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Abstract—Studies of the COVID-19 pandemic have repeatedly demonstrated that the role of 

spatial factors in the transmission of infection is significant. However, there is no universal spatial 

model thoroughly describing COVID-19 spread patterns. The paper proposes an original view on the 

centre-periphery model: regions are classified according to settlement pattern (static component) and 

openness (closedness) (dynamic component) characterising intensity of inter-regional human 

interactions (population flows). A total of 8 types of Russian regions are distinguished by the 

parameters of openness (closedness), population density and average size of a settlement. The course 

of the pandemic in the regions is analysed using the monthly trend of excess mortality, divided into 

three waves (acute phases) of COVID-19 spread. Empirical evidence shows that regions differ 

significantly in terms of the impact of the pandemic. Polarisation is the highest in the first wave, 

suggesting a greater role for spatial factors in the early stages of coronavirus outbreak. During the 

second and third waves, differences between regions begin to level out, probably influenced by 

internal socio-cultural and economic factors. The COVID-19 pandemic in the Russian regions allows 

us to rethink the traditional hierarchical concept of centre-periphery space. New dimensions are 

emerging: in addition to classical centres, there are remote frontier regions with similar functionality. 

Alongside the periphery is the outback (“glubinka”), close to the centre but paradoxically almost 

unaffected by its influence. 
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INTRODUCTION 

The centre-periphery concept, which has been discussed in academia for about half a century, 

derived mainly from the concept of innovation diffusion (Gritsay et al., 1991). If we look at the novel 

coronavirus spread across the planet in 2020 as a kind of “negative” innovation, then the COVID-19 

pandemic can be seen as a tragic but rather insightful experiment to test the existing centre-periphery 

model. Compared to the tailored works on the geography of technological innovation, the coronavirus 

transmission with population flows seems to take us back to the origins of the concept of innovation 

developed by Hägerstrand on the example of migration (Hubbard et al., 2008). In contrast to 

migrations, the rapidly spreading novel coronavirus provides a cross-section of essentially the entirety 

of human movements, contacts and personal interactions. They include commuting (both within a 

centre and urban agglomeration), business trips, fly-in/fly-out migrations, seasonal movements to and 

from recreational sites, etc. The role of a wide range of movements in the initial outbreak of the 

infection on a particular territory has been widely reported in the press and, at this stage, arguably 

requires no additional evidence. For further research, we assume that the spread of coronavirus 

between settlements is an indicator of the intensity of all population traffic between them. 

To make it clear, we emphasise that the initial transmission of coronavirus infection should 

be considered in the first place. This has also been confirmed in multiple studies. The work (Linka 

et al., 2021) is particularly notable here: it provides a detailed analysis using data from airlines (for 

air travel) and mobile network providers (for road traffic). The crucial finding of this paper for our 

study is that traffic flows are only associated with the initial introduction of infection into an area. 

 
1 Original article: Nikitin, B.V., Zamyatina, N.Y. Waves of the COVID-19 Pandemic in Russia: Regional Projection. Reg. 

Res. Russ. 13, 271–286 (2023). https://doi.org/10.1134/S2079970523700703 
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Subsequently, the statistical link between incidence rates and traffic flows disappears and morbidity 

develops due to other factors no longer associated with transport openness. 

Of course, the link with transport openness to a certain extent might also be seen at later stages, 

mainly, apparently, when new variants of virus emerge or new carriers arrive2. However, other factors 

begin to play an increasingly important role. These factors include primarily the introduction or non-

introduction of quarantine measures and other anti-epidemic restrictions, the willingness of the 

population to comply with them, as well as a range of measures affecting the intensity of personal 

interactions within the territory: the configuration of settlements, characteristics of the retail and 

public transport networks, economic specialisation, etc. In particular, such results have been received 

in studies within our research project (Goncharov et al., 2023). Some of these factors are partly 

determined by position within the centre-periphery dichotomy, e.g. economic specialization. The 

semi-periphery usually has many manufacturing enterprises, where it is almost impossible to organize 

efficient distancing, unlike offices, which are easily transferred to a remote mode. However, in 

general, the link with the transport situation as well as with the centre-periphery system apparently 

becomes feeble. This fact is confirmed by low correlation of excess mortality during the pandemic 

with various transport system parameters (Kotov et al., 2022). 

This paper therefore sets out to distinguish particular waves of the COVID-19 pandemic in 

contrast to the majority of works by geographers and economists. We hypothesise that the spatial 

distribution patterns of the first wave of the COVID-19 pandemic reflect fundamental properties of 

the structure of space (and in particular centre-periphery linkages reflected in the intensity of human 

interactions of all kinds cumulatively) to a greater extent than those of subsequent waves. 

 

COVID-19 AND CENTRE-PERIPHERY MODEL 

Returning to the origins of the centre-periphery concept, we cannot ignore its connection to 

the gravity model. This phenomenon is widely discussed by contemporary authors in centre-periphery 

studies. A. Copus, the key researcher of centre-periphery linkages in contemporary Europe, inter alia, 

points it out in his work on the EU periphery index (Copus, 1999). According to the gravity model, 

two settlements normally interact more intensively the larger their population size and the smaller the 

distance between them. Of course, this is a relatively simplified assumption, but this model de facto 

explains the Hägerstrand hierarchical diffusion, which is connected both with the hierarchy of 

settlements by population size and the distance from the centre to the periphery that accepts the 

innovation. 

