Local Economy, Housing Prices and Neighborhood Change

Giacomo Rosso*

Abstract

This paper investigates the impact of real estate prices on local economic businesses within cities. I use a novel geo-located dataset of retailers and service providers, combined with information on sale and rental prices. I propose a unique empirical strategy that leverages the staggered implementation of a district heating system in Turin as an exogenous shock to housing prices. The analysis reveals that housing prices differently affect local economic sectors. While tradable sectors show resilience, non-tradable sectors experience a notable decline following the housing price shifts, exhibiting a negative effect of approximately 3%. This is probably due to demographic changes, particularly among college students, who are primary consumers in the non-tradable sector. The paper highlight the complex interplay between housing market changes, demographic shifts, and urban economic businesses. Moreover, it emphasizes the critical role of housing market dynamics in shaping urban planning and policy decisions.

^{*}University of Turin & Collegio Carlo Alberto; giacomo.rosso@unito.it

1 Introduction

How does the local economy respond to changes in real estate prices? Cities are, by their nature, heterogeneous entities that are constantly evolving in response to a variety of factors. In particular, changes in house prices alter neighborhood dynamics and local consumer behavior, affecting the availability and variety of goods and services. This can happen through two main channels. First, price changes can directly affect endogenous businesses, such as higher prices leading to higher costs. Secondly, changes in property prices can affect demographic and gentrification patterns within the city, which in turn affect local businesses. The relevance of these channels depends on how urban businesses respond to changes in sales and rental prices.

In this paper, I examine the relationship between fluctuations in house prices and local economic business in urban areas. The focus is on understanding how changes in the housing market can influence different dimensions of urban dynamics. These influences are important because they can significantly affect the welfare of residents, alter access to services, and potentially reshape the social and economic dynamics of neighborhoods. In addition, the research question sheds light on a relevant aspect of urban environments: the retail and service sectors. These sectors are an integral part of the urban ecosystem, not only providing essential services and goods to residents but also contributing significantly to employment. In Italy, for example, these sectors accounted for around 20% of employment in 2019¹. The analysis therefore provides insights into the wider effects of property market trends, offering a view of their impact on the urban structure, as the distribution of economic businesses.

To establish the causal relationship between real estate prices and local economic businesses, I deal with several endogeneity challenges. The research question is prone to potential reverse causality. In addition, unobservable characteristics of the area, whether time-variant or invariant, may affect variables differently, introducing potential bias into the results. To address these concerns, I exploit the quasi-experimental variation introduced by the staggered adoption of *Teleriscaldamento* (TRL) in the city of Turin, Italy. Operated through a collaboration between a private firm and the city council, the TRL is a network linking energy production plants to buildings for providing heated water for domestic use. The system has been expanded since the 1980s and now covers around

¹Source: ISTAT

57% of the city area. The TRL offers a more cost and energy efficient alternative to traditional heating systems. These benefits are reflected in the improved energy performance of homes and, consequently, an increase in house prices. By acting as a house price shock, the TRL creates an exogenous variation in local economic business, similar to the methodology used by Borraz et al. (2023).

The research focuses on the city of Turin and covers the period from 2012 to 2019. Beyond the TRL data, I gather a collection of unique and highly specific datasets, including semestral sale and rent asking prices at the census tract level from Idealista, as well as a list of active licences for retailers and services in the city, including information on their location and category. These datasets are used in the empirical strategy, which relies on a staggered *difference-in-difference* approach, in both dynamic and static specifications. To address the parallel trend assumption, the analysis conditions on a set of time-invariant covariates, and a detailed discussion on the SUTVA and the no-anticipation effect assumption are provided. Furthermore, the specification compares treated areas with nearby and similar control areas.

The results emphasize the impact of housing sales and rents induced by the TRL implementation on local economic businesses. Specifically, I examine several measures of business, including the variety of goods and services and the presence of both tradable and non-tradable sectors. The analysis shows a significant and negative impact on non-tradable sectors, around -3%. In contrast, tradable sectors and the range of offerings in the area do not experience significant changes due to housing price shifts. In light of these findings, and assuming that the measures of economic business are a reliable reflection of consumer supply, the welfare of established residents appears to decline as house prices rise.

