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Spatial econometric models are used to study whether and to which extent cross-sectional units 
affect each other via spatial lags in the regressand, the regressors, and/or the error term. Although a 
variety of models exists that include one or two types of these spatial lags, the general nesting spatial 
(GNS) model that includes all of them received and still receives little attention. 

In the introductory spatial econometrics textbook of \citet{LeSagePace}, the GNS model is 
mentioned on page 53, but unlike other models it is not further used nor numbered. The textbook of 
\citet{Elhorstb} pays more attention to this model. It is part of a schematic overview of all spatial 
econometric models with different combinations of spatial lags that can be taken into account (p.9) 
However, based on empirical illustrations (pp. 28-29), he warns the reader that the GNS model may 
be subject to overfitting. According to the textbook of \citet[p.261]{Anselin and Rey}, the reason 
could be that this model (labelled the combo model in their book) suffers from practical 
identification problems. In chapter~2 of their textbook, \citet{KelejianPiras} briefly set out the 
instrumental variables (IV) and the maximum likelihood (ML) estimators of the GNS model in a cross-
sectional setting, specify the assumptions to be made to ensure that these estimators are 
asymptotically normal and provide a proof for this. However, none of their empirical illustrations 
provides estimation results of this model. In the recent 841-page textbook by \citet{Leebook}, the 
GNS model is, just like in \citet{LeSagePace}, only mentioned in the margin. Instead, the author 
focuses primarily on the spatial econometric model with a spatial lag in the regressand. 

This lack of attention to the GNS model also characterises the empirical literature. 
Sometimes the GNS model is mentioned first but ultimately only the simpler spatial Durbin (SD) 
model without a spatial lag in the error term is estimated. According to \citet{HalleckVegaElhorst}, 
this is because the coefficients of the spatial lags in the regressand and the error term in the GNS 
model, provided the latter is specified as a spatial autoregressive (AR) process, are easily 
interchanged if they are based on one common specification of the spatial weight matrix. In this 
setup, both coefficients tend to take opposite signs and blow each other up. 

Two barriers hindering the wider application of GNS models are theoretical and practical 
identification problems. \citet{Manski} demonstrates that peer effects and contextual effects in 
linear-in-means models, similar to spatial lags in the regressand and regressors in the SD model, 
cannot be distinguished from each other if the network or spatial weight matrix is specified as a 
group interaction matrix in which each element is specified as $1/n_{g}$, where $n_{g}$ represents 
the number of people in each group $g$. It is known as the reflection problem. 
\citet{BramoullDjebbari}, \citet{LeeLiuLin} and \citet{BoucheretalJAE} show that this reflection 
problem can be prevented when each group of units interact with each other but not with itself, if no 
unit is isolated, and group sizes differ. The first is achieved by setting the diagonal elements of the 
group interaction matrix to zero, based on the argument that a unit cannot affect itself, and the off-
diagonal elements within each group to $1/(n_{g}-1)$.  

To address any remaining correlated effects among the error terms in this SD model, these 
three studies also control for group-invariant unobservable variables by group fixed 
effects.\footnote{In addition, \citet{LeeLiuLin} control for a spatially lagged AR error term.} Although 
this solves the theoretical identification problem, \citet{BramoullDjebbari} and 
\citet{BurridgeElhorstZigova} show that this approach still suffers from practical identification 



problems due to multicollinearity. The issue is that the spatial lags of the regressors of each group 
are averaged over all group members except one and nearly correlate with the fixed effect of that 
group. Besides, a group interaction matrix is very particular and not relevant in many empirical 
applications \citep[p.42]{BramoullDjebbari} and \citep[p.160]{AnselinRey}. Moreover, another issue 
is that identification from a theoretical viewpoint still fails when the SD model simplifies to a model 
with correlated effects only (see also \citealp{Burridge}). 

To estimate the model parameters, \citet{BramoullDjebbari}, \citet{LeeLiuLin} and 
\citet{BoucheretalJAE} consider both ML or quasi ML (QML) and IV estimators. 
\citet{GibbonsOverman} argue that a weak instrument problem may occur when the parameters are 
estimated by IVs based on second and higher-order spatial lags of the regressors (contextual effects) 
because the spatial lag of the regressand (peer effect) is highly correlated with the first-order spatial 
lags of the regressors. \citet{LeeYub} prove that this identification problem in an SD model does not 
occur when estimating the model by QML since it does not require the use of IVs. On the other hand, 
just as \citet{LeeLiuLin}, they ignore practical identification problems due to multicollinearity. In 
footnote 4 they admit that this issue is beyond the focus of their paper, while it may have relevance 
for estimation.  

To break the curse of identification, both from a theoretical and practical viewpoint, 
\citet{TanKesinaElhorst} depart from different rather than one common pre-specified spatial weight 
matrix for all spatial lags by parameterizing each of them with a different distance decay parameter. 
They find that the probability that the SD model simplifies to a model with only correlated effects, 
one of the theoretical identification problems established by \citet{BramoullDjebbari}, decreases 
significantly if the spatial weight matrices are different. But just as \citet{LeeYub} and 
\citet{BramoullDjebbari}, they do not consider a spatial lag in the error term. Furthermore, they only 
consider a large $N$ fixed $T$ panel data setting. This study further extends their work to the GNS 
model. It adds a spatial lag in the error term, albeit not following a spatial AR but a spatial MA 
process. According to the textbooks cited above, spatial AR error processes dominate the spatial 
econometric literature. However, an overview of previous studies on spatial MA errors show that 
alternative specification is relevant because the shock diffusion process of both types of errors is 
different \citep{TanElhorst}. Spatial AR errors represent global shocks in that a shock that occurs in 
one unit not only spreads to units to which it is connected, but also to units to which it is not 
connected according to the spatial weight matrix. Conversely, spatial MA errors only reflect local 
shocks, as a shock in one unit only spreads to units to which it is connected (see also 
citet\{Fingleton2008}). A similar interpretation of this contrast with respect to linear-in-means 
models has been made by \citet{GoldsmithImbens}. Up to now GNS models with MA errors did not 
get any attention at all in the literature.  

Another extension is the assumption of unknown heteroscedasticity, 𝐸𝐸𝜀𝜀𝑖𝑖𝑖𝑖 = 𝜎𝜎𝑖𝑖2 (𝑖𝑖 = 1, … ,𝑁𝑁), 
which is increasingly gaining popularity in this literature 
\citep{Prucha,AnselinRey,KelejianPiras,LeeET}. Two approaches can be considered. One is to adjust 
the variance-covariance matrix based on homoscedastic errors for heteroscedasticity afterwards 
\citep[pp.187-188]{ KelejianPiras}. The other is to consider heteroscedastic errors from the beginning. 
Whereas the adjustment afterwards works for two-stage-least-squares (2SLS) or IV estimators, it does 
not for (Q)ML estimators for reasons of inconsistency \citep[pp.86-89]{Leebook}.  

Three types of estimators have been developed to estimate GNS models with AR errors 
(GNSAR), either for cross-sectional data or spatial panels: ML \citep{BurridgeElhorstZigova}, QML 



\citep{LeeLiuLin}, 2SLS or IV \citep{LeeYu} and \citep{KelejianPiras}, and Bayesian MCMC 
\citep{Hassan}. Individual and time fixed effects are important in a panel data setting since they control 
for both unobserved time-invariant and spatial-invariant variables.\footnote{It also possible to 
consider random effects instead \citep{Millo}, but the disadvantage is that they might not be 
correlated with the regressors in the model, a property that generally does not hold. Another reason 
is that spatial econometric researchers tend to sample the entire population rather than randomly 
drawing a limited number of units from this population, because the impact of spatial interaction 
effects can only be consistently estimated in an unbroken study area. Random effects do not fit with 
such a sample design.} A disadvantage of fixed effects might be the incidental parameter problem 
(\citealp{NeymanScott}); if the sample size grows large so does the number of fixed effects. In the large 
$N$ fixed $T$ panel data setting, time fixed effects do not cause an incidental parameter problem, 
since they can be treated as regular regressors. However, if $T$ is also large, not only individual but 
also time fixed effects may cause an incidental parameter problem. 

\citet{LeeYu} use both within and orthogonal transformations to concentrate out fixed 
effects when estimating their spatial econometric model with a spatial lag in the regressand and a 
spatial AR error term by QML. The advantage of the orthogonal transformation is that the QML 
estimator based on the transformed variables is consistent and properly centred in both panel data 
settings, while the standard within transformation requires a mathematical complex bias correction 
procedure in the large $N$ large $T$ setting \citep[pp.326-327]{Leebook} and \citep[pp.47-
49]{Elhorstb}. In this study, we derive an iterative two-stage QML procedure to estimate the 
response, distance decay and unit-specific sigma parameters for the panel GNS model based on the 
orthogonal transformation. 

In sum, our contribution to the existing literature is four-fold. First, we are among the first to 
consider a GNS panel data model with different rather than one common spatial weight matrix. 
Second, by parameterizing the spatial weight matrices with a different decay parameter for every 
spatial lag and replacing the spatial AR by an MA error process, we demonstrate that theoretical and 
practical identification problems hindering the wider application of the GNS model in empirical 
research diminish significantly. Third, we account for heteroscedasticity and two panel data settings. 
Fourth, we show that this setup outperforms spatial econometric models with fewer spatial lags and 
one common spatial weight matrix. 

Our paper is organized as follows. In Section 2 we specify the GNS model, introduce the 
functional form of the parameterized spatial weight matrices, set out the corresponding QML 
estimator based on the orthogonal transformation to concentrate out the fixed effects and set out, 
discuss and for as far still necessary prove the identification conditions. In Section 3 we conduct a 
Monte Carlo experiment to explore the finite sample properties of the proposed estimator. In 
Section 4 we illustrate the benefits of the proposed model empirically using GDP per growth data 
taken from \citet{ElhorstetalJGSY}. Finally, we draw conclusions. 
 
         