In later studies, many factors have been taken into account to differentiate the centre from the 

periphery, such as the cost of transportation, the agglomeration effect, the cost (and hence 

accessibility) of services, population density, settlement density, etc. (Copus, 2001). Works on the 

diffusion of technological innovation (Feldman and Kogler, 2010; Baburin and Zemtsov, 2014) have 

gained prominence, where the notion of a centre is narrowed down to essentially a highly specialized 

centre of innovation (usually the centre of concentration of scientific organizations and laboratories). 

This idea allows us to understand the mechanism of distribution of economic activity and population, 

but the result may well be precisely the gravity model. The level of interconnection between 

settlement centres in it is determined by the size of their population and the distance between them. 

Although, as Copus observed, in fact “true” peripherality is marked by poor links to the outside world, 

and this can be found even close to the centre which is an important point for our research.  

However, it is not surprising that the coronavirus pandemic, as in a sense an “ideal innovation” 

reflecting the totality of inter-settlement human links (and not just, let us assume, the spread of patent 

 
2 The chief physician of the Kalarsky district hospital in Zabaykalsky krai described the impact of the shift work factor 

on the local coronavirus situation in an interview with one of the authors. “COVID-19 had a slightly different course in 

our district than in other districts of Zabaykalsky krai and in Chita. It started a little later but we had it for a very long 

time because there were many shift workers from a lot of different regions... We just decided to close, less than five or 

ten people came. Then suddenly two or three of them arrived from other regions. They were examined on arrival. As soon 

as they were examined, they were placed in quarantine here” (interview by N.Yu. Zamyatina, Novaya Chara, May, 2022. 

The respondent estimated the total number of shift workers (from various organisations, including Russian Railways) in 

the area to be around 10 thousand). 
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references, as in the modern geography of innovation) has prompted a number of attempts to relate it 

to the Hägerstrand hierarchical diffusion (Fig. 1). 

Expectedly, many researchers noted that Hägerstrand model works to some extent in the first 

phase of a pandemic (Klapka et al., 2020; Poom et al., 2020; Zemtsov and Baburin, 2020). Thus, most 

major global cities were hit rather quickly, with the virus literally crossing oceans faster than 

neighbouring areas. Moscow and St. Petersburg, expectedly, appeared as the first hotspots of the 

coronavirus in Russia. However, atypical patterns emerged already in the first months of the 

pandemic. Firstly, it is the rapid spread of the disease to very remote areas (e.g. Yamalo-Nenets 

autonomous okrug). Secondly, COVID-19 appeared later and/or inflicted milder damage in some 

areas that could well be considered central. These are, for instance, some major cities in Siberia or, 

conversely, some regions in Central Russia located close to Moscow as the main hotbed of infection.  

Undoubtedly, a direct detection of population flows (e.g. through data from mobile operators 

(Linka et al., 2021)) leading to the above-mentioned oddities in the spread of the coronavirus would 

be the most precise option to choose for our study. The task of defining the centre and the periphery 

in this case would be to identify zones with different total volume of population flows. However, the 

authors do not possess such detailed data. 

Therefore, we set a goal to provide a new insight into the features of the centre and the 

periphery considering them through the prism of human interactions drawing on data on the course 

of the COVID-19 pandemic as a proxy indicator of population flows of different genesis in the Russian 

space. 

To achieve this goal, we examine the COVID-19 spread patterns during the first wave as the 

main indicator (set of indicators) of population flows (personal interactions), and attempt to find 

statistical indicators that describe the mechanism causing these flows. We focus mainly on the spatial 

features of centre and periphery evolution, on how the centre and periphery manifest themselves in 

the space of flows. We do not aim to describe all the factors causing these flows. Thus, for example, 

obviously, the ideal centre should be characterised by higher per capita incomes than the periphery, 

etc. (in particular, there was an attempt to link income with mobility during the lockdown period 

(Dokhov and Topnikov, 2021)). 

 

DATA AND METHODS 

The methodical part of the work is divided into two main stages. At the first stage we select a 

basic indicator to measure the impact of coronavirus in regions and to periodise pandemic waves for 

each region. At the second stage we choose the number of parameters to assess the scale of external 

and internal population flows directly or indirectly. In addition, field interviews were used for analysis 

(references in the footnotes are provided in each case). They were conducted by participants in our 

grant project in several regions of the country. Before moving to a detailed description of the 

methodology, the authors should emphasize that the goal of this study was not to build a 

comprehensive factor model explaining the distribution of COVID-19 mortality. Such attempts were 

made in numerous works by Russian researchers (Zemtsov and Baburin, 2020; Kravchenko and 

Ivanova, 2021; Makarova and Pyshmintseva, 2021; Pilyasov et al., 2021; Kotov et al., 2022; 

Goncharov et al., 2023). They led to different results, but certain spatial factors mattered in every 

model. The article aims only to identify key spatial features of Russian regions influencing the course 

of the pandemic. Other factors, e.g. socio-economic, medical, are not considered intentionally. 

The first stage: selection of basic indicator and detection of pandemic waves for each 

region. The general idea of this article is to evaluate the influence of spatial factors that can shed light 

on mechanisms of the infection transmission on different stages across Russian regions. As the basic 

indicator describing the consequences of COVID-19 we use ratio of monthly number of deaths for 

the period from April, 2020 to December, 2021 relative to the five-year average monthly number of 

deaths during 2015–2019 (five closest pre-pandemic years): 

𝐸𝑀𝑥 =
𝑀2020;2021𝑥

0,2 × ∑ 𝑀𝑥2015–2019
 , 
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where EM – ratio indicating excess mortality in a certain month from April, 2020 to December, 2021, 

M – number of deaths in this month, x – month.  Accordingly, all values above 1 indicate an excess 

mortality relative to the preceding five-year average. Some researchers measure excess mortality as 

a deviation from the forecast based on a recent trend in mortality (Wang et al., 2022). We rejected 

this method of calculation despite the fact that yearly number of deaths fell by 1.5% between 2015 

and 2019. In some regions, mostly with small population, the trend tends to be unstable and subject 

to significant fluctuations year to year, so that aggregate values for previous years appear to be more 

robust than the trend projections. Also, excess mortality per capita, i.e. increase in mortality rate (%), 

was tested as an alternative basic parameter. Expectedly, this indicator is highly correlated with the 

share of population older than 65 years: linear correlation coefficient equals 0.62, p-value < 0.0001. 

Modelling the excess mortality per capita across Russian regions in 2020 has shown that this factor 

has the highest predictive ability (Kotov et al., 2022). The “simple” excess of mortality used in this 

work, on the contrary, is weakly related to the age structure of the population and allows us to better 

evaluate the factors stimulating COVID-19 spread and the pandemic impact on healthcare systems of 

different Russian regions.  

After calculating monthly excess mortality for 21 months of the pandemic from April, 2020 

to December, 2021 relative to previous five-year average, the issue of identifying waves of COVID-

19 has arisen. For this purpose, we analyse the monthly fluctuations of mortality in the regions (year-

over-year) in 2015–2019. We calculate a median value of 1.14 from the sample of maximum excess 

mortality values (extreme fluctuations). This means that the number of deaths per month in the 

average Russian region did not increase by more than 14% relative to the number of deaths in the 

same month in the previous year during the pre-pandemic period. In fact, this threshold shows in 

which range mortality can fluctuate in regular conditions. All values higher, especially observed for 

two or more consecutive months, should be attributed to the COVID-19 effect, and are likely to 

indicate the acute phase of the infection spread in a region. At the next stage the trend of excess 

mortality was divided into three periods indicating three waves of the pandemic (Fig. 2).  

However, the first wave cannot be identified in 29 regions (excess mortality from April, 2020 

to August, 2020 less than 1.14 – threshold value). The second and third waves of the pandemic are 

detected in all regions without exception.  

For each wave we calculate four parameters (Fig. 3, 4, 5). 

1. Basic: average excess monthly mortality (based on unified national periodisation of 

waves). 

2. Peak excess monthly mortality (maximum monthly mortality during the wave, but not less 

than the threshold (1.14)). 

3. Start time of the wave (month when monthly mortality surpasses the threshold (1.14) for 

the first time). 

4. Duration of the wave (number of months with excess mortality higher than the threshold 

(1.14)). 

The first wave of the COVID-19 pandemic (April, 2020 – August, 2020) is the shortest and 

lowest. Regions show extremely different patterns in excess mortality. Some central regions, 

especially those with million-plus cities, faced exponential growth of infections despite harsh 

restrictive measures being induced, while in many peripheral regions the coronavirus spread slower 

or arrived very late. The most striking contrasts are in the time of onset and duration of the first wave. 

Among the most affected are the regions of Central Russia, St. Petersburg and Leningrad oblast, the 

republics of the North Caucasus and the oil and gas-producing Yamal-Nenets autonomous okrug and 

Khanty-Mansi autonomous okrug in West Siberia. There is also a high polarisation in terms of 

mortality. The excess mortality rate during the first wave in the Chechen Republic located in densely 

populated region of the North Caucasus reaches 44%, while in the remote Tyva Republic on Siberian 

periphery it is only 6%. 

The second wave (September, 2020 – March, 2021), on the contrary, is the most coherent and 

homogenous one with a distinctive peak in December. Regions demonstrate almost synchronous 

dynamics and scope of excess mortality, while its dispersion is decreasing (the standard deviation of 
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the average excess mortality is 6.1% compared to 11.8% in the first wave). The second wave is on 

average 40% higher than the first one. At this stage the pandemic permeates among every region, new 

hotbeds emerge in the Far East. The Russian economy cannot sustain strict lockdowns anymore which 

facilitates the spread of infection. The strictness of the lockdowns, mainly for economic reasons, 

begins to soften. As the result, the barrier and inertia effects of Russia's centre-peripheral space are 

gradually levelled out. 

The third wave (June, 2021 – December, 2021) has similar regional projection to the second 

wave. The dynamics of excess mortality are different, though, with two mortality peaks. The first was 

in July, 2021. After a slight decline and stabilisation, mortality soared to a record high (national 

average: 1.75) in November due to the SARS-CoV-2 delta variant spread. Adult vaccination rate was 

still at around 40% in November, 2021, which is insufficient to reduce mortality from COVID-19. 

Although the regions pass the third wave relatively homogeneously according to average parameters 

(standard deviation of average excess mortality is 8.5%), the mortality dynamics are inconsistent. 

Most regions follow a standard pattern, repeating the general trend with two mortality peaks and 

record values in November-December, 2021 (up to 2.4). However, some regions have only one 

prominent peak in late autumn, while some (mostly Siberian and Far Eastern regions) feature the 

summer peak which is higher than the autumn peak. Such discrepancies specifically in the third wave 

are most likely due to interference of pandemic waves. At the time the delta variant of SARS-CoV-2 

began to spread in Russia (June, 2021) regions of European Russia and some open regions of Siberia, 

which had passed through two full waves, were in the opposite phase to the peripheral regions of 

Siberia and the Far East, where the virus came with a delay. 