This study intersects with several strands of literature on urban economics, gentrification and real estate dynamics. A primary focus is on the impact of housing markets on local economies. In this context, Stroebel and Vavra (2019) explores the complex relationship between house prices and local retail prices, finding an elasticity of 15-20. They argue that these estimates are not affected by demographic shifts or gentrification trends, suggesting instead that fluctuations in house prices alter homeowner behavior, leading to increased firm mark-ups. Borraz et al. (2023) investigate the effect of new housing stock on retail prices and product variety in Montevideo, Uruguay, highlighting how local prices decrease with increased demand driven by either more competitors or a greater variety of supply.

The literature also extensively covers the effects of neighborhood change and gentrification on local outcomes, as shown in studies (Vigdor et al. 2002; Vigdor 2010; Handbury and Weinstein 2015; Ding and Hwang 2016; Brummet and Reed 2019; Behrens et al. 2022; Curci and Yousaf 2022; Couture and Handbury 2023). Glaeser, Luca, et al. (2023) provide a notable contribution, measuring gentrification with poverty measures, accounting for either student density or rent growth prices. They find that gentrifying neighborhoods experience faster growth in retail establishments and businesses closures, indicating a substitution effect of tradable sectors in favour of non-tradable sectors. The role of non-tradable services in urban revival is highlighted in papers by Couture and Handbury (2020) and Baum-Snow and Hartley (2020), with the latter highlighting racial disparities in the valuation of amenities and suburban job opportunities.

Furthermore, the paper aligns with the literature on endogenous consumption amenities (Glaeser, Kolko, et al. 2001; Couture 2016; Allcott et al. 2019; Davis et al. 2019; Behrens et al. 2022). Key quantitative models from Guerrieri et al. (2013), Couture, Gaubert, et al. (2023) and Almagro and Dominguez-Iino (2022) illustrate the self-reinforcing nature of housing demand, in particular how increases in personal income and housing demand can drive gentrification and enhance city centre amenities.

Finally, the paper looks at the relevant impact of energy performance on the housing market, drawing on the energy policy literature. Empirical studies by De Ayala et al. (2016), Fuerst et al. (2016) and Kholodilin et al. (2017) demonstrate the positive impact of energy efficiency on house prices, reinforcing the importance of energy performance in property dynamics.

This paper contributes to the existing literature by providing new empirical evidence on the causal relationship between property prices and local economic business. It presents a comprehensive analysis covering a wide range of local businesses such as bars, restaurants, beauticians, hairdressers and retailers. The study highlights the impact of shifts in neighborhood demand on local economic conditions, with a particular focus on the processes of gentrification. By shifting the focus to a European city, the paper examines the housing market-induced effect on demand channels, changing perspective from prior literature that predominantly concentrated on US cities. This analysis in a European setting allows for comparison with previous studies while acknowledging the distinct differences between US and European urban landscapes. Finally, the paper contributes by providing additional evidence on how improvements in energy efficiency can lead to increases in property values.

The structure of the paper is organized as follows: Section 2 provides an introduction to the background, highlighting the data used in the empirical strategy. Section 3 presents the empirical analysis, describing the strategy and conceptual framework used to interpret both expected and observed results. Section 4 discusses these findings, and Section 5 presents various robustness checks. Finally, Section 6 concludes the paper and outlines future directions for the project.

2 Background

In this section, I provide an overview of the dataset utilized in the empirical analysis, focusing on the city of Turin, Italy, spanning the years 2012 to 2019. Turin comprises 3850 census tracks, distributed across 23 distinct neighborhoods (Figure A1). The empirical strategy relies on the Teleriscaldamento (TRL), which I describe first. Subsequently, I present data and descriptive statistics related to housing prices and local economic businesses.

СЛ

Energy Vector	PEF
Iren TRL	0.63^{a}
Natural Gas	1.05^{b}
GPL	1.05^{b}
Gasoil and Fuel Oil	1.07^{b}
Coal	1.10^{b}
Solid/Liquid Biomass	1.00^{b}
Electricity from the grid	2.42^{b}
Thermal energy from solar collectors	1.00^{b}
Electricity generated by photovoltaic	1.00^{b}

Table 1: Primary Energy Factor (PEF) for different energy types.

Notes: Data at 2016. Source:^aIren Group Source:^bItalian Ministry of Enterprises and Made in Italy Table 2: Cost avoided with the TRL respect the traditional centralized heating system.

