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Abstract
South Korea has achieved rapid economic development through urbanization 

and industrialization, but as a result the share of the rural population and 
agricultural income relative to the total population have steadily declined. To 
secure a stable rural population and raise farm household incomes, the 
government has implemented various support programs for agricultural 
households; among these is the “Gift Tax Exemption for Farming Successors” 
policy. Under this policy, farming parents may transfer farmland to their 
children without tax burdens, reducing the cost of land acquisition for successor 
farmers and thereby enhancing the sustainability of family farming. This study 
empirically examines whether the gift tax exemption policy for farming 
successors has a meaningful impact on cultivating the next generation of 
farmers.

First, we evaluate the policy’s effects on farm population growth and the 
decline in average farm household age. Second, we analyze how these policy 
effects evolve dynamically over time. To estimate the policy impact, prior studies 
have combined propensity score matching (PSM) with Difference-in-Differences 
(DID) methods using the generalized propensity score (GPS) to address the binary 
treatment limitation of PSM and comparing pre- and post-policy changes in 
average household age and a number of new farm households who are engated 
in agriculture. However, this approach only assesses covariate balance across 
treatment intervals after the estimation, which does not guarantee balanced farm 
characteristics at each level of treatment intensity.

To overcome this methodological limitation, our research employs the 
Covariate Balancing Generalized Propensity Score (CBGPS) approach. Additionally, 
we use a multiple-period DID framework to trace changes in average age and 
farm household counts across two intervals (the baseline and comparison 
periods) by treatment status. Specifically, we divide the period from 2016 to 2024 
into four-year segments and examine policy effects at three points in time: the 
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baseline (2010), Period 1 (2011–2015), and Period 2 (2016–2020).
For estimating policy effects, we draw on National Tax Service and Statistics 

Korea data, incorporating variables such as per-household tax exemption 
amounts and regional farm characteristics. We expect our findings to provide 
rigorous empirical evidence on the effectiveness of the gift tax exemption policy 
in fostering farming successors and to assess whether the policy merits 
continuation over the long term. Beyond South Korea, the results should offer 
valuable policy insights for other countries seeking to promote intergenerational 
succession in agriculture.

Keywords: successor farmers; counteracting rural depopulation; generalized 
propensity score (GPS); Difference-in-Differences (DID); dynamic treatment 
effects
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1. Introduction

Agriculture is a foundational industry whose continuity must be guaranteed. 
South Korea’s unprecedented rapid urbanization and industrialization, driven by 
growth concentrated in urban areas, have generated serious structural problems 
between urban and rural regions. Rural aging, a shortage of farming successors, 
and widening income gaps between urban and rural populations have disrupted 
the intergenerational transfer of farms, thereby threatening the sustainability of 
agriculture. Recently, the risk of regional extinction has reached a critical level. 
The shortage of agricultural labor across the sector has intensified, prompting a 
rapid increase in the use of foreign workers as a substitute. These issues extend 
beyond mere population decline—they jeopardize farmland utilization efficiency, 
continuity of farm management, and the preservation of local communities and 
rural culture.

In response, since 1987 the Korean government has initiated the “Gift Tax 
Exemption for Farming Successors” program. Under this scheme, when 
senior-generation farmers transfer farmland to their children who are engaged 
in agriculture, the gift tax is waived subject to certain conditions. The policy is 
designed to encourage intergenerational transfer of farmland, thereby promoting 
generational renewal and structural improvement within the agricultural sector.

Although the program has granted an average annual tax exemption of KRW 
71.3 billion over the past three years, the nominal size of exemptions alone 
cannot gauge its effectiveness. It is essential to empirically assess whether the 
policy has genuinely increased the inflow of successor farmers or mitigated rural 
aging. In particular, examining which regional and individual characteristics 
influence the “successor conversion” process—where beneficiaries go on to 
actively farm after receiving the gift—can offer valuable empirical insights for 
refining the policy going forward. 

This study builds on these concerns by merging National Tax Service gift-tax 
exemption records with Agricultural Census data at the county (si-gun-gu) level 
and treating the exemption amount as the continuous treatment variable. We 
employ the Covariate Balancing Generalized Propensity Score (CBGPS) approach—
which centralizes and orthogonalizes covariates—to estimate how varying degrees 
of policy benefit affect outcome measures such as the number of farms per 
county and the average age of farm operators. In our analysis, we also address 
key identification challenges, including the endogeneity of exemption amounts, 
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cross-regional heterogeneity, and the dynamic evolution of treatment effects 
over time. Through this empirical framework, we evaluate whether the gift-tax 
exemption policy has substantively promoted generational renewal and the 
cultivation of successor farmers in Korean agriculture, and we offer 
evidence-based recommendations for future policy refinement.

2. Method

The program was first enacted in 1987, with eligibility criteria specified for the 
donated land, the donor, and the recipient. Since its inception, it has undergone 
incremental reforms—such as adjustments to exemption limits and expansions of 
eligible land—and over the past decade it has been implemented at an average 
annual scale of KRW 32.1 billion. In other words, treatment does not occur only 
once in a given year but is delivered continuously over a long period. Moreover, 
exemption eligibility is not determined solely by the policy’s introduction; it 
depends on whether donors and recipients meet the statutory requirements and 
on their voluntary participation decisions. Because the exemption amount is 
proportional to the size of the transferred land, the treatment intensity varies 
across observations. Accordingly, in this program the treatment is measured as 
a continuous variable, and its levels are heterogeneously distributed across units 
according to their characteristics.

Moreover, this program can be combined with other farm support measures 
aimed at safeguarding farm household incomes, regardless of whether those 
other benefits are received. Because treatment intensity is influenced by 
beneficiaries’ self‐selection, an endogeneity problem may arise, and the existence 
of similar but separate programs risks biasing the estimated treatment effects—
either downward or upward—creating an identification challenge. In light of these 
program characteristics and potential issues, it is necessary to adopt an 
appropriate empirical estimation strategy.

Under these circumstances, a simple comparison of group means by treatment 
status is inadequate for evaluating outcomes. One method for addressing 
endogeneity is the Propensity Score Method (PSM) (Rosenbaum et al., 1983), 
which, unlike a randomized trial, constructs comparable groups by matching 
units with similar propensity scores—each score summarizing observed 
covariates into a single scalar. However, this approach requires the treatment 
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variable to be binary, whereas in our case treatment intensity is a continuously 
varying quantity even within the “treated” group. Therefore, PSM is not suitable 
for our analysis.

In response, KDI (2020) set the size of the gift-tax exemption—the treatment 
intensity—as a continuous treatment variable rather than a simple binary 
indicator. Because observations could no longer be cleanly split into treated 
and control groups, they introduced a dose–response function and estimated 
outcomes as a continuous function of treatment level using the Generalized 
Propensity Score (GPS) method (Hirano and Imbens, 2004). Both PSM and 
GPS construct comparison groups based on observed covariates, making it 
essential to verify covariate balance across treatment levels. Under PSM, 
where the treatment is binary, one can directly test balance between treated 
and control groups by conducting post–matching checks. With GPS, which 
handles a continuous treatment, one first discretizes the treatment into 
intervals and then assesses covariate balance within each interval. However, 
even though balance diagnostics are performed prior to estimating the dose–
response function, when GPS values enter the function as covariates, there 
remains an unavoidable risk that, at certain treatment intensities, covariate 
distributions will be imbalanced.