The second stage: selection of indicators for assessing population flows as ways of COVID-

19 spread. The first group of indicators directly describes transport openness (closedness) of a region, 

the choice of this group is the most obvious. In this case, special attention was paid to air transport: a 

number of works show a link between primary transmission of infection and air transport, which, in 

theory, provides the longest passenger connections – up to global ones (it is no coincidence that the 

role of air transport in the spread of infections was described even before the COVID-19 pandemic 

(Nicolaides et al., 2012)). Media analysis as well as our interviews confirm the importance of air 

transport in the initial transmission of infection3. Some studies on COVID-19 have found air traffic 

to be insignificant (Zemtsov and Baburin, 2020) but the authors’ methodology in this case was 

fundamentally different. 

We test different indicators of air passenger flows: relative and absolute. The logic behind 

using the absolute (rather than just per capita) indicator is the importance (in the context of our study) 

of the primary entry of infection into an area, i.e. the risk of COVID-19 outbreak is higher when the 

gross number of air passengers is high (Tarkhov, 2022). Thus, for example, the probability of 

occurrence of an infected person among the passengers arriving in Moscow is higher than among the 

passengers arriving, let us assume, in Igarka (here the number of air passengers reaches 50 per city 

resident annually due to the shift workers, but their total number is significantly lower than the total 

number of passengers passing through major airports of the country, and therefore, the possibility of 

appearance of infection carrier among them is lower proportionally to their absolute number). The 

indicator of total passengers handled at airports per capita was also taken for comparison. 

In addition, we consider the indicator of integral transport accessibility. The calculated values 

of the indicator were taken from the article (Lavrinenko et al., 2019): 

𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡_𝑖𝑛𝑑𝑒𝑥𝑥 = ∑ 𝑃𝑦  ÷ 𝑡𝑜𝑡𝑎𝑙_𝑐𝑜𝑠𝑡𝑥–𝑦

𝑦

 , 

where transport_index – integral index of transport accessibility of a region x; Py –population of a 

region y (million people); total_costx–y – the total transport costs of travelling from region x to all 

other regions y (roubles).  

 
3 “The COVID came to Chita with a Moscow flight! A woman, a local woman, was returning from holiday and turned 

out to be sick. So, while she went to the doctors, someone from her flight was found, and someone was not found, people 

who was flying with her left, and so the COVID began” (interview by N.Yu. Zamyatina, Chita, May, 2022). 
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Transport costs consist of a weighted average of direct and indirect (time) costs for all modes 

of passenger transport, adjusted for modal structure of transportation. An important advantage of the 

integral transport accessibility indicator for characterising the openness or closedness of a region is 

that it is based on the principle of the gravity model. Not only transport costs for inter-regional 

movements are taken into account, but also “weights” of regions expressed through population size. 

Accordingly, a location in a densely populated part of the country increases transport accessibility, 

as the factor of proximity to large regions in terms of population has an impact. 

Migration indicators are less useful for assessing the transmission of the coronavirus because 

migrants constituted only a small flow of potential carriers of the virus (holidaymakers and travellers 

are much more significant given their greater proportion in the overall population). However, 

migration indicators are included in the analysis to show not so much the flow of potential carriers of 

the virus during the pandemic as to reflect indirectly the potential for such flows. Presumably, the 

migration situation is “fractally” reflected in the population flow pattern as a whole. A wide scope of 

migration in general might indicate a high intensity of other flows up to daily commuting. The 

analysis is based on five-year average migration volume (2015–2019) (number of departures and 

arrivals per capita and only arrivals per capita) and the proportion of intraregional migrants in the 

total number of migrants as a potential indicator of the overall closedness of the region4. 

In addition, unusual indicators are introduced into the analysis: the share of the population 

born in a region but living outside of it in the total population born in a region and the share of the 

population born in a region in the total population of the region (according to the 2010 census). The 

choice of the first one is based on the assumption that regions with a high share of locals living outside 

are a specific type of chronically depopulated regions (a typical example is Kirov oblast), a kind of 

“absolute outback (“glubinka”)”. We hypothesise that such “chronic” features of a region may be 

indicative of weak regular connections with other regions. The second indicator rather shows the 

degree of autochthony of a region or embeddedness of local residents which could also be a sign of a 

marker of an outback (“glubinka”). High shares of the population born in a region and living in it are 

typical for national republics where close social ties are preserved. Low shares are typical for regions 

specialising on mineral resources and major centres of migrants’ attraction (Moscow, St. Petersburg, 

Krasnodar krai, etc.). 

As already mentioned, the estimation of average per capita income could presumably produce 

similar results. Wealth could be seen as another proxy for mobility (financial opportunities and 

limitations of mobility) and such attempts have been made. However, in this case the authors refrain 

from introducing economic parameters, aiming at identifying exactly spatial (“flow”) characteristics 

of centrality and peripherality, especially since income indicators have already been considered by 

many researchers (Zemtsov and Baburin, 2020; Kotov et al., 2022), and have not came to more or 

less unambiguous results. 

The second group of indicators describes settlement pattern. It is logical to assume that areas 

with a sparse settlement network were less susceptible to the spread of the infection, because of the 

natural difficulty of contacts between individual settlements. In addition, we suggest that the 

consequences of COVID-19 are linked to the concentration of population within a region 

(monocentric regions are expected to be affected faster and more severely than polycentric ones). We 

consider a number of indicators, including the Herfindahl-Hirschman index for population of all 

settlements showing the concentration level of population in a region (calculated for settlements with 

a non-zero population from the database by the Research Development Infrastructure (RDI) online 

platform), the proportion of the population living in cities with more than 250 thousand residents, 

urbanisation level, average size of a settlement, settlement density, indicators of transport availability 

of the area by road network: road density and Engel coefficient (road density weighted by population). 

Among others, the indicator “share of the population living in remote mono-specialised towns or 

centres servicing rural areas” requires commentary. We proposed it previously in another paper 

(Zamyatina and Nikitin, 2020). Here we are referring to cities with a population of less than 100 

thousand people, while not being satellites of agglomerations of cities with a population over 100 
 

4 Indicator suggested by A.N. Pelyasov. 
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thousand (delimitation of agglomerations was carried out according to the radius of transport 

accessibility of the centre by road: from 50 to 100 km, depending on the population of the centre). In 

fact, in the vast majority of cases, these are mono-specialised industrial towns or municipal centres 

and other small towns focused on serving the adjacent rural areas. The relative isolation of the city 

itself, and its (generally) poor links to the major centres (in contrast to satellite towns in 

agglomerations), is expected to facilitate later appearance of the new infection. However, such towns 

may become hotbeds in the later stages of the pandemic as coronavirus infection gradually spreads 

within a region. Mono-specialised towns can also be affected by the factor of close interactions 

between employees of the city-forming enterprise in the production facilities (especially in the 

manufacturing industry). 

The complete list of the studied indicators is shown in table 1. 

 

RESULTS: DESIGNING THE TYPOLOGY OF RUSSIAN REGIONS BASED ON THEIR 

PLACE IN THE SPATIAL STRUCTURE OF INTERREGIONAL POPULATION FLOWS 

Selected indicators describing openness (closedness) and settlement patterns of regions are 

examined in order to establish their correlation with the basic indicators responsible for the impact of 

the COVID-19 pandemic. For this purpose, pairwise Pearson correlation coefficients of all indicators 

with average excess mortality are calculated for the whole study period from April, 2020 to 

December, 2021, as well as for each of the three waves. The results are presented in Table 2. 

We did not find a high degree of statistical correlation in any of the cases. The highest 

correlation coefficients with excess mortality over the entire pandemic are -0.4 for the share of the 

population born in a region but living outside of it and 0.4 for the average size of a settlement. The 

results of the correlation analysis clearly demonstrate the difference between the first wave and the 

more similar second and third waves: on average, the first wave features higher correlation 

coefficients, particularly with the openness (closedness) indicators. 

Some initial hypotheses have not been confirmed: for example, no significant correlation has 

been found between the damage from the pandemic during any of the waves and the polycentric or 

monocentric settlement pattern of the region expressed through the Herfindahl-Hirschman index 

calculated for population of all settlements. Indicators describing some attributes of spatial density, 

such as the availability of roads (Engel coefficient) and the density of settlements, have also proved 

to be insignificant. Paradoxically, some indicators of the migration situation and the level of 

urbanization have proved to be unrepresentative for the analysis of excess mortality distribution. 

For further study, we select only those indicators for which the probability of a random 

statistical relationship (p-value) with the average excess mortality over the entire period is less than 

0.05. The indicator of share of the population living in remote mono-specialised towns or centres 

servicing rural areas, although meeting this criterion, is excluded because a similar indicator weighted 

by the number of the urban population showed a higher correlation coefficient with the basic 

indicator. 

A matrix of pairwise Pearson correlation coefficients is calculated for the selected indicators 

(Table 3).  

A high degree of correlation was found between population density and road network density 

(0.9). We can calculate population density with greater accuracy, so the latter indicator is excluded 

from the analysis. 

As a result, there are four indicators that characterise the openness (closedness) of the region: 

total passengers handled at airports (air_passenger), integral index of transport accessibility 

(transport_index), the share of the population born in a region but living outside of it in the total 

population born in a region (outside_population), the share of migrants (departures and arrivals on 

average over 5 years) in the total population (migration_scope). After z-normalisation of indicators:  

𝑥𝑖
′ =

𝑥𝑖 − 𝑥𝑎𝑣𝑔

𝜎𝑥
 , 

where xi
’ – normalised value (z-score), xi – value, xavg – sample average, σx – standard deviation for 

the data set xi, the region's openness (closedness) index was calculated: 
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𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦_𝑖𝑛𝑑𝑒𝑥 = 0,25 × 𝑎𝑖𝑟_𝑝𝑎𝑠𝑠𝑎𝑛𝑔𝑒𝑟 + 0,25 × 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡_𝑖𝑛𝑑𝑒𝑥 + 0,25 ×
(−𝑜𝑢𝑡𝑠𝑖𝑑𝑒_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) + 0.25 × 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑠𝑐𝑜𝑝𝑒 .  

We take the values of the share of the population born in a region but living outside of it with 

the opposite sign, because the higher they are, the more closed the region hypothetically. Accordingly, 

high values of the integral index indicate that the region is open and low values indicate that it is 

closed. 

Population density (population_density), average size of a settlement (settlement_size), the 

share of urban population living in remote mono-specialised towns or centres servicing rural areas 

(remote_urban), share of the population living in cities with more than 250 thousand residents 

(share250) remained in the list of indicators describing settlement pattern. The last two indicators 

were excluded, as they, like the second, more general indicator, are based on population density. 

Thus, as a result, the settlement pattern is assessed using two indicators: population density and the 

average size of a settlement. We do not calculate the integral index in order to highlight the paradoxes 

of space, which can be both dense and dispersed, and on the contrary, sparse but concentrated. 

The consolidated typology is designed by dividing the regions according to the values of the 

openness (closedness) index, population density and average size of a settlement, in each case into 

two classes. We use histograms to determine the threshold values separating classes (Fig. 6). For the 

openness (closedness) index, the median value is chosen, so, the regions are divided into two equal 

groups. The histograms for population density and average size of a settlement demonstrate distinct 

skewed right pattern, so, the threshold values are chosen with regard of natural breaks: 18 people per 

km2 and 1.5 thousand people, respectively. 

Thus, the regions are divided into open and closed, densely and sparsely populated, with large 

and small settlements. The consolidated typology is based on the combination of these classes, the 

regions fell into each of the eight possible types. 

1. Dense + large settlements + open (16 regions). 

2. Dense + small settlements + open (19). 

3. Sparse + large settlements + open (3). 

4. Sparse + small settlements + open (4). 

5. Dense + large settlements + closed (4). 

6. Dense + small settlements + closed (8). 

7. Sparse + large settlements + closed (12). 

8. Sparse + small settlements + closed (19). 

Table 4 illustrates the differences in the course of the COVID-19 pandemic in different types 

of regions. 

 

DISCUSSION 

Overall, we can highlight the following trends. To start with, the most open regions were the 

first to be affected by COVID-19 – they have the highest mortality rates in the first wave. Further on, 

differences between open and closed regions in terms of excess mortality rates diminish but each of 

the waves tends to be longer in open regions than in closed ones. Let us point out that if the wave in 

region A is substantially longer than in region B, and the mortality in region A, only slightly higher 

than in region B, then it appears that overall, open regions paradoxically do better in coping with the 

pandemic than closed regions which could often face shortages of medical personnel, medicines, etc. 

This observation definitely deserves more detailed analysis in further studies. The difference in the 

duration of the waves seems to be attributable to persistent infection “flow” into more open regions, 

whereas in closed ones an initial coronavirus transmission causes an outbreak that becomes localised 

more rapidly than in open regions (see field study materials in the footnotes above). 

It is noteworthy that the closed regions in our typology include both remote, classic peripheral 

regions (Zabaykalsky krai) and some regions of Central Russia (Smolensk oblast, Bryansk oblast, 

Ivanovo oblast, etc.). The latter group is of particular interest. Many regions in Central and Northwest 

Russia have relatively low mortality throughout the pandemic. Here we witness a kind of a paradox. 

Located relatively close to the main infection hotspots (Moscow and St. Petersburg), with a large 
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proportion of elderly population (more vulnerable to the disease), etc., these regions were expected 

to show higher excess mortality rates. Apparently, it was the “chronic” closedness that prevented 

them from infection inflow. A lower level of excess mortality is observed only in very hard-to-reach 

groups of regions: types 4 and 7 in table 5, like Nenets autonomous okrug, Chukotka autonomous 

okrug, Magadan oblast, etc.) In fact, COVID-19 exposes the classical “inner periphery” in this case 

(or, using the “matrix” designed by V.L. Kaganski the outback (“glubinka”) (Kaganski, 2001)). 

Interestingly, the link with the coronavirus infection is clearly evident both in terms of transport 

openness and social parameters. Regions within inner periphery suffer from an outflow of population, 

which is a marker not so much of actual population flows with which the virus could spread, but of 

their absence. Migration flows here go one way: from the region, stagnant depression hinders 

development of business travel, commuting, etc. Among closed regions, however, a small group is 

more vulnerable to the pandemic. These are closed, dense systems with polycentric settlement pattern, 

such as Kemerovo oblast or the Republic of Ingushetia. Although these regions do not receive 

persistent inflow of the infection from the outside, there is a swift internal spread of the virus after its 

appearance in the region due to high connectivity and the presence of many large centres.  

Another valuable observation also relates to a specific type of region, like the central regions, 

the first to be exposed in the course of the pandemic. They are open, as the centre should be, but, 

unlike the classical centre, they are sparsely populated which is usually an attribute of the periphery 

(Copus, 2001). If a sparse and open region in the same time has large settlement pattern, then it tends 

to have a high excess mortality rate during the pandemic. Such regions, having features of both centre 

and periphery, seem to represent a special type of region rarely distinguished in classical works on 

territorial structure – a frontier, or an area with rapid extraction of large amounts of natural resources. 

The distinctive feature of a frontier is precisely the speed and scale of development. It is no 

coincidence that major oil and gas producing regions in West Siberia (Yamal-Nenets autonomous 

okrug and Khanty-Mansi autonomous okrug) fall into this type in our study, but not every resource-

dependent region5. Regions with already inertial, more sluggish development (e.g. Magadan oblast 

or Zabaykalsky krai) do not demonstrate similar features in terms of transport openness. On the 

contrary, the frontier, being a resource periphery, is acquiring the features of the centre due to an 

intensive inflow of population (the same is relevant to some innovations, as the study has shown). 

 

CONCLUSIONS 

The novel coronavirus infection, as a specific negative innovation, clearly manifests the 

division of the Russian space into “open” and “closed” zones, centre and periphery. Open regions (in 

terms of transport and apparently social sphere) are the first to be affected by the pandemic, showing 

higher excess mortality rates in the first wave, and a longer duration of the consequent waves. Closed 

regions with weaker links by air transport, low transport accessibility and, specifically, persistent 

outbound migration are less vulnerable in the first phase, but gradually level out with the centres of 

mobility by the third wave. These regions mark the inertial, systemic nature of the region's place in 

the territorial system of the country. The regions of the “inner periphery”, or the outback (“glubinka”) 

of Central Russia, on the one hand, and the remotest ones, on the other, stand out especially in this 

case. On the contrary, rapidly industrially developing regions with intensive air communications and 

established major urban centres are acquiring some of the functions of centres (in particular, openness 

to innovation while being relatively underdeveloped and underpopulated). They should be allocated 

to a specific type (“frontier” is proposed). 

Thus, the coronavirus infection has unexpectedly demonstrated the need for a more flexible 

approach to Russia's space than the traditional centre-peripheral dichotomy. It contains at least twice 

as many options. We propose to identify the main types of regions in terms of their place in the 

structure of spatial development as centre, hinterland, periphery and frontier. This classification can 

be potentially considered as specific application of centre-periphery model for large heterogenous 

 
5 Novosibirsk oblast falls into the same type, which indicates that the suggested typology is still rather specific, 

characterising to a greater extent the features of COVID-19 distribution. Although the typology reveals many fundamental 

blocks of Russia’s space, it is obviously insufficient for its thorough conceptualisation. 
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territories with striking differences in terms of level of development, economic profile and human 

mobility. Undoubtedly, suggested conceptualisation requires further development up to a detailed 

capture of intra-regional population flows at the micro level. Russian regions are extremely 

heterogenous and therefore in many ways incomparable, so further refinement of the typology, e.g. 

for individual parts of regions or municipalities, could shed light on the multifactorial mechanisms of 

the infection spread. 
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TABLES 

Table 1. List of indicators 

Indicator Description Unit 
Time 

period 
Class 

total 

average excess mortality (April, 2020 – December, 

2021) relative to 5-year average pre-pandemic 

mortality (2015–2019) share 

2015-

2021 basis 

avg1 

average excess mortality during the first wave 

(April, 2020 – August, 2020) share 

2015-

2021 basic 

avg2 

average excess mortality during the second wave 

(September, 2020 – March, 2021) share 

2015-

2021 basic 

avg3 

average excess mortality during the third wave 

(June, 2021 – December, 2021) share 

2015-

2021 basic 

square total area km2 2022 supplementary 

population population 

thousand 

people 2021 supplementary 

share_urban urbanisation level share 2021 settlement pattern 

air_ 

passanger total passengers handled at airports  

people per 

year 

2016-

2017 

openness 

(closedness) 

air_ 

passanger_pc total passengers handled at airports per capita 

people per 

year 

2016-

2017 

openness 

(closedness) 

remote_ 

urban 

share of urban population living in remote mono-

specialised towns or centres servicing rural areas  share 2020 settlement pattern 

remote_total 

share of the population living in remote mono-

specialised towns or centres servicing rural areas share 2020 settlement pattern 

transport_ 

index integral index of transport accessibility index 2019 

openness 

(closedness) 

outside_ 

population 

share of the population born in a region but living 

outside of it in the total population born in a region share 2010 

openness 

(closedness) 

local_ 

population 

share of the population born in a region in the total 

population of the region share 2010 

openness 

(closedness) 

migration_ 

scope 

share of migrants (departures and arrivals on 

average over 5 years) in the total population share 

2015-

2019 

openness 

(closedness) 

migration_ 

arrivals 

share of migrants (arrivals on average over 5 years) 

in the total population share 

2015-

2020 

openness 

(closedness) 

inner_ 

migration 

share of intraregional migrants in the total number 

of migrants  share 

2015-

2019 

openness 

(closedness) 

population_ 

density population density people/km2 2021 settlement pattern 

road_density road density km/km2 2021 settlement pattern 

engel_roads availability of roads (Engel coefficient) index 2021 settlement pattern 

share250 

share of the population living in cities with more 

than 250 thousand residents in the total population 

of the region share 2021 settlement pattern 

settlment_ size average size of a settlement 

thousand 

people 2020 settlement pattern 

settlement_ 

density settlement density 

number/ 

100 km2 2020 settlement pattern 

settlement_ 

herfindal 

Herfindahl–Hirschman index for population of all 

settlements index 2020 settlement pattern 

 

Table 2. Pairwise correlation coefficients between the indicators describing openness (closedness), settlement pattern and 

basic indicators   

  total avg1 avg2 avg3 

share_urban -0.043 -0.094 -0.030 0.014 
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air_passanger 0.290* 0.316* 0.145 0.144 

air_passanger_pc 0.176 0.218* 0.037 0.140 

remote_urban -0.283* -0.298* -0.222* -0.185 

remote_total -0.252* -0.279* -0.192 -0.165 

transport_index 0.278* 0.306* 0.175 0.156 

outside_population -0.409* -0.298* -0.273* -0.337* 

local_population -0.015 -0.030 0.038 -0.041 

migration_scope -0.226* -0.002 -0.242* -0.233* 

migration_arrivals -0.176 0.031 -0.203 -0.207 

inner_migration -0.127 -0.312* -0.011 -0.005 

population_density 0.266* 0.325* 0.123 0.117 

road_density 0.275* 0.322* 0.156 0.126 

engel_roads -0.173 -0.170 -0.107 -0.137 

share250 0.280* 0.030 0.321* 0.249* 

settlment_size 0.399* 0.442* 0.236* 0.202 

settlement_density -0.137 0.048 -0.108 -0.213* 

settlement_herfindal 0.172 0.162 0.076 0.127 

* p-value < 0.05 

 

Table 3. Matrix of pairwise correlation coefficients for selected indicators 

  

air_ 

passanger 

remote_ 

urban 

transport_ 

index 

outside_ 

population 

migration_ 

scope 

population_ 

density 

road_ 

density share250 

remote_ 

urban -0.166               

transport_ 

index 0.612 -0.274             

outside_ 

population -0.230 0.285 -0.143           

migration_ 

scope 0.066 0.318 -0.213 0.289         

population_ 

density 0.751 -0.183 0.472 -0.235 0.059       

road_density 0.664 -0.271 0.645 -0.232 0.008 0.903     

share250 0.292 -0.223 0.441 -0.123 -0.293 0.487 0.541   

settlment_ 

size 0.442 -0.169 0.068 -0.326 0.150 0.654 0.545 0.303 

 

Table 4. Typology of Russian regions according to combination of openness (closedness) and settlement pattern 

characteristics 

Type Description 

Average excess mortality 
Average duration of the wave. 

months 

total 
1st 

wave 

2nd 

wave 

3rd 

wave 
total 

1st 

wave 

2nd 

wave 

3rd 

wave 

Openness (closedness) 

1a open 1.285 1.137 1.318 1.459 13.7 1.3 6.0 6.4 

2a closed 1.249 1.073 1.294 1.419 12.2 0.8 5.1 6.2 

Settlement pattern 

1b dense + large settlements 1.304 1.172 1.330 1.471 13.6 1.5 5.9 6.3 

2b dense + small settlements 1.273 1.125 1.313 1.446 13.7 1.2 5.9 6.6 

3b 

sparse + large 

settlements 1.251 1.082 1.296 1.419 12.4 1.1 5.1 6.2 

4b 

sparse + small 

settlements 1.237 1.037 1.283 1.416 11.7 0.6 5.1 6.1 

Consolidated typology 
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1 

dense + large settlements 

+ open 1.294 1.135 1.329 1.465 13.6 1.3 6.1 6.3 

2 

dense + small settlements 

+ open 1.284 1.135 1.320 1.463 14.2 1.4 6.2 6.7 

3 

sparse + large 

settlements + open 1.333 1.229 1.361 1.500 15.0 2.3 6.0 6.7 

4 

sparse + small 

settlements + open 1.220 1.086 1.232 1.389 10.8 0.8 4.5 5.5 

5 

dense + large settlements 

+ closed 1.345 1.320 1.336 1.493 13.5 2.5 4.8 6.3 

6 

dense + small settlements 

+ closed 1.248 1.099 1.295 1.408 12.6 0.9 5.4 6.4 

7 

sparse + large 

settlements + closed 1.230 1.045 1.279 1.398 11.8 0.8 4.9 6.1 

8 

sparse + small 

settlements + closed 1.240 1.027 1.294 1.422 11.9 0.5 5.2 6.2 

Total   1.267 1.105 1.306 1.439 12.9 1.1 5.5 6.3 

 

Table 5. Centre-periphery conceptualisation of suggested typology of Russian regions  

Type Description 
Position within the centre-

periphery model (typical) 
Examples of regions 

1 
dense + large 

settlements + open 
centre Moscow, Krasnodar krai, Sverdlovsk oblast 

2 
dense + small 

settlements + open 

centre and adjacent 

territories 

Ryazan oblast, Belgorod oblast, Tatarstan, 

Bashkortostan 

3 
sparse + large 

settlements + open 
frontier (developed) 

Khanty-Mansi autonomous okrug, Yamalo-Nenets 

autonomous okrug 

4 
sparse + small 

settlements + open 
frontier (off-road) 

Nenets autonomous okrug, Chukotka autonomous 

okrug 

5 
dense + large 

settlements + closed 

closed polycentric local 

system 
Kemerovo oblast, Chechen Republic 

6 
dense + small 

settlements + closed 

near-capital outback 

(“glubinka”) 
Smolensk oblast, Ivanovo oblast, Bryansk oblast 

7 
sparse + large 

settlements + closed 
remote dispersed periphery 

Murmansk oblast, Irkutsk oblast, Kamchatka krai, 

Magadan oblast 

8 
sparse + small 

settlements + closed 

far-from-centre outback 

(“glubinka”) 
Kirov oblast, Vologda oblast, Zabaykalsky krai 

 

FIGURE CAPTIONS 

Fig. 1. Classical scheme of a pandemic diffusion through a global transportation network (Rodrigue and Luke, 2022). 

Fig. 2. Dynamics of excess mortality (April 2020 – December 2021) in Russian regions (bold black line indicates overall 

dynamics in Russia). 

Fig. 3. The first wave of COVID-19: average monthly excess mortality, peak excess mortality, start time of the wave, 

duration of the wave: regional projection. 

Fig. 4. The second wave of COVID-19: average monthly excess mortality, peak excess mortality, start time of the wave, 

duration of the wave: regional projection. 

Fig. 5. The third wave of COVID-19: average monthly excess mortality, peak excess mortality, start time of the wave, 

duration of the wave: regional projection. 

Fig. 6. Histograms showing distribution of Russian regions by accessibility index (a), population density (log scale) (b) 

and average size of a settlement (c)6. 

Fig. 7.  Types of regions according to combination of openness (closedness) and settlement pattern characteristics.  

 

FIGURES 

 

 
6 In graphs (b) and (c) federal cities (Moscow, St. Petersburg and Sevastopol) are excluded. 
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