing productivity effects. 

3.1 Measuring Functional Crop Diversification 



Functional crop diversity is measured using a decomposition of the Shannon diversity index, 

which captures the distribution of crops among functionally distinct groups. The measure 

follows Nilsson et al. (2022) and is expressed as 

HF = − ∑pg

k

g=1

×  ln(pg)  

 Where 𝐻𝐹 is the functional diversity index, k represents the number of functional crop 

groups, and 𝑝𝑔 is the proportion of land allocated to functional group g. The index ranges 

from 0, indicating monoculture, to 𝑙𝑛(𝑝𝑔), where all groups are equally represented. This 

measure emphasizes ecological complementarity rather than species count, distinguishing 

functional diversity from simple crop richness. Crops are categorized into nine functional 

groups based on ecological roles. Aggregating these classifications at the farm level provides 

a measure of diversification intensity and ensures that the diversity metric reflects agronomic 

functions rather than merely the number of species present. 

3.2 Estimating Total Factor Productivity (TFP) 

In this study, the TFP estimation is based on a control function approach that allows for 

correction of several potential sources of endogeneity, such as contemporaneous input choice, 

factor market frictions and firm exits. The baseline model builds on Levinsohn and Petrin 

(2003) in using firms’ intermediate inputs to account for serial correlation between input 

choices and random shocks to firm productivity. The relationship between productivity, 

inputs and the efficiency level of farms is specified using the following Cobb-Douglas 

production function: 

𝑦𝑖𝑡 = 𝛼 + 𝛾𝑙𝑙𝑖𝑡 + 𝛾𝑘𝑘𝑖𝑡 + 𝛾𝑚𝑚𝑖𝑡 + 𝜔𝑖𝑡 + 𝜂𝑖𝑡                                                                         (1) 

 

where 𝑦𝑖𝑡 measures net sales (output) of farm 𝑖 at time 𝑡, 𝑙𝑖𝑡 denotes labour inputs and capital 

and intermediate inputs are measured by 𝑘𝑖𝑡 and 𝑚𝑖𝑡. The production function is specified to 

relate output to inputs and the efficiency level of firms 𝐴, such that 𝑙𝑛𝐴𝑖𝑡 = 𝛼 + 𝜖𝑖𝑡 where 

𝜖𝑖𝑡 = 𝜔𝑖𝑡 + 𝜂𝑖𝑡.
1 The function, therefore, has two unobservable terms, the first is a residual 

𝜂𝑖𝑡 and the second is firm productivity 𝜔𝑖𝑡, which is assumed to follow a first-order Markov 

process: 

 

𝜔𝑖𝑗𝑡 = 𝐸(𝜔𝑖𝑗𝑡|𝜔𝑖𝑗𝑡−1) + 𝜉𝑖𝑗𝑡 = 𝑔(𝜔𝑖𝑗,𝑡−1) + 𝜉𝑖𝑗𝑡 = 𝑔(𝜙𝑡−1 − 𝛼 − 𝛾𝑘𝑘𝑖𝑗,𝑡−1) + 𝜉𝑖𝑗𝑡         (2) 

 

where 𝜉𝑖𝑗𝑡 represents an innovation term (Olley and Pakes, 1996). The difference between the 

two unobservable terms is that while the former is assumed uncorrelated with farms period 𝑡 

input choices, the latter can affect such choices and the fact that 𝜔𝑖𝑡 is unobservable but 

potentially influential leads to the well-known simultaneity bias in production function 

estimation (Marshak and Andrews, 1944). To address this, the control function approach is 

built upon and farms demand for intermediate inputs is used to define a control function for 

unobserved productivity.2 Inputs are assumed to be either variable (intermediates) or quasi-

 
1 The denotations in this literature is followed and lowercase letters denote the log of a variable. 
2 The alternative approach to use firms demand for investments as in Olley and Pakes (1996) is not an option for 

as farms in these data frequently report zero investment, which would exclude a large number of observations in 



fixed (capital) and that capital accumulation follows a law of motion such that firms capital 

stock in 𝑡 is determined by the investments made in 𝑡 − 1, making it uncorrelated with 𝜉𝑖𝑡. 
Farms demand for intermediate inputs can thus be expressed as a function of the state 

variables 𝑘𝑖𝑡 and 𝜔𝑖𝑡 and given that demand for intermediate inputs is strictly monotonic in 

𝜔𝑖𝑡, the demand function can be inverted to obtain the following control function: 

 

       𝜔𝑖𝑡 = ℎ𝑡(𝑘𝑖𝑡, 𝑚𝑖𝑡).                                                                                                           (3) 

 

Substituting equation 2 into the production function (equation 1) provides the first-stage 

equation in the control function estimation to obtain farm-level TFP: 

 

     𝑦𝑖𝑡 = 𝛾𝑙𝑙𝑖𝑡+𝜙𝑡(𝑘𝑖𝑡, 𝑚𝑖𝑡) + 𝜀𝑖𝑡                                                                                            (4) 