To address this limitation, our study employs the Covariate‐Balancing 
Generalized Propensity Score (CBGPS) method (Fong et al., 2018). Like the 
standard GPS approach, CBGPS estimates propensity scores for a continuous 
treatment using observed covariates, but it additionally enforces, a priori, 
that covariate distributions remain balanced at every level of treatment. By 
incorporating this constraint into the dose–response estimation, CBGPS 
minimizes covariate imbalance when GPS enters the outcome model, yielding 
more reliable causal estimates.

Building on and extending prior work, we also expand the analysis period 
to capture dynamic policy effects. Using data from 2010 through 2023, we 
implement a multi‐period Difference‐in‐Differences design to assess both the 
persistence and the trajectory of the policy’s impact. Rather than a single 
before‐and‐after comparison, we divide the timeline into multiple intervals—
Period 1 (2010–2015) and Period 2 (2016–2020)—and examine how estimated 
treatment effects evolve across these segments. By estimating the slope of 
treatment effects in each interval, we uncover not only short‐term shifts but 
also longer‐term trends in policy effectiveness. This approach, known as DID



- 6 -

‐MP (Difference‐in‐Differences with Multiple Periods), is informed by Egami 
and Yamauchi (2023).

3. Empirical Model

This study applies the Covariate Balancing Generalized Propensity Score 
(CBGPS) method to estimate the causal effect of a continuous treatment 
variable. A continuous treatment variable is used because the magnitude of 
the gift tax exemption varies across observation units, namely, administrative 
districts (si/gun/gu). Traditional propensity score matching techniques that 
dichotomize treatment status assume that the treatment is applied at a 
relatively uniform level within the treated group, making them unsuitable for 
capturing the heterogeneity inherent in this policy.

Furthermore, ensuring covariate balance is crucial because only when the 
association between covariates and treatment levels is minimized can the 
treatment be regarded as randomly assigned conditional on observed 
covariates. For example, if regions with a high proportion of successor 
farmers also tend to receive larger tax exemptions, it becomes difficult to 
disentangle the effect of the policy from other regional characteristics. In 
such cases, CBGPS plays a role in statistically adjusting for inter-regional 
differences in characteristics.

In conclusion, the CBGPS method creates an analytical environment in 
which the causal effect of a continuous treatment variable on an outcome 
variable can be assessed by minimizing the association between observed 
covariates and the treatment level. This section explains the fundamental 
assumptions and estimation formulas of the CBGPS approach to justify its 
selection for this study.

While CBGPS offers the advantage of greater flexibility over binary treatment 
models by accommodating continuous treatments, it has the limitation of 
identifying only the average treatment effect (ATE) at a single point in time. 
However, the policy examined in this study is not a one-off intervention 
implemented in a specific year; rather, it is a long-term policy that has been 
executed repeatedly over time. The amount of tax exemption also tends to 
accumulate or fluctuate over the years.

Most importantly, the treatment variable—i.e., the amount of gift tax exemption
—is determined voluntarily by the donor, introducing potential endogeneity. Since 



- 7 -

the characteristics that influence the timing and scope of the gift are 
unobservable, and if these same characteristics also affect the outcome variable, 
the estimated causal effect may be biased.

Therefore, estimating the average treatment effect (ATE) at a single point 
in time is insufficient to capture the overall dynamic effects of the policy, 
which may accumulate over time or manifest with a time lag. To account for 
changes in both the treated and untreated groups before and after the policy 
intervention, this study adopts the Difference-in-Differences (DID) 
methodology.

The analytical framework of this study consists of three components: (1) a 
continuous treatment variable  assigned to each observational unit , (2) a 
vector of pre-treatment covariates for that unit ∈, and (3) an outcome 
variable  representing the potential result corresponding to the given 
level of treatment. The generalized propensity score (GPS)    is defined 
as the conditional probability density function of receiving a particular 
treatment level given a specific set of covariates. It serves as a summary 
measure of the influence of observed covariates on the treatment assignment 
process. Here, the treatment variable  is treated as a random variable, and 
the treatment level  is specified as an evaluation point—a fixed constant 
used to distinguish specific treatment intensities.

The covariate balancing generalized propensity score (CBGPS) is estimated 
by simultaneously modeling this conditional density function and minimizing 
the correlation between the treatment variable and covariates. This approach 
ensures that the distribution of covariates is balanced across different 
treatment levels. In this study, the main analytical model is based on  
the dose-response function (DRF), which is defined for each level of 
treatment . The DRF allows for the estimation of the average expected 
outcome for a given treatment level, conditional on covariates.

For valid causal inference, the following three assumptions must be 
satisfied. The first is the Strong Ignorability Assumption.

⊥   (1)

This assumption implies that, conditional on covariates , the treatment level 
 is independent of the potential outcome . In the context of causal 
inference, this serves as a key assumption for ensuring conditional 
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randomization, even in non-experimental settings.
The second is the Common Support Assumption, which states the following:

   ∞ ∀  (2)

This assumption requires that the generalized propensity score   is strictly 
positive for all treatment levels , given covariates . In other words, it ensures 
sufficient comparability across treatment levels by requiring that each unit has a 
non-zero probability of receiving any treatment level.

Lastly, the Stable Unit Treatment Value Assumption (SUTVA) states the 
following:

   (3)

This assumption implies that the treatment received by one unit does not affect 
the outcomes of other units, meaning there is no interference between 
observational units. When these assumptions are satisfied, the policy effect can 
be identified either through the dose-response function (DRF),  or as an 
Average Treatment Effect (ATE) over a specific interval. Identification via the 
DRF allows for tracing the entire effect curve—showing how the outcome  
changes as the treatment level  increases. 

 On the other hand, identification via the ATE enables the estimation of the 
effect by comparing the average outcomes between two specific treatment levels, 
say from  to , thus capturing the marginal impact across that interval.

This analytical framework, unlike simple mean comparisons or linear 
regression, explicitly models the treatment assignment process and minimizes 
potential bias based on covariates, thereby enabling more refined and reliable 
causal inference. In particular, when estimating the policy effect of a continuous 
treatment variable such as the amount of tax exemption, the use of CBGPS 
allows for the identification of average causal effects under a condition of 
statistical unconfoundedness, as if the treatment were randomly assigned. 

Conventional GPS approaches model the distribution of the continuous 
treatment variable but assess covariate balance only ex post, which limits their 
ability to ensure unbiased estimation. In contrast, the CBGPS approach adopted 
in this study estimates the propensity score by explicitly minimizing the 
correlation between covariates and the treatment level.
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This study employs a parametric approach, rather than a nonparametric one, 
to estimate the parameters of the GPS model using the Generalized Method of 
Moments (GMM). This procedure enables the construction of stabilized weights, 
which are then used to perform weighted regression analyses of the outcome 
variable under conditions where covariate imbalance has been addressed.

The estimation procedure consists of the following three steps. 

Step 1: Preprocessing
The first step is the preprocessing stage, in which the continuous treatment 

variable  is centered and standardized to have a mean of 0 and a variance of 
1, resulting in a transformed variable 









(4)

At this stage, the mean treatment level   and the sample variance   of the 
treatment variable across the full sample can be calculated using the following 
formulas.

   


 



 (5)


  



 




  (6)

The covariates  are also centered to have a mean of 0 and are 
orthogonalized to remove potential multicollinearity.




     


  



   (7) 

At this stage, an orthogonalization process is performed to eliminate 
multicollinearity among covariates and transform them into a structure that 
approximates mutual independence. Let  denote the covariate matrix and   
its covariance matrix. The following transformation is applied, and the 
covariance matrix  can be decomposed through eigenvalue decomposition as 
follows:
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




 
 ′

     ′
 (8)

Through this transformation, the resulting matrix  has a covariance matrix 
that approximates the identity matrix, thereby enhancing the linear independence 
among the covariates.

This step serves multiple purposes: it eliminates the influence of scale 
differences among variables, clarifies the interactions between the treatment and 
covariates, and improves the stability and efficiency of propensity score 
estimation. In addition, this preprocessing lays the groundwork for generating 
stable weights in the subsequent estimation steps. 

Step 2: Model Estimation and Weight Construction
The second step involves specifying the CBGPS model and estimating its 

parameters. After preprocessing, the treatment variable is transformed into its 
standardized form 

, and the covariates into mean-centered and orthogonalized 
variables 

. Using these transformed variables, a conditional normal model is 
fitted, assuming that the treatment variable follows a normal distribution given 
the covariates:


 

∼
′  (9)

From this model, the conditional normal density function    is derived 
and used as the generalized propensity score (GPS). The conditional density 
function takes the following form:

     exp
  ′  (10)

 At the same time, the standard normal density function  is used as a 
stabilizing factor. The stabilized weight is then defined as the ratio of these two 
densities:

    
  (11)

This weight plays a crucial role in reducing the variance of the estimator by 
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down-weighting extreme values of the treatment variable. In essence, it 
re-weights the data such that the treatment assignment appears fair or as if it 
were randomly assigned.

To obtain the parameters of the model, the parameter vector  is estimated 
using the Generalized Method of Moments (GMM). This estimation is conducted 
under two conditions: (a) the score condition, which ensures the correct 
specification of the conditional normal model, and (b) the covariate balance 
condition, which ensures that the weighted covariate distribution is independent 
of the treatment level.

 log     
∙  ∙   

   (12 – a)

(12 – b)

These moment conditions jointly ensure that the estimated weights induce 
covariate balance and enable valid identification of causal effects.

Here,  denotes the standard normal density function, which serves as the 
numerator representing the stabilized distribution of the treatment variable, while 
the denominator    is interpreted as the generalized propensity score 
(GPS). The parameters   of the GPS model—estimated through the conditional 
normal specification—are used to compute the weights .

This weighting process can be interpreted as reweighting the data such that 
the treatment variable becomes conditionally independent of the covariates. 
Importantly, this reweighting step marks a key distinction between GPS and 
CBGPS approaches. While GPS models the adjusted relationship between the 
outcome and treatment using a single conditional density function   , 
CBGPS goes a step further: even after estimating the GPS, it optimizes the 
weights to eliminate any remaining imbalance in the distribution of covariates 
across all levels of treatment. As a result, CBGPS enables the estimation of the 
outcome–treatment response function under a setting where the distribution of 
covariates is balanced at every treatment level, thereby offering a stronger basis 
for causal identification.

Step 3: Causal Effect Estimation.
The third step is the causal effect estimation stage, in which a weighted 

regression analysis of the outcome variable is conducted using the stabilized 
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weights obtained in the previous step. In this stage, the regression model is 
specified in the following linear form:

       ′   ′        ′ ′ (13)

where   ′ may include an intercept, the treatment variable , and a 
subset of covariates. Since the generalized propensity score (GPS) already adjusts 
for differences in covariate distributions across treatment levels, it is not 
necessary to include the full set of covariates in the regression model. This helps 
prevent overfitting and improves the interpretability of the estimated coefficients. 
Moreover, this structure aligns with the doubly robust estimation strategy, 
wherein valid causal inference can be obtained as long as either the treatment 
model (GPS) or the outcome model is correctly specified.

The coefficient vector  is estimated by minimizing the following weighted least 
squares (WLS) objective function:

   arg min  
   ′ (14)

Alternatively, this estimator can also be derived by solving the corresponding 
moment condition, which ensures the weighted residuals are orthogonal to the 
regressors:

   ′    (15)

That is, the estimates obtained from the WLS minimization and those satisfying 
the moment condition are numerically equivalent when stabilized weights are 
used.

In the context of CBGPS, the selection of the regressor vector   ′ 
requires particular care. The covariates included should contain only the 
necessary information to model the conditional distribution of the treatment 
variable , without being overly collinear with it. At the same time, the selected 
covariates should retain interpretability with respect to the outcome variable , 
exhibit low multicollinearity, and contribute to stable post-estimation covariate 
balance. These considerations help ensure that the resulting estimates are both 
statistically stable and substantively meaningful.
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Once the coefficients   are estimated, the dose–response function(DRF), 
defined as  can be approximated as follows:

 ′ (16)

This specification represents the expected outcome  at treatment level , 
conditional on the average values of the covariates. Here,   captures the 
baseline outcome,   reflects the marginal effect of the treatment, and ′  
accounts for the contribution of covariates evaluated at their means. By holding 
covariate characteristics constant, this formulation allows for the construction of 
a dose–response curve that isolates the effect of varying treatment intensities.

Using this estimated function, the average treatment effect (ATE) between two 
treatment levels  and  can be calculated as:

  


 (17)

This provides a flexible and interpretable measure of how changes in the 
continuous treatment variable influence the expected outcome, independent of 
variation in covariate profiles. Despite this flexibility, the validity of causal 
inference still depends on the assumption that the treatment is exogenously 
assigned—which may not hold in observational data.

In this framework,  denotes the observed outcome variable, where  
refers to the potential outcome for unit  under treatment  , and  
refers to the potential outcome under no treatment . Since each 
observational unit can only be exposed to either the treatment or the control 
condition—not both simultaneously—the counterfactual outcome is inherently 
unobservable. Therefore, the treatment effect for unit  is not defined as 
 directly, but rather as the expected difference: 

   (18)

When treatment is a simple yes/no indicator, the average treatment effect 
(ATE) can be estimated by the basic regression model:

   (19)
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Here,  is a binary dummy (1 if unit  is treated, 0 otherwise), so the estimated 
treatment effect is 

. However, if assignment ​is not random—if unobserved 
factors affect both ​and the error term ​—then and the OLS estimate 

 is 
biased.

Under the Conditional Independence Assumption, once we control for observed 
covariates ​, treatment assignment  is as good as random. In regression form:

   (20)

we require ⊥  to get unbiased 
.

With panel data, we can difference out unobserved, time‐invariant factors. Let 
​be a post‐treatment time dummy. The DID model is:

     (21)

By comparing the outcomes of treated and untreated groups before and after the 
intervention period, one can difference out time-invariant unobserved factors and 
isolate the pure policy effect. This effect can be identified through the coefficient 
on the interaction term in the following regression specification, and is typically 
presented as follows:

The Difference-in-Differences (DID) method has the advantage of being 
intuitively easy to interpret and capable of estimating the pure causal effect of a 
policy intervention. However, a key limitation lies in its inability to capture whether 
the randomness of treatment assignment remains valid over time—particularly 
when heterogeneous factors may evolve and influence treatment assignment in 
later periods.