Cost	approx.
System installation	20000€/installation
Ordinary boiler maintenance	5000€/year
Reading and repairing the boiler	600€/year
Extraordinary interventions	depending on breakdowns
Fire prevention certification renewal	500€ every 5 years
Boiler renewal	
Cost for fuel/gas	depending on boiled features and building's volume ^a

Sources:TRL.eu

^a: For a house of 80 m², assuming a reasonable yearly heat consumption of 5.6 MWh, the TRL implies an annual cost of 526.40 (price as of April 2024). With a centralized heating system (90% heat output efficiency) operating on gas, the annual cost is 640 (price of gas as of April 2024). This results in an 18% savings in gas costs.

2.1 The Teleriscaldamento

The TLR is a district heating network available in Turin. This service is managed by Iren, a company that provides electricity, natural gas, and other products and sectors to individuals, companies, and public entities. In the 1980s, Iren sought to utilize the waste heat generated by its electricity production plants to heat water for private heating and usage, a process known as cogeneration. This initiative presented an opportunity for the company to enhance its production efficiency, transitioning from a 56-58% efficiency in full electric production to 85-90% in a complete cogeneration setup. To achieve this, the company began constructing a pipeline system to connect its plants to its customers. The construction was possible thanks to an agreement with the municipality, which saw in the TRL a potential and significant contribution to the reduction of pollutant emissions from domestic heating.

The Turin's setting is not isolated. The system is developed in Europe mainly in the Scandinavian and Baltic countries, where the served population varies from 42% in Sweden to 99% in Iceland. Italy is one of the European countries where TLR is least developed, with district heating covering only about 2.3% of the national heating demand². There are district heating systems established in more than 200 urban centers across Italy, comprising over 400 networks scattered throughout the country³. The gradual ex-

 $^{^{2}}$ Source: "Assessing the potential for efficient district heating deployment across the country" by the Polytechnic of Milan and Polytechnic of Turin

³Source: AIRU Statistical Yearbook

pansion of the district heating network has positioned Turin as the most TRL-heated city in Italy per buildings' volume served, representing almost 15% of the Italian network. Furthermore, Turin stands out as one of the most district-heated cities in Europe. In 2022, it served over 645,000 inhabitants, with 69.9 million m^3 connected⁴, equivalent to approximately 57% of the built volume in the urban area.

Practically, the TRL system encompasses both the pipeline infrastructure, PIs, and heating units (or boilers), HUs, installed in buildings tied to the system. Depending on agreements between the company and building administrators, one HU can serve multiple surrounding buildings. Each HU has a defined power capacity, determined by the size of the buildings it serves. If a building administrator, appointed by the apartment owners, opts to utilize the service, they must contact the company. The company, in turn, will provide various options, typically without *any* installation fees for installing the HU. The TRL's HU replaces the existing centralized HU, and all associated management and maintenance costs are covered by the company. Moreover, connecting a building to the system guarantees a minimum service price discount of 5% for the first two years from the start of the service.

By construction, the TRL system generates several positive externalities. The higher production efficiency of the cogeneration system results in pollution savings equivalent to that produced by 780,000 cars. Additionally, the absence of traditional boilers reduces the risk of breakdowns and heating interruptions. From the consumers' perspective, the TRL system avoids a list of costs (see Table 2). Notably, for an 80 m^2 flat, the annual management cost of a central heating system averages around $C1800^5$. However, this cost savings opportunity is only available if the building already has a centralized HU, otherwise, the replacement would not be feasible. For instance, TRL's HU can not be used in cases where the building has independent HUs located in each apartment. Furthermore, given Iren's direct production, savings in raw materials are estimated at around 10-15% compared to systems previously fueled with fossil fuels.

Nonetheless, even before COVID-19, the TRL system faced substantial criticisms. The district heating sector, characterized by high economies of scale and density in distribution network implementation, presents the typical characteristics of a natural monopoly. The duplication of networks is not sustainable from an economic point of

⁴Source:Torino Vivibile

⁵Source: ISTAT

view. Moreover, since the sector is not regulated and driven by the recent energy crises, the resultant price increase has impacted TRL consumers, leading to numerous criticisms directed at both Iren and the municