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ABSTRACT 

Irregular migration represents a phenomenon that requires an exhaustive analysis beyond conventional 

methods. In the case of Guatemala, although an increasing flow of irregular migrants to the US every 

year, little attention has been paid to the study of the factors that influence these events. Bayesian spatial 

analysis represents an alternative to studying this phenomenon by estimating the probability of events like 

irregular migration. Instead of focusing on accuracy in defining relationships among variables like 

frequentist models, Bayesian estimates trends that may arise based on available data. In this project, I 

conduct a Bayesian spatial analysis to understand the incidence of five socio-ecological components 

(insecurity, cultural, economic, governance, and environmental) with the number of irregular migrants to 

the US from Guatemala. I conduct the study on the Municipio (Towns) territorial scale and pay particular 

attention to the Indigenous population, the most vulnerable group in the country due to the inequalities 

and limitations experienced every day. By considering an initial number of 15 variables from the five 

components, I conduct a Principal Component Analysis to prioritize the elements that explain the 

variance. Then, I apply Integrated Nested Laplace Approximations in R-Software to develop a model that 

describes the trends, spatial effects, and exceedance rates of migrants in the following years. The results 

suggest the importance of accounting for a spatial location where migration flows might be more 

prevalent and provide trends on the probabilities of increasing rates in some Municipios compared with 

others, including the differences between urban and rural populations. The comparison between 

Indigenous and non-Indigenous Peoples suggests the need for a cultural understanding of Indigenous 

ways of being where racism and coloniality are embedded within Guatemalan society. This study offers a 

methodological and practical application for similar cases and allows to inform planning strategies in 

order to mitigate the effects of irregular migration in non-developed countries. 

 

INTRODUCTION 

Guatemala is one of the world's most culturally and naturally diverse countries. The indigenous 

population is the remnant of the 35 centuries of legacy of the Mayan civilization. Currently, more than 

45% of the population is considered indigenous, and most live in rural areas. With more than 63% of the 

total population living in poverty and 25% in extreme poverty, Indigenous communities represent the 

most vulnerable group (Arriola, 2022; Menkos Zeissig & Medina Bermejo, 2020). The majority based 

their economy on practicing subsistence agriculture in a scattered distribution in rural areas. However, 

with climate change, severe droughts, and ecological challenges, irregular migration of the Indigenous 

population from rural areas to the US has increased. There is a social cost of irregular migration, 

considering the risk that immigrants experience. They leave their homeland, relation to family, land, and 

culture to be subject to a category where they are not considered individual with rights anymore. In 

addition, the impact of those who stay is also evident with the exacerbation of their limitations when there 

is a loss of connection between their relatives. In this view, it is essential to understand the conditions that 

influence Indigenous Guatemalans to leave their homeland. Particularly, I am interested in understanding 

the difficulties that Indigenous people face in the rural areas of Guatemala.  



This project assesses the spatial conditions of Municipios in Guatemala with socioeconomic data to 

understand irregular migration patterns. Municipios represent a second-level political territorial division 

in Guatemala: the country is divided 

into Departamentos, like states or 

provinces, and every Departamento is 

divided into Municipios, like towns. 

In this analysis, I focus on the 

possible predictors, moderators, or 

mediators, including periods of 

drought, cropland, forest, violence, 

food insecurity, poverty, and urban-

rural conditions, among others. 

Beyond estimating significant 

relationships among variables in a 

frequentist model, I apply Bayesian 

spatial analysis to understand the 

complexities of irregular migration 

phenomena among the variables. This 

method of analysis allows the 

estimation of posterior spatial distributions and identifies the risks or probabilities of increases in irregular 

immigration in Guatemala on a Municipal scale. As an introductory context, the image to the right 

presents the concentration of individuals who have migrated illegally to the US and have been returned to 

Guatemala, which overlaps with the highest concentration of Indigenous people. In this study, I intend to 

understand the interaction of those variables with spatial configurations and estimate probabilities of 

migration for the following years.  