Group Time: before
  

Time: after
 

diff
Treated
  



    




     



Control
  




    







     




 diff 





Table 1. Identification of the Pure Policy Effect in a Binary DID Model
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To address this, an extended approach known as the Multiple-Period 
Difference-in-Differences (DID-mp) has been developed. This method leverages 
repeated observations of both treatment status and outcome variables across 
multiple time periods, allowing for more dynamic modeling of treatment effects 
over time. The corresponding estimation equation is specified as follows:

   ′  (22)

In this specification,  represents time fixed effects, which control for 
time-specific shocks that are common to all units.   denotes unit fixed effects, 
capturing time-invariant characteristics of each observational unit. The variable 
 is the treatment indicator (or intensity) at time , and the coefficient 

captures the average marginal effect of a one-unit increase in the treatment 
level on the outcome variable.

This approach allows for the identification of time-varying treatment effects 
and helps mitigate violations of the parallel trends assumption by utilizing 
repeated observations across time. The parallel trends assumption is a key 
identifying condition in DID analysis, and can be expressed formally as:

          (23)

This condition implies that, in the absence of treatment, the treated and 
control groups would have followed similar trends in outcomes over time. 
Ensuring the plausibility of this assumption is crucial for the validity of 
DID-based causal inference.

In other words, the parallel trends assumption implies that, in the absence of 
treatment, the change in outcomes over time would have been the same for both 
treated and control groups. That is, aside from the treatment itself, there should 
be no structural difference in how outcomes evolve over time across groups. 
This assumption is fundamental to the identifiability of causal effects in DID 
frameworks.

However, even with repeated measurements, additional adjustments are 
required to account for the endogenous distribution of treatment intensity. To 
address this, one can incorporate the Covariate Balancing Generalized Propensity 
Score (CBGPS) approach into the DID-mp framework. Specifically, by first 
estimating the generalized propensity score (GPS) and deriving the stabilized 
weights, the method proceeds with a weighted multiple-period DID, commonly 
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referred to as the Double Robust DID.
This approach enables the identification of outcome changes under the 

assumption that treatment is as-if randomly assigned, while simultaneously 
adjusting for both selection bias and temporal dynamics. When covariate balance 
is preemptively achieved through CBGPS, the parallel trends assumption becomes 
more plausible, enhancing the internal validity of DID even in non-randomized 
observational settings.

The procedure follows a sequential structure: First, the conditional density 
function of the continuous treatment variable is estimated given the covariates , 
as shown in Equation (10). Next, the stabilized weight is calculated using 
Equation (12).

Finally, these weights are applied to a weighted DID-mp regression model to 
estimate the causal effect of the treatment. The weighted regression model is 
specified as follows:

            ×  ′   (24)

The double robust DID approach compares the post–pre outcome differences of 
treated units with those of untreated units to approximate the counterfactual 
outcomes that the treated units would have experienced in the absence of 
treatment. As a result, this method does not identify the average treatment effect 
(ATE) for the entire population, but rather the average treatment effect on the 
treated (ATT). In this framework, the coefficient of interest that identifies the 
policy effect corresponds to .

To test for treatment effect heterogeneity, a triple interaction term is 
introduced into the double robust DID model. By incorporating a heterogeneity 
variable, the model allows for the evaluation of how the marginal effect of 
treatment intensity varies depending on specific subgroups or characteristics. 
The extended model is specified as follows:

               ×    ×   ×   ×  ×  ′   (25)

Each coefficient in the model identifies a distinct causal or structural effect:
 captures unit fixed effects, accounting for time-invariant characteristics of 

each observational unit (e.g., land conditions, topography at the county level).   
represents time fixed effects, controlling for national-level shocks or common 
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events occurring at specific time points (e.g., policy changes, climate 
fluctuations).  denotes the main effect of treatment intensity, identifying the 
average effect (ATE) of a one-unit (e.g., one million KRW) increase in the 
treatment variable, regardless of group or period.  represents the period 
(comparison group) effect, capturing the average shift in the outcome variable 
for all units between the baseline and comparison periods.   identifies the main 
effect of the heterogeneity variable, capturing the average difference in the 
outcome between groups (e.g., high vs. low farming experience), irrespective of 
treatment or time.

The interaction terms capture more nuanced causal relationships:
, the baseline ATT, measuring the average treatment effect on the treated 
during the comparison period, independent of the heterogeneity group.
, the interaction between treatment intensity and the heterogeneity variable, 
identifying whether the effect of treatment differs by heterogeneity group in the 
baseline (or untreated) period. For example: “In high-experience regions, the 
effect of each additional unit of tax exemption is  larger.”
, the interaction between time and the heterogeneity variable, identifying 
whether the time-related change in outcomes differs by heterogeneity group. For 
instance: “Regions with high farming experience saw a  -unit larger shift in the 
outcome during the comparison period than regions with low experience.”
, the triple interaction coefficient, representing the heterogeneous ATT. It 
measures how the effect of treatment intensity differs across heterogeneity 
groups in the post-treatment period. This can be interpreted as: “In 
high-experience regions, the ATT per unit of tax exemption increased (or 
decreased) by   compared to the baseline ATT.”
, represents the effects of time-varying covariates, capturing auxiliary 
influences of changing contextual factors on the outcome variable.

4. Data

In this study, the treatment variable is defined as the five-year 
cumulative average amount of gift tax exemption per capita. This definition 
reflects the institutional feature of the policy, which limits the total 
exemption amount to 100 million KRW over a five-year period. Given the 
self-selection nature of both the decision to gift farmland and the level of 
exemption received, we opted for a continuous treatment variable—namely, 
the exemption amount—instead of a binary indicator. This approach better 
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captures the heterogeneous policy exposure across observations.
To evaluate the generational turnover effects of the policy, we consider 

two outcome variables: (1) the number of farm households and (2) the 
average age of farm household heads. Rather than focusing on the 
absolute levels of these variables, the analysis centers on their temporal 
changes. This strategy is grounded in the hypothesis that, in regions 
suffering from rural aging and population decline, larger exemption 
amounts may contribute to slowing the decline in farm households and 
mitigating the rise in the average age of farm heads. Such a pattern would 
indicate that the policy has positively affected generational renewal in the 
agricultural sector.

To ensure valid comparisons between treated and control groups, we 
selected four covariates that influence both the treatment assignment and 
outcome variables, while also satisfying the covariate balance condition. 
These are: (1) the urbanization ratio (urban area over total area), (2) the 
log-transformed total farmland area, (3) the proportion of full-time farms, 
and (4) average agricultural income. These variables were incorporated into 
the analysis model only after confirming their balancing effectiveness in the 
estimation process of the Covariate Balancing Generalized Propensity Score 
(CBGPS).

In addition to the core covariates, we included several control variables 
that may confound the relationship between the treatment and outcomes. 
These include farming experience, the proportion of successor children 
among farm heads, the ratio of farmland to total area, the farm 
employment rate (number of long-term agricultural workers per cultivated 
area), farm mechanization level (number of machines per hectare), and the 
proportion of facility farming area. We also incorporated land market 
characteristics such as the total area of traded farmland, average 
transaction price, number of transactions, and number of gifted parcels.

To construct the dataset, we relied on several government data sources. 
The treatment variable is based on administrative records from the 
National Tax Service (NTS) on gift tax exemptions. The outcome variables 
were drawn from the “Census of Agriculture, Forestry, and Fisheries” 
conducted by Statistics Korea. Covariates and other control variables were 
compiled from the “Population Census” and household-level agricultural 
census data from Statistics Korea, land use data from the Ministry of Land, 
Infrastructure and Transport, and land market statistics from the Korea 
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Rural Community Corporation.
Due to the limitations of the available data, the unit of analysis was set 

at the county (Si/Gun/Gu) level. This decision stems from the fact that the 
gift tax exemption data were anonymized and thus could not be linked at 
the individual level. Consequently, the outcome and explanatory variables 
were also aggregated to the county level. Variables such as farmland area, 
agricultural income, and farming experience were transformed into 
county-level averages or ratios, allowing for valid cross-regional 
comparisons and policy effect estimations.

var. Variable Name Mean Variance Min Max

Out
com

e
Var.

Average Age of Farm Head
(years)

2010 60.59 9.52 53.63 66.27
2015 64.15 4.04 57.93 68.66
2020 65.56 3.74 59.48 69.46

Number of Farm Households
2010 4708.0 1.87e+7 5 20808
2015 4318.8 1.50e+7 22 18670
2020 4140.4 1.13e+7 25 17783

Tre
atm
ent
Var.

Avg. Per Capita Exempted
Amount (Million KRW)

2010 12.29 422.49 0 100

2015 16.33 392.88 0 137

2020 21.63 428.25 0 100

Con
trol
Var.

Cov
aria
tes

Urban Area Ratio
2010 0.487 0.187 0.0052 1
2015 0.482 0.177 0.0052 1
2020 0.481 0.177 0.0033 1

Total Farmland Area (ha)
2010 6008.3 4.29e+7 3.52 31837.8
2015 5392.8 3.50e+7 7.15 28812.6
2020 4632.5 2.50e+7 12.70 26779.5

Full-Time Farmer Ratio
2010 0.44 0.022 0 0.78
2015 0.46 0.020 0.13 0.79
2020 0.52 0.021 0.12 0.87

Avg. Agricultural Income
(Million KRW)

2010 13.23 3.82e-7 149.23 4256.37
2015 12.68 4.74e-7 118.64 4683.57
2020 12.02 6.15e-7 121.49 5525.23

Avg. Farming Experience (years)
2010 27.28 81.78 7.22 40.32
2015 27.49 67.14 10.14 40.11
2020 26.34 68.60 10.98 38.95

Successor Child Ratio 2010 0.02 0.000721 0 0.35

Farmland Ratio
2010 0.287 0.070 0 0.83
2015 0.278 0.067 0 0.80
2020 0.278 0.067 0 0.80

Employment Level
2010 0.19 0.066 0 2.28
2015 0.18 0.03 0 1.57
2020 0.27 0.15 0 4.13

Farm Machinery Ownership
(machines/ha)

2010 0.703 0.070 0.11 1.88
2015 0.731 0.079 0.12 1.95
2020 0.735 0.081 0.08 1.95

Facility Farming Share
2010 0.096 0.007 0 0.63
2015 0.088 0.006 0 0.62
2020 0.075 0.005 0 0.61

<Table 1> Variable Definitions and Summary Statistics
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5. Estimation Results
 Inthe first stage of CBGPS estimation, we conducted an ordinary least 

squares (OLS) regression where the treatment variable—per capita tax 
exemption—was regressed on a set of covariates. This preliminary step 
allowed us to evaluate the statistical significance of each covariate. Notably, 
covariates with excessively high explanatory power can undermine covariate 
balance in the propensity score model. To address this concern, we selected 
a minimal set of four centered covariates: urbanization level, adjusted 
farmland scale (log-transformed), full-time farm ratio, and average 
agricultural income. These were chosen to maintain balance while preventing 
overfitting in the GPS estimation process.

Following this, we assessed whether the selected covariate combinations 
ensured common support across treatment levels. Given that 
multicollinearity may destabilize GPS estimation, we verified the stability of 
the covariate sets by examining the variance inflation factor (VIF) for each 
combination. Once covariates passed this diagnostic step, weights were 
derived to ensure that, conditional on the covariates, the distribution of the 
continuous treatment variable  became independent of the covariate profile
—achieving covariate balance at each treatment level .

The dataset was structured into three cross-sectional panels: the baseline 
year (2010), the first period (2011–2015), and the second period (2016–2020). 
Each cross-section was constructed using time-aggregated, cleaned 
variables. For each period, we used the CBGPS-derived weights to estimate 
fixed effects linear regression (FE-OLS) models that examined the causal 

Total Transaction Area (ha)
2010 1839 2757517 159 7433
2015 5145 25246890 278 25266
2020 9048 69515942 240 37646

Avg. Market Land Price (Million
KRW/transaction)

2010 0.109 0.017 0.007 0.67
2015 0.115 0.015 0.008 0.56
2020 0.146 0.026 0.011 0.75

Number of Transactions
2010 1226 1016750 1 4540
2015 3435 9414692 1 14936
2020 6081 26710183 2 21895

Number of Gifted Parcels

2010 26.5 1175.6 0 231
2015 129.3 26710.9 0 1293

2020 155.0 56740.2 0 2171

주: 1) a: Statistics Korea, 2010/2015/2020 Census of Agriculture
b: National Tax Service, 2010–2023 Gift Tax Exemption Data
c: Korea Rural Community Corporation, 2011–2023 Farmland Market Data
d: Korea Rural Community Corporation, 2014 Agricultural Promotion Zone Statistics

2) The policy imposes a cap of 100 million KRW in tax exemption over 5 years. Thus, this study defines the treatment
variable as the 5-year per capita exemption amount.
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effect of treatment  on outcomes . The FE-OLS framework was 
appropriate in this context, as it controlled for unobserved, time-invariant 
heterogeneity across counties (Si/Gun/Gu), while leveraging the balanced 
covariate distribution ensured by CBGPS.

(1) Period-Specific Treatment Effects
Table 2 presents the estimated treatment effects of per capita tax 

exemption on the average age of farm heads for each time period. At 
baseline (2010), an increase of one million KRW in the per capita exemption 
amount was associated with a statistically significant reduction of 
approximately 0.00427 years in the average age of farm heads. In the first 
period (2011–2015), the estimated reduction was approximately 0.0009 years 
per million KRW, and in the second period (2016–2020), the marginal effect 
was 0.00048 years—both statistically significant.

These results provide empirical support for the hypothesis that regions 
with higher exemption amounts experienced relatively greater inflows of 
younger farmers, suggesting that the gift tax exemption policy may have 
contributed to generational renewal in the agricultural sector. However, the 
estimated marginal effect of the exemption on average age diminishes over 
time—from the baseline to the second period—indicating a potential temporal 
weakening of the policy’s effectiveness.

Category Variable
Baseline (2010)
Estimate (s.e.)

Period 1(2011–15)
Estimate (s.e.)

Period 2(2016–20)
Estimate (s.e.)

Outcome
Variable 1
(Average
Age of
Farm

Household
Heads)

Intercept
53.1553 ****

(0.7573)
57.6868 ****

(0.9448)
59.3578 ****

(0.6951)
Per Capita
Exemption

Amount

-0.00427 ***
(0.0140)

-0.00089 ***
(0.0003)

-0.00040 **
(0.0001)

Average Market
Price of Farmland

-0.0038
(0.0025)

-0.0044 ****
(0.0012)

-0.0014
(0.0013)

Average
Agricultural

Income

-0.0139.33
(0.02078)

-0.0143
(0.0218)

-0.0059
(0.0181)

Average Farming
Experience

0.3282 ****
(0.0204)

0.3051 ****
(0.02817)

0.2842 ****
(0.0226)

Total Cultivated
Area

0.000033 *
(0.000015)

0.000040 **
(0.000018)

-0.000007
(0.000020)

Average
Cultivated Area

-0.8913 **
(0.3453)

-1.4312 ****
(0.3362)

-0.7775 **
(0.3406)

<Table 2> Estimated Results by Period: Dependent Variable

– Average Age of Farm Household Heads( )
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Regarding the average farming experience variable, results show a 
consistent and statistically significant positive association with the average 
age of farm heads across all periods. At the baseline year (2010), an 
increase of one year in average farming experience was associated with an 
increase of approximately 0.33 years in the average age. This effect 
remained statistically significant in the first period (2011–2015) and the 
second period (2016–2020), with estimated increases of 0.35 and 0.28 years, 
respectively. These findings suggest that counties where older, more 
experienced farmers continue farming tend to have higher average ages 
among farm heads.

As for regional characteristics, the urban area ratio—measuring the 
proportion of urban land within a county—showed a negative relationship 
with average age at the baseline. That is, more urbanized counties tended 
to have younger farm heads. However, this relationship was not statistically 
significant, indicating that the level of urbanization alone may not be a 
decisive factor in explaining variation in average age at the county level.

We now turn to the estimation results for the second outcome variable: 
the number of farm households, as shown in Table 3. The treatment 
variable—per capita exemption amount—shows a positive effect on the 
number of farm households across all time periods. At the baseline (2010), 
an increase of one million KRW in per capita exemption was associated 
with an estimated increase of 7.09 households at the county level. In the 
first period (2011–2015), the estimated effect was 0.96 households, and in 
the second period (2016–2020), it was 0.41 households. All estimates were 
statistically significant.

These results suggest that the policy of gift tax exemption consistently 
contributed to maintaining or increasing the number of farm households 

per Household

Urban Area Ratio
0.6368 *
(0.3268)

0.5376
(0.3817)

-0.0278
(0.4464)

Level of Farm
Mechanization

0.2617
(0.3507)

-0.3687
(0.4187)

-0.2697
(0.4128)

Agricultural
Employment Level

1.7784 *
(0.9268)

1.3929 *
(0.7228)

-0.2625 **
(0.1135)

Proportion of
Greenhouse

Farming Area

-1.9006
(1.2607)

-2.5383 **
(1.0177)

-0.2549
(1.1824)

Notes:
*, **, ***, and **** indicate statistical significance at the 10%, 5%, 1%, and 0.1% levels, respectively.
Numbers in parentheses represent robust standard errors. The time periods are defined as follows:
Baseline = 2010; Period 1 = 2011–2015; Period 2 = 2016–2020.
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throughout the study period. However, the size of the effect has gradually 
declined over time, indicating a diminishing marginal impact of the 
exemption policy on farm household retention or formation as time 
progresses.

The analysis also examined the effects of key covariates on the number 
of farm households. Notably, the average farmland transaction price was 
found to have a statistically significant negative effect across all three time 
periods. Specifically, a one-million KRW increase in average land price was 
associated with a decrease of approximately 7.5 households in the baseline 
period, 3.8 households in the first period (2011–2015), and 5.2 households 
in the second period (2016–2020). These results suggest that higher land 
prices may act as a barrier to entry for new farmers or as a push factor 

Category Variable
Baseline (2010)
Estimate (s.e.)

Period 1(2011–15)
Estimate (s.e.)

Period 2(2016–20)
Estimate (s.e.)

Outcome
Variable 2
(Number
of Farm

Household
s)

Intercept
5451.849 ****

(1097.966)
3991.587 ****

(987.5539)
6654.0923 ****

(968.1170)
Per Capita
Exemption

Amount

7.09163 **
(3.5063)

0.9642 **
(0.4071)

0.4101 *
(0.2192)

Average Market
Price of Farmland

-7.49526 ***
(2.6916)

-3.7794 ***
(1.2531)

-5.1509 ****
(1.307)

Average
Agricultural

Income

140.4296 ***
(52.6436)

66.0522 *
(34.6909)

48.4886 *
(26.3643)

Average Farming
Experience

62.9877 *
(35.3564)

88.3056 **
(39.5883)

-13.1219
(39.4560)

Total Cultivated
Area

0.5980 ****
(0.05765)

0.6067 ****
(0.06263)

0.7074 ****
(0.0562)

Average
Cultivated Area
per Household

-5658.415 ****
(819.6957)

-4911.1362 ****
(675.9651)

-4643.9168 ****
(594.6565)

Urban Area Ratio
-1149.015 *
(675.9870)

-1716.3296 ****
(455.1300)

-1169.1881 **
(582.0593)

Level of Farm
Mechanization

-731.9759
(737.8942)

-562.7768
(513.8046)

-601.7355
(484.8584)

Agricultural
Employment Level

-1592.203
(1236.244)

-345.4245
(1022.411)

-144.1501
(214.3226)

Proportion of
Greenhouse

Farming Area

1032.960
(2345.521)

1225.3899
(1799.825)

471.2364
(1725.527)

Notes:
*, **, ***, and **** indicate statistical significance at the 10%, 5%, 1%, and 0.1% levels, respectively.
Numbers in parentheses represent robust standard errors. The time periods are defined as follows:
Baseline = 2010; Period 1 = 2011–2015; Period 2 = 2016–2020.

Table 3. Estimated Results by Period: Dependent Variable

– Number of Farm Households( )  
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for existing farms to exit the sector, especially in regions with active land 
markets.

Similarly, average agricultural income showed a significant and positive 
association with the number of farm households. At the baseline, a 
one-million KRW increase in income corresponded to an increase of 
approximately 140.4 households, while in the first and second periods the 
estimated effects were 66.1 and 48.5 households, respectively. Although still 
statistically significant in the second period (at the 10% level), the declining 
magnitude of the effect suggests that the initial boost in income may have 
already driven much of the entry and retention, and that the marginal 
effect of further income growth has since diminished.

The effect of land area on farm household numbers displayed a dual 
pattern. On one hand, an increase of one hectare in total farmland was 
associated with a statistically significant increase of 0.6 to 0.7 households, 
indicating that greater land availability facilitates agricultural activity and 
household retention. On the other hand, an increase of one hectare in 
average farmland per household was associated with sharp declines in the 
number of farm households—estimated at 5,658, 4,911, and 4,643 fewer 
households in the baseline, first, and second periods, respectively. This 
likely reflects a consolidation process, whereby small farms are absorbed 
into larger-scale operations, resulting in a reduction in the overall number 
of farming units.