 

where 𝜙𝑡(∙) = 𝛼 + 𝛾𝑘𝑘𝑖𝑡 + 𝛾𝑚𝑚𝑖𝑡 + 𝜔𝑖𝑡(𝑘𝑖𝑡, 𝑚𝑖𝑡). In the empirical application, the first-

stage equation is estimated using OLS and a third-order polynomial approximation followed 

by a generalized method of moments estimator to identify the input coefficients. Specifically, 

the following moment conditions are used 

 

      𝐸[𝜀𝑖𝑗𝑡 + 𝜉𝑖𝑗𝑡|𝑘𝑖𝑗𝑡 , 𝑚𝑖𝑗𝑡−1] = 0                                                                                           (5) 

 

and firm total factor productivity is calculated as a residual using the production function 

estimates:  

       

     𝑇𝐹𝑃𝑖𝑡 = 𝜀𝑡 + 𝜉𝑡̂ = 𝑦𝑖𝑡 − 𝛾𝑙𝑙𝑖𝑡 − 𝛾𝑘
′𝑘𝑖𝑡 − 𝛾𝑚

′ 𝑚𝑖𝑡 − 𝐸(𝜔𝑡|𝜔𝑡−1
̂ )                                        (6) 

 

where �̂�𝑖𝑡 = �̂�𝑖𝑡 − 𝛾𝑘
′𝑘𝑖𝑡 − 𝑦𝑚

′ 𝑚𝑖𝑡.  

 

3.3 Second-stage spatial Econometric Model 

To examine whether functional crop diversification influences not only the adopting farm’s 

productivity but also the productivity of neighbouring farms, a spatial Durbin model (SDM) 

is employed. The SDM allows for the identification of both direct effects, where a farm’s own 

diversification impacts its productivity, and indirect effects, where diversification among 

neighbouring farms contributes to productivity growth. The model is specified as 

𝑇𝐹𝑃𝑖𝑡 = α + β𝐹𝐷𝑖𝑡 + γ𝑊𝐹𝐷𝑖𝑡 + δ𝑋𝑖𝑡 + μ𝑖 + λ𝑡 + ϵ𝑖𝑡               (7) 

Where 𝑇𝐹𝑃𝑖𝑡 represents total factor productivity, 𝐹𝐷𝑖𝑡 captures the functional diversity 

intensity of farm i, and 𝑊𝐹𝐷𝑖𝑡 is the spatially lagged functional diversity, which reflects the 

intensity of functional diversification among neighbouring farms. The coefficient γ measures 

the extent to which the diversification of nearby farms influences farm i's productivity. The 

vector 𝑋𝑖𝑡 includes control variables such as farm size and soil type, while 𝜇𝑖 and 𝜆𝑡 account 

for farm-specific and time-specific fixed effects, respectively. The spatial relationship is 

 
the analysis. However, since nearly all farms report positive values on intermediate I build on the approach by 

Levinsohn and Petrin (2003). 



modelled using an inverse distance weighting matrix, where the weight assigned to a 

neighbouring farm j is given by 

𝑊𝑖𝑗 =
1

𝑑𝑖𝑗
 

Where 𝑑𝑖𝑗 represents the Euclidean distance between farm i and farm j. Since raw weights 

may vary significantly across farms, they are row-standardized to ensure that the sum of all 

weights for a given farm equals one, preventing farms with many close neighbours from 

exerting disproportionate spillover effects.: 

𝑊𝑖𝑗
∗ =

𝑊𝑖𝑗

∑ 𝑊𝑖𝑗𝑗
 

4. Hypotheses and Expected Contributions 

This study tests three main hypotheses. First, it examines the direct effect of functional crop 

diversification on implied farm TFP, proposing that farms adopting higher levels of 

diversification experience greater productivity growth due to improved resource efficiency, 

soil health, and resilience to environmental shocks. Second, it investigates the spatial 

spillover effects of diversification, hypothesizing that the functional diversification choices of 

neighbouring farms positively influence a given farm’s TFP, primarily through knowledge 

diffusion, as farmers learn and adopt best practices from their peers. Third, it examines if 

there exist regional heterogeneity in the effects due to varying external conditions, such as 

natural preconditions for agriculture, access to markets and soil quality characteristics.   

This study extends the existing literature by providing empirical evidence on the role of 

functional crop diversification in driving farm productivity and its potential for spatial 

diffusion. By integrating spatial econometric modelling with a detailed panel dataset, it offers 

a novel perspective on how diversification influences not only the adopting farm but also its 

neighbours. If results indicate that diversification spillovers extend beyond the single farm, 

this suggests that promoting knowledge-sharing could play a crucial role in amplifying the 

benefits of diversification. The findings also contribute to discussions on sustainable 

agricultural intensification by demonstrating whether diversification strategies can be both 

economically viable and environmentally beneficial. By assessing whether functional 

diversification enhances TFP and whether its benefits extend spatially, this study can provide 

valuable insights for policymakers interested in promoting sustainable and resilient 

agricultural systems. 
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