 

LITERATURE REVIEW 

Studying immigration in Guatemala 

Because of particular socioeconomic conditions and geographic location, scholars have studied the 

complexities of irregular migration in Guatemala to the US. International organizations like UN 

Migration have analyzed triggers that include extorsion, socio-natural disasters, and the impact of 

remittances on Guatemalan families (International Organization for Migration & Sweden Government, 

2018). UN Migration monitors the number of apprehended or illegal immigrants caught in the US and 

sent back by Immigration, Customs, and Enforcement agents (ICE). The US Agency for International 

Development (USAID) is probably the most concerned international agency on illegal immigration to the 

US. With the investment in several projects across Guatemala, including a campaign titled “Quedate 

Aqui” (“Stay here”), they have studied the inequalities and the conditions that might lead to increased 

immigration (US Agency for International Development (USAID), 2020). These studies have been 

resourceful in data generation. I include some of this data in my analysis.  

When reviewing articles concerned with irregular migration, scholars like Najera (2017) have conducted 

analyses of cross-border spaces between Guatemala and Mexico and the economic benefits migration 

entails. Others have focused on the inequalities of those who stay or are left behind, particularly with the 

challenges experienced by young and old women (Landry, 2011). Ruiz Marrujo (2001) studied an archive 

of interviews and observations made by institutions in contact with immigrants to build the concept of 



risk maps and understand population flows hotspots. Probably one of the most comprehensive analyses of 

immigration in Guatemala is the book “Guatemala – US Migration: Transforming Regions” (Jonas & 

Rodríguez, 2015). Through a chronological process of documenting historical changes, the authors 

conduct a collaborative research project with case studies and qualitative analysis in Guatemalan 

immigrant communities in the US. Their approach to the transitions from living to the periphery to the 

semi-periphery contextualizes the impacts of capitalism on different levels. They also observe differences 

experienced by the Guatemalan Mayan population compared to other immigrant groups due to varying 

forms of racism, discrimination, and violence. Besides diverse qualitative methods applied to studying 

immigration in Guatemala, including those who claim causality without considering empiric studies 

(Smolarek, 2007), there is little attention on understanding the problem from a spatial or quantitative 

approach. Paredes Orozco (2009) conducted a binary logistic regression to understand the differences 

between groups in Mexico and the US coming from Guatemala. His model included socioeconomic 

variables as possible predictors in three different “Logit” models. Although the results are inconclusive, 

he suggests a more thorough approach to understanding more than socioeconomic conditions. Finally, no 

spatial and quantitative analysis exists on the triggers, conditions, or influences of irregular migration 

from Guatemala to the US. In this project, I intend to develop a model that accounts for those spatial 

complexities.  

Bayesian Spatial Data Analysis 

Bayesian spatial analysis allows the estimation of a probability distribution, also known as likelihood, 

with data observation. With prior information added to the model, it enables the re-allocation of 

credibility by eliminating possible reasons for the outcome and creates a posterior distribution that 

increases the credibility of the results (Kruschke, 2015). Credibility ranges from 0 to 1, where 0 is the 

lowest credible result, and one is the most credible. Unlike frequentist models that seek to calculate a 

significant relationship among variables, Bayesian analysis works with beliefs and interpretations based 

on available information. In Bayesian analysis, hypotheses are not tested, and instead of working with 

confidence intervals, it works with credibility intervals. In addition, Bayesian models also account for the 

challenges of fitting classical models with incomplete data, duplicated measures, and others (Moraga, 

2019; Wang et al., 2018).  

Bayesian Analysis in Immigration 

Scholars apply Bayesian analysis in a myriad of contexts to understand behaviors or trends in data 

(Faubet et al., 2007; Faubet & Gaggiotti, 2008; Schaub & Fletcher, 2015). In irregular migration, some 

analyses have focused on the host immigrant countries to estimate future population flows. In Europe, 

scholars have studied the acceptance levels of immigration based on surveys and demographic data (Dalla 

Valle et al., 2020), including the estimation from selected countries with the implementation of priors 

with Delphi surveys  (Bijak & Wiśniowski, 2010). Azose & Raftery (2015) conducted a joint probabilistic 

projection in the US for immigrants coming from different country. However, most of these cases are 

non-spatial, which suggests little attention to spatial autocorrelation. One of the few examples of Bayesian 

analysis applied with a spatial model was conducted by Núñez & López (2020) in the State of Chiapas, 

Mexico. Chiapas borders Guatemala in the west, which implies a constant flow of irregular migration. 

Their study applies a Monte Carlo Markov Chain to estimate the relative risks of immigration in Chiapas’ 

124 Municipios. 

 

 



 

METHODS 

The estimation of posterior distributions in Bayesian analysis represents one of the most significant 

challenges of this method. Alternatives have emerged with methods like the Monte Carlo Markov Chain 

(MCMC) that generates a value of sample chains while running iterations of possible results. This 

requires deciding at what level of iterations the model has reached the posterior distribution (Moraga, 

2019). Although significant advances in Bayesian 

analysis with MCMC, the method requires high 

computational capacity and entails inconvenience 

when interpreting results. In this view, the 

Integrated Nested Laplace Approximations (INLA) 

approach has emerged as an alternative to applying 

Bayesian spatial analysis (Krainski et al., 2018; 

Moraga, 2019). Conceptualized by Laplace, the 

model estimates posterior distributions based on a 

latent model (Penny et al., 2007). The INLA 

package from the R software creates Laplace 

approximations of the data once hyperparameters 

have been introduced. Results provide posterior 

distributions, posterior marginals, and posterior 

density of the hyperparameters that allow an 

estimation of probabilities for a phenomenon to 

occur (Blangiardo & Cameletti, 2015; Gómez-

Rubio, 2020).  

Variables 

This section includes the definition of the variables 

applied to model irregular migration in each 

Municipio in Guatemala. All of them belong to 

2018. The variable I intend to model represents the 

number of migrations as a count variable. Because 

an accurate number of individuals who migrate to 

the US from Guatemala is challenging to track, a 

variable that can be considered for this measure 

represents the number of individuals apprehended 

by the Income, Customs, and Enforcement agents. This variable is monitored by the International 

Organization for Migration. Here, I will use the data from 2018. In order to understand the conditions that 

trigger irregular migration, I focused on five components that influence Guatemalan culture and represent 

elements based on the literature that affect migration. The image to the right presents the variables 

included by component. I describe each component below:  

• Insecurity: social factors that influence human safety and contextualize different levels of 

violence 

o Homicides: count of homicides as a result of a violent event. (Rate / continuous) 

o Extorsions: reported acts of coercion for money or any other type of property, 

particularly by organized crime. (Rate / continuous) 



• Cultural: intrinsic cultural conditions that evidence population stratification and education levels 

o School drop: number of students that dropped school during the studied period. (# of 

school drop / count) 

o Maya Population: I analyzed two variables with this information. The first is a 

dichotomous (dummy) variable where 1 represents the majority of the Mayan population 

in each Municipio and 0 is not the majority. Second, the percentage of the Mayan 

population as a proportion of the total population in each Municipio in a continuous value 

from 0 to 1. 

• Environmental: conditions of the built environment that influence human development in social 

and economic issues. 

o Grasslands: availability of grasslands that serve as food for cattle or other economic 

activities influencing income generation. (Area per capita / continuous)  

o Croplands: total arable land available for self-consumption or commerce. (Area per 

capita / continuous) 

o Forest: native forest area providing ecosystem services such as firewood, non-timber 

forest products, etc. (Area per capita / continuous) 

o Drought: Drought threat levels based on region and climate change adaptation (Levels of 

severity / categorical) 

o Urban/Rural population: proportion of the number of the urban and rural population. 

Although most of the population lives in urban areas, Guatemala is still one of the most 

rural countries in America. (Percentage / continuous) 

• Economic: economic variables that influence food security and its relationships with migration 

reasons such as remittances.  

• Remittances: Number of US $ dollars sent to those who stay by immigrants from the US 

(value per capita / continuous). 

• Economically active population: number of individuals over 14 years old with 

possibility to engage in any formal or informal income generation activity (# of 

individuals economically active / count). 

• Food insecurity: Average among all the families in each Municipio with the capacity of 

covering nutritional demands every month (Levels of insecurity / categorical). 

• Governance: Government structures and services performance influence the opportunities of the 

population for human development, including economic and social factors. 

o Financial: ranking of efficiency on financial performance in comparison with the other 

Municipios (index / continuous). 

o Management: ranking of efficiency on multiple activities that include access to 

information, public services, strategic planning, financial, public participation, and 

administrative management (index / continuous). 

 

 

 

 

 

 

 

 



 

Workflow 

The image below conceptualizes the process of analyzing the information in R software. They are 

described in the following paragraphs. 

Gathering and transforming data 

Because of the challenges of working with updated data in Guatemala, I focused on information from 

2018 for all 352 Municipios. This considers the year of the last Guatemalan census. Therefore, all the 

variables applied in the study belong to the same year. I obtained some variables in areal data from 

ArcGIS Online in reliable sources such as the Centro Agronomico Tropical de Investigacion y Enseñanza 

(CATIE) from Costa Rica and the US Agency for International Development (USAID). To analyze the 

data, I used R-Software with packages that include dplyr, plyr, lme4, sf, spdep, ggplot2, ggpubr, tmap, 

and INLA. I modified and transformed the variables, normalized the distributions (rates instead of counts 

and per capita values instead of general territorial units), and applied left and spatial joins between SF 

files and CSV data frames to clean and elaborate a new file dataset for my analysis.   

Principal Component Analysis 

In order to find the most efficient model and check for high collinearity among the 18 predictors, I 

conducted a Principal Component Analysis of all the variables. I used prcomp() function in R-software 

because of its accuracy with singular values decomposition. 

 



INLA non-spatial models 

Comparing Integrated Nested Laplace (INLA) non-spatial models with frequentists linear models (lm) 

allows understanding if differences among residual errors are relevant and provide credibility to the study. 

In this case, by including the variables described in the previous section, I developed a simple linear 

model: 

         y = E(y) + e 

Where   y   = observation 

         E(y) = expected value 

 e = disturbance (deviation of any observation from the mean) 

Then, I developed an INLA Linear Model and compare both of them. 

     yi = E(y) + ei 

Where            y   = observation 

         E(y) ~ βXi = default prior for β 

       e ~ N(0, σ2) =  default prior for σ2 

 

INLA spatial models 

Laplace approximations allow an understanding of the incidence of autocorrelation in spatial models 

(Wang et al., 2018). After comparing the non-spatial linear and INLA models, I developed a model to 

understand the spatial patterns of irregular migration to the US in each Municipio in Guatemala. As an 

overview, the map below presents a possible relationship between the number of Apprehensions during 

2018 and the Indigenous Population as a percentage of the total population from the 352 Municipios. This 

includes a possible spatial dependence of Apprehensions in the north-central region where some of the 

highest Mayan population live.  

 

 

 

 

 

 

 

 

 



Borrowing from disease modeling for health data (Moraga, 2019), autocorrelation can be analyzed with a 

model that relies on Conditional Autoregressive (CAR) distribution. This is the case for the Besag, York, 

and Mollie (BYM) model that adjust the data based on a neighborhood structure. I applied the queen’s 

contiguities in a matrix to define proximity between neighbors. In the case of INLA, this translates to 

introducing a new random effect with the f() function. The new random effect requires an index of the 

number of areas (idarea), a model (bym2), and a spatial weight matrix (queen’s neighbor). The model 

looks like: 

           yi = E(y) + ui + vi 

Where                 yi   = observations 

            E(y) ~ βXi, β ~ N(0, 1 /τβ) 

                             vi ~ N(0, σ2v), 1/ σ2v = τβ ~ log-gamma(a,b) 

                            ui = Spatial error for any location, which is conditional based on its neighbors 

In order to increase the validity of the model, it was necessary to run a version of the model without priors 

and another with priors. In this model, I specified a penalized complexity prior to increase phi value 

precision (spatial + non-spatial effect). This value is given by uα (spatial error), where α is the probability 

of hyperparameters exceeding u (Moraga, 2019). In addition, having the Maya population in two different 

formats allowed to test results with a dichotomous or a proportional (continuous) variable. 

By applying the BYM model, the output of the model includes hyperparameters values described below: 

 

• Precision for the Gaussian Observations: this represents the precision of the non-spatial residuals 

or, in other words, what the model cannot explain. 

• The precision of the Idarea: precision on the spatial field effect. The value describes the error 

term divided by u = size of the spatial variance and v = size of the residual variance. 

• Phi for the Idarea: a mixing parameter that decomposes the precision of the Idarea into a spatial 

(u) and non-spatial (e) effect. If the value is one, all the leftover information is entirely spatially 

autocorrelated; if the value is 0 is not autocorrelated. 

 

For a better understanding of spatial effects and enable a more suitable analysis for the outcome variable 

(count), I modified the last INLA version into a Poisson model. Unlike the previous models, the results 

were modeled as rates rather than counts. A moderate expectation of the count represents a measurement 

that depends on the size of the studied population. In this model, the number of Apprehensions is 

correlated with the total population of each Municipio. With a rate of Apprehensions per Municipio, the 

model can estimate if a rate on a per capita basis is higher or lower than the expected number of cases. 

We can assume this also as the relative risks for irregular migration per Municipio. With the R-INLA 

package, I estimated a relative risk model based on Moraga’s application for the case of lung cancer in 

Ohio (2019): 

yi ∼ Po(Ei θi), 

 

 

 



Where                                   yi = observation 

                                             Ei = Expected number of cases 

θi (log(θij) = α+ui+vi+(β+δi) = a sum of multiple components that consider spatial configurations which 

spatial autocorrelation. 

In addition, I selected again penalized complexity priors (prob of theta > 1 is 0.01 & prob of theta > 0.5 is 

3/4) to produce a relative smooth effect. The last model in R-Studio with the INLA packages is included 

below: 

 

 

 

 

 

 

 

 

 

 

Where Priors_Guate = configuration of penalized complexity priors 

Formula = Number of apprehensions as a function of all selected variables. This includes          

the f() with the idarea, type of model (bym2), weight matrix, and priors 

Guate_rr = INLA model with the formula, priors and the definition of the Poisson family + 

expected count, and the call for the model to return different values including DIC, WAIC or 

the marginal distribution. 

 

 

 

 

 

 

 

 

 



RESULTS 

Principal Component Analysis 

With the first four components, the proportion of the variance reached 0.62 (or 62% of the variance 

explained by the first four components). The image below provides the results of the 18 PCA and 

highlights the first four.  

 

The loadings represent associations between the original variables and the model's components. Higher 

values make the associations stronger, and they can be positive or negative. When comparing the first 

four components, it shows that Homicides, Extorsions, and Population increase with negative values of 

PC1 while Grasslands and Tree Coverage increase with positive values on PC2, suggesting that PC1 

relates with safety while PC2 to the natural environment. By extracting the scores of every Municipio, I 

created a gradient from negative to positive values. Biplots between the first four components provide the 

gradients and facilitate the selection of the final variables.  

The images below represent the biplot between the four PCA. The chart on the left is a biplot between 

PCA1 and PCA2, which suggest that PCA2 splits between urban population and grassland and tree 

coverage. This assumes a relationship between urban centers and the natural environment. The chart at 

the center indicates that PCA3 is divided between the Maya proportion and the Urban population, which 

suggests the relationship between Indigenous people's location and the built configuration. The image at 

the right presents PCA1 with PCA4 suggesting a socio-cultural component where PC1 is explained 

partially with safety (homicides and extorsions) and school drop variables. PC4 is divided between 

economic conditions (economically active population) and location (urban/rural) and food security 

(drought, food insecurity). 

 

 

 



With this analysis, I eliminated Homicides because Extorsions provided a higher value for the variance. 

In the same way, I removed grasslands because of the high collinearity with forest. Moreover, forest 

represents a better variable for understanding migration triggers because of the ecosystem services that it 

provides. Drought severity was also removed because of high collinearity with food insecurity. In this 

case, Food Insecurity represents a more direct effect than Drought on possible triggers for migration. 

Between governance variables, the Finance index represents a better measurement considering that it 

focuses on elements similar to the Management index but does not relate to economic conditions (PCA4). 

Although School Drop and Extorsions were correlated, they represent different measures, and both were 

included in the final model. I selected ten variables as predictors to understand the spatial incidence of 

irregular migration including: Extorsions, Maya Population, School Drop, Croplands, Forests, Food 

Insecurity, Urban/Rural, Economically Active Population, Remittances, and Finance Index for each 

Municipio. 

 

INLA non-spatial models 

The image to the right provides the results of 

the simple linear model. Although the 

outcome variable is a count and a Poisson 

model would be more suitable, comparing the 

residual error facilitated the model design. 

The linear model suggests an increase in 

Apprehensions with variables like Mayan 

Population, School Drop, and Remittances 

while a decrease with the Economically 

Active Population. All of them are 

statistically significant. The remaining 

variables do not have statistically significant 

relationships. In addition, the R-squared is 

0.28 (28% of the variance of Apprehensions 

is explained by the predictors), which is 

significant and a Residual Standard Error of 399.4. 

The first INLA model did not include priors. The results 

suggest that 0.025 and 0.975 quantiles are only partially 

credible at those levels. However, they might be credible 

to lower levels, such as 80%. This model allows an 

understanding of the limitations when ignoring spatial 

autocorrelation. Although Bayesian models do not get a 

standard error and p-value, we can describe the posterior 

distribution of each coefficient. The plot to the right 

represents a posterior distribution of the residual variance. 

The blue line is the estimation for the linear model. 

The INLA model provides the precision for the Gaussian 

observation values. Comparing the mean of this precision 

value (415.5) with the residual variance of the previous linear model (399.4) suggests a credible model 



that I further developed. In addition, the low symmetric Kullback-Leibler divergence (kld) values also 

provide credibility to the model (Krainski et al., 2018).  

 One of the principles of Bayesian analysis, as described previously, is the addition of priors in order to 

reallocate posterior distributions and increase credibility. The second version of the INLA Linear Model 

included the informed priors to the slope and intercept coefficients. This allows for reducing the variance 

or range values effectively. The mean of these priors was 0. 

The image to the left presents the posterior distribution 

of the residual variance after adding the informed priors, 

while the blue line is the estimation for the linear model. 

Here we see that the model improved with the “log 

gamma” priors. As a rule of thumb, the Deviance 

Information Criterion (DIC) and the Watanabe-Akaike 

Information Criterion (WAIC) must improve and reduce 

their values to improve the model. In this case, none of 

the coefficients improved substantially. Although the 

intercept improves its credibility in the 0.025 and 0.975 

quantiles, it was not the case for relevant variables such 

as the Maya population, Food Insecurity, Remittances, 

and other variables. This required account for possible 

autocorrelation, which is included in the following 

paragraphs. 

 

 

INLA spatial models 

The chart below describes the changes in coefficients and quantiles based on applying two different 

variables as predictors. The case of the Mayan population as a proportion of the total population (instead 

of the Mayan population as a binary dichotomous variable) provides more consistent results and 

compared with the WAIC, DIC, and Quantile values of the first non-spatial INLA analysis, the model has 

improved credibility.  

 

 

 

 

 

 Without Priors With Penalized Priors 

Mayan Pop WAIC DIC Quantiles WAIC DIC Quantiles 

Binary (0,1)  1595 1673 Only Forest and Finance 

are not credible at 0.975 

5223 5242 Only Intercept and School 

drop are credible at 0.975 

Proportion 

(% of total)  

-909 -793 Only Finance is not 

credible at 0.975  

-3092 -2984 Only Finance is not 

credible at 0.975 



In the results of the model with the Proportion of the Mayan population, the Phi for the Idarea is 0.093, 

which means that a spatially autocorrelated error explains 9.3% of the remaining unexplained variation. In 

other words, the model has accounted for 90.7% of the spatially autocorrelated error. The chart below 

shows the posterior distribution of the Phi value. 

 

 

 

 

 

 

 

 

With the Precision of the Idarea value, it was possible to create a map of the spatial effect. This 

represents the random effect in space modeled by BYM for the 352 Municipios. The maps below present 

the estimation as the adjustment of the model for each Municipio (left) and is compared with the actual 

number of Apprehensions (left). With the spatial random effect map, the low values (oranges and 

yellows) tell us that the cases on each Municipio from the original model with the spatial effect will be 

overestimated, while the high values (greens) tell us that the spatial effect will be underestimated. In this 

case, there is still an apparent congruency with the original count number except for a few Municipios 

where there is a higher concentration of urban population (red circles in the right map). 

 

 

 

 

 

 

 

 

 

 

 

After improving the model under a Poisson family and accounting for expected rates, the spatial random 

effect was compared again with the total number of apprehensions as an adjustment for each Municipio. 

This is included in the map below. Where green, the original model without the spatial effect, will be 



underestimated, and where red, the model will be overestimated. The comparison suggests that the 

original model underestimates some Municipios of the central west where higher cases could be expected. 

In contrast, it overestimates the metropolitan area (center) and the central east, where we would expect 

fewer cases.  

 

 

 

 

 

 

 

 

 

 

 

 

The INLA model generates an average of the 

posterior distribution based on relative rates (or 

risk for irregular migration) by fitted values. The 

map to the right presents the estimated relative 

values for each Municipio. This means the 

probability of having more cases than expected. 

The scale goes from purple with values less than 

1, suggesting Municipios will have fewer cases 

than expected. Higher values than 1 indicate 

more cases as a rate of Apprehensions on a per 

capita basis. The variation tells us how high or 

low is the relative risk. Here, Municipios that 

were not explicitly high in number 

Apprehension appear as being subject to 

increase in posterior years to 2018. 

 

Finally, because irregular migration flows 

experience dramatic changes over the years based on several conditions, the estimation of relative risks 

was analyzed with INLA to predict the probability of exceeding a specific threshold. This is also known 

as exceedance probability. I estimated the probability of having twice the average apprehensions on each 

Municipio. This threshold allows a better estimation of certain areas compared to others. The results are 

provided in the map below. Sites with a probability close to 1 are likely to have a relative risk that 



exceeds twice the average, while areas close to 0 are unlikely to exceed the threshold. Municipios with 

probabilities of 0.5 are the most unpredictable since it is complex to suggest if their relative risks are 

above or below 2 with equal probabilities.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DISCUSSION 

Applying principal component analysis allowed to prioritize the relevant variables and reduce the 

possibilities of collinearity in creating the most suitable model. In the same way, comparisons among 

simple linear and non-spatial INLA models revealed credibility on the residual variance, and low kld 

convergences but not an improvement on the WAIC, DIC, and quantile values even after introducing 

priors to reallocate posterior distributions. 

The development of two INLA spatial models based on the different measures for the Mayan population 

(Dichotomous or continuous) provided better results with the continuous variable. This was evident with 

the reduction of the WAIC, DIC, and higher credibility of the quantile values of the predictors. The 

consideration of this variable also included a low value of Phi for the Idarea, where 9.3% was the 

remaining unexplained variation of autocorrelated errors. With the Besag, York, and Mollie approach in a 

Poisson family, the model improved when comparing the spatial random effect of the Apprehensions in 

relation to the total count. This suggests the need to review some Municipios where their numbers are 

underestimated but can exceed their expected annual accounts. In contrast, in Municipios where cases 

have been overestimated, more rigorous monitoring is required to understand better the interaction with 

insecurity, cultural, environmental, governance, and economic components.  

The last two maps represent the most relevant findings in terms of practical application for the different 

institutions that work with irregular migration inside and outside Guatemala. The map of Relative Risks 

highlights the Municipios that will experience (in different scales) more or fewer cases than they expect. 



Although some Municipios with the highest values are similar to the count map, it is only the case for 

some of them, which is a matter of concern, like in the cases of the north of Guatemala and the southwest. 

Ultimately, the map of exceedance probability emphasizes these risks in a policy-oriented matter. Based 

on the irregular migration changes triggered by many factors, not only those included in this study, some 

Municipios might increase their cases and exceed expected thresholds. In this view, estimating 

exceedance probabilities is necessary to prioritize some Municipios above others. 

 

CONCLUSION 

This project provides an understanding of the influence of spatial components and their incidence in the 

irregular migration of Indigenous people in Guatemala. By defining a process to develop a model that 

accounts for several factors, the application of Bayesian spatial analysis with the Integrated Nested 

Laplace Approximations allows estimating the probability to exceed a threshold in some Municipios 

where most Indigenous populations live. More probabilistic than deterministic, this experience represents 

an effort to understand the prioritization of areas that experience social inequalities in Guatemala and can 

be applied to inform strategic policies that seek to mitigate or reduce irregular migration. 
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