In summary, increases in per capita exemption amounts were consistently 
associated with increases in the number of farm households. However, the 
magnitude of this effect declined over time, suggesting a diminishing 
marginal impact of the policy. Across other covariates, average farming 
experience was positively associated with average age, agricultural income 
positively influenced farm household numbers (though the effect weakened 
over time), and farmland variables showed a complex pattern—total land 
area supported household growth, while land concentration per household 
reduced it. Taken together, these findings imply that the gift tax exemption 
policy had a generally positive impact on generational turnover and the 
maintenance of farm households, though its effectiveness appears to have 
waned over time.

(2) Causal Effect Estimation via Comparison between the Reference and Comparison 
Periods
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To more rigorously estimate the policy effect, we extended the baseline 
CBGPS-weighted fixed effects (FE-OLS) model by incorporating interaction 
terms between treatment intensity and time periods. Specifically, we 
introduced dummy variables to differentiate between the baseline period 
(2010, =0) and the comparison period (2016–2020, =1), and interacted 
them with the treatment variable—per capita exemption amount.

In this specification, the main coefficient on the treatment variable 
represents the baseline effect of tax exemption on outcomes (average age, 
number of farm households). The interaction term between treatment and 
the comparison period captures the additional change observed in 
high-treatment areas during the latter period and can be interpreted as the 
average treatment effect on the treated (ATT) in dynamic form.

We also included interaction terms between key covariates and the time 
dummies, based on earlier findings that some covariates exhibited 
period-specific effects. This allowed for a more comprehensive assessment 
of the dynamic policy impact. While the cross-sectional time-series models 
discussed earlier may have overestimated treatment effects due to 
time-invariant unobservables and shared shocks, the 
difference-in-differences (DID) approach mitigates this concern by 
differencing out such fixed effects. As a result, the magnitude of the 
estimated coefficients in the DID specification may be smaller but reflect a 
purer estimate of post-treatment change.

To further refine the policy effect estimation, we extended the 
CBGPS-weighted fixed effects linear regression (FE-OLS) model by 
incorporating both a period dummy and its interaction with the continuous 
treatment variable. In this specification, the first period (2011–2015) serves 
as the reference period (=0), and the second period (2016–2020) is 
designated as the comparison period (=1). The coefficient on the per 
capita tax exemption variable captures its baseline effect on the outcome 
variables—average age of farm heads and the number of farm households—
during the reference period.

The interaction term between the tax exemption variable and the period 
dummy represents the incremental average treatment effect on the treated 
(ATT) observed in high-exemption regions during the comparison period. In 
other words, the sum of the main effect and the interaction term reflects 
the net treatment effect observed in the later period, conditional on the 
exemption level.
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To capture additional sources of treatment heterogeneity, we also 
introduced interaction terms between time and covariates that had shown 
statistical significance in previous analyses. This allowed for a more 
dynamic and comprehensive discussion of how the policy effect evolved 
over time depending on regional characteristics.

It is important to note that earlier cross-sectional time-series models may 
have overstated treatment effects by conflating them with time-invariant 
regional characteristics and common shocks. By contrast, the DID approach 
controls for such unobserved fixed effects, isolating the net post-treatment 
change. While this leads to more conservative (and potentially smaller) 
coefficient estimates, it enhances the credibility and causal validity of the 
findings.

Category Variable
Outcome Variable 1

(Average Age of Farm
Household Heads)

Outcome Variable 2
(Number of Farm

Households)

Control
Variables

Per Capita Exemption
Amount

-0.000694 *
(0.000353)

-0.1388240
(0.4675)

Average Market Price of
Farmland

0.001096
(0.002149)

1.010566
(1.5307)

Average Agricultural
Income

0.2336 ***
(0.0829)

-261.7531 ***
(90.0104)

Average Farming
Experience

0.334364 ****
(0.036458)

-158.3074 ****
(42.96680)

Average Cultivated Area
per Farm

-1.464858 ***
(0.448806)

-3059.884 ****
(728.7245)

Urban Area Ratio
6.202741

(9.377590)
4135.475

(15383.21)
Number of Traded Land

Parcels
-0.000031
(0.000027)

-0.208559 ****
(0.050995)

Farm Mechanization Ratio
-1.793879 ***

(0.459551)
-1652.055 **
(699.7594)

Agricultural Employment
Ratio

0.039168
(0.054053)

13.09849
(95.66662)

Number of Gifted Parcels
0.000601

(0.000741)
-0.471864
(1.314147)

Exemption Amount ×
Period Dummy

0.000695 ***
(0.000237)

-0.07518000
(0.3112300)

Avg. Agricultural Income ×
Avg. Farming Experience

-70.405574 ***
(25.4333)

102042.3 ***
(30853.59)

Urban Area Ratio ×
Number of Traded Land

Parcels

-0.000362 ****
(0.000092)

0.15806
(0.172576)

Notes:
*, **, ***, and **** indicate statistical significance at the 10%, 5%, 1%, and 0.1% levels, respectively.
Numbers in parentheses represent robust standard errors. The time periods are defined as follows:
Baseline = 2010; Period 1 = 2011–2015; Period 2 = 2016–2020.

Table 4. Estimation and Comparison of Outcome Variables

between the Reference and Comparison Periods
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The interaction term between the per capita tax exemption and the 
comparison period dummy yields a positive and statistically significant 
coefficient for the outcome variable of average age. This implies that the 
marginal effect of the exemption amount on reducing average age became 
smaller during the comparison period (2016–2020) than in the reference 
period (2011–2015). Specifically, while the base trend indicates a decrease 
of approximately 0.000694 years in average age per additional one million 
KRW in exemption, the interaction term nearly offsets this effect, 
suggesting that the policy’s marginal effectiveness in lowering the average 
age has diminished over time. In contrast, for the number of farm 
households, no statistically significant change was observed across periods.

The interaction between average agricultural income and average farming 
experience also produced statistically significant effects for both outcome 
variables, though these require more careful interpretation. These terms do 
not indicate the effect of simultaneous one-unit increases in both variables. 
Instead, they show how the marginal effect of one variable changes 
depending on the level of the other. For instance, the marginal effect of a 
one-million KRW increase in agricultural income depends on the value of 
average farming experience (), and is calculated as 0.2336−70.4×. 
Conversely, a one-year increase in farming experience yields a marginal 
effect of −158+102042×(avg. income). The results suggest that counties with 
both higher income and greater farming experience tend to have younger 
farm heads and larger numbers of farm households, possibly indicating 
successful generational turnover via successor farm entries in those areas.

Additional significant interactions were found between the urban area 
ratio and the number of land parcel transactions. These were relevant only 
for the average age outcome. More urbanized areas with a greater number 
of land transactions tended to experience further declines in average age 
during the comparison period, implying that active land markets in urban 
regions may facilitate the entry of younger farmers.

Among the control variables, average farmland area per household 
showed particularly strong and consistent effects. Controlling for treatment 
intensity and period effects, a one-hectare increase in farmland per 
household was associated with a 1.4-year decrease in average age and a 
reduction of approximately 3,059 farm households. This finding suggests 
that while larger-scale farming operations are often maintained by younger 
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generations, they may also be accompanied by structural consolidation—
absorbing smaller farms and thereby reducing the total number of farm 
units.

(3) Dose–Response Function and Scenario-Based Policy Simulation
The dose–response function (DRF), estimated using the CBGPS 

methodology, offers a visual and analytical representation of how changes 
in the continuous treatment variable—per capita exemption amount—affect 
key outcome variables such as average age and number of farm 
households. This function enables the identification of the policy’s marginal 
effect across varying treatment intensities, beyond simple linear 
assumptions.

The DRF can also be applied in simulation analyses for policy prediction. 
By inputting a hypothetical level of tax exemption into the function, one 
can forecast its corresponding effect on county-level outcomes, assuming a 
constant structural framework. For instance, given a projected exemption 
amount, the DRF can estimate how much change in average age or farm 
household count would be induced, enabling evidence-based policy design 
and ex-ante evaluation of potential reforms.

Outcome
Variable 1

(Average Age
of Farm

Household
Heads)

Figure 1. Dose–Response Function 
between Outcome Variables and Exemption Amount
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To enable a more precise estimation of the policy's dynamic effects, the 
original period-based dataset was interpolated into annual units. In 
addition, administrative data on gift tax exemption amounts from 2021 to 
2023 were incorporated. This extended panel allows for the analysis of how 
the cumulative per capita exemption amount—measured annually—affects 
relative changes in average age and the number of farm households at the 
county level. More importantly, it facilitates a forward-looking assessment 
of the extent to which continued increases in exemption amounts might 
induce demographic or structural transitions in the agricultural sector.

The figure below presents the dose–response function estimated for the 
outcome variable of average age. The horizontal axis represents the annual 
per capita cumulative exemption amount (in 10,000 KRW units), while the 
vertical axis indicates the relative change in the average age of farm 
household heads, compared to the baseline where the exemption amount is 
zero. The curve reflects the estimated trajectory of policy impact, and the 
dashed lines denote the 95% confidence interval.

This visualization reveals how increases in exemption levels are 
associated with relative declines in average age, particularly in the lower to 
moderate range of the exemption spectrum. The slope of the curve flattens 
as exemption levels rise, suggesting diminishing marginal effects at higher 
exemption thresholds. These findings provide additional insight into the 
nonlinear and possibly saturating nature of the policy’s demographic 
effects.

The estimated dose–response function for average age reveals a distinctly 

Outcome
Variable 2
(Number of

Farm
Households)
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nonlinear pattern. In the initial segment—from 0 to approximately 20 million 
KRW—the curve exhibits a positive slope, indicating that the average age of 
farm heads actually increases with modest levels of exemption. Specifically, 
counties where the per capita exemption amount rises from zero to around 
20 million KRW experience an average increase of about 1.1 years in farm 
head age compared to the baseline. This suggests that in low-exemption 
areas, the policy benefits may have primarily accrued to existing 
older-generation farmers, rather than facilitating the entry of younger 
successor farmers. In these cases, the tax benefits likely supported inter 
vivos transfers among elderly landholders, resulting in a short-term rise in 
average age.

After reaching a local maximum at approximately 20 million KRW, the 
average age begins to decline steadily as the exemption amount increases 
further. By around 60 million KRW, the average age has dropped by 
approximately 2 years compared to the baseline. This turning point marks 
a transition wherein the policy may begin to take effect through the entry 
of younger successor farmers or the retirement of aging farm heads. At 
even higher levels of exemption—exceeding 80 million KRW—the decline in 
average age becomes more pronounced, with reductions reaching nearly 4 
years. This indicates that large-scale exemptions exert stronger 
demographic impacts and may promote structural renewal in the 
agricultural labor force.

These results highlight a nonlinear, U-shaped effect of the tax exemption 
policy on average age, with an initial unintended consequence of aging, 
followed by an inflection point and eventual rejuvenation at higher 
exemption levels. The presence of such reversal effects underscores the 
importance of calibrating eligibility thresholds and targeting mechanisms 
within the policy. It also suggests that moderate-to-high levels of exemption 
are necessary to realize the intended generational turnover effects.

The lower panel of the figure presents the corresponding dose–response 
function for the number of farm households. The vertical axis reflects 
relative change in household count compared to the baseline where 
exemption is zero. In the low-exemption range (up to approximately 20 
million KRW), the number of households increases significantly—by as many 
as 1,000 additional households—suggesting that even modest fiscal 
incentives may help retain existing farms or attract new entrants. This 
supports the view that small-scale exemptions act as policy signals, helping 
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sustain farming communities by offsetting exit trends.
Beyond the 20 million KRW threshold, however, the number of farm 

households begins to decline sharply. By the time exemptions reach around 
60 million KRW, household numbers fall by up to 4,000. This decline likely 
reflects two processes: (1) policy concentration on a small number of large 
farms receiving high exemptions, and (2) complete generational transfer 
accompanied by the retirement of the parent generation, which reduces the 
total count of independently registered farms. Where these dynamics 
coincide with broader trends of population decline, the reduction in farm 
household numbers may be especially pronounced.

Notably, the decline plateaus beyond 60 million KRW, stabilizing at 
approximately 4,200 fewer households. This suggests a saturation point 
where additional exemptions no longer induce further structural shifts—
indicating diminishing marginal effects of the policy. In short, while modest 
exemptions are associated with farm retention and possibly entry, 
high-value exemptions correspond more closely to consolidation and farm 
exit dynamics.

These findings confirm that the response of farm household counts to tax 
exemptions is nonlinear and asymmetric. Small exemptions yield positive 
retention effects, while large exemptions may induce restructuring or 
reduction in farm numbers. This has direct implications for the design and 
targeting of the policy: to balance sustainability and equity, exemption caps 
and eligibility rules should be aligned with regional demographic and 
structural conditions.

6. Conclusion

This study evaluated the effectiveness of South Korea’s gift tax exemption 
policy for successor farmers by employing a three-stage analytical 
framework that integrates continuous treatment intensity with repeated panel 
observations. First, covariate balance was achieved using the Covariate 
Balancing Generalized Propensity Score (CBGPS), minimizing potential 
endogeneity bias. Second, a multiple-period Difference-in-Differences (DID) 
approach was applied to the three observation points (2010, 2015, and 2020) 
to capture the policy’s cumulative and dynamic effects. Third, a doubly 
robust re-estimation of the DID model using GPS-based weights was 
conducted to assess treatment heterogeneity and distributional equity.
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The analysis found that the marginal effect of the per capita exemption 
amount on the average age of farm household heads weakened over time, 
indicating a diminishing impact of the policy across the study periods. In 
contrast, the effect of the exemption on the number of farm households 
remained consistently positive, though its magnitude also declined across 
successive periods. These patterns suggest that the marginal returns to 
additional exemption amounts may taper off as the policy matures—a 
dynamic characteristic that holds significant implications for future policy 
adjustments.

It is important to note that this study relied on aggregated data at the 
county (Si/Gun/Gu) level due to limitations in data availability. As a result, 
individual-level heterogeneity among farms could not be fully accounted for, 
and the analysis was necessarily centered on representative averages rather 
than micro-level variation. Despite this inherent limitation, the findings 
contribute to a more nuanced understanding of how tax incentives shape 
demographic and structural transitions in agriculture, and offer empirical 
guidance for the refinement of successor-focused agricultural policy.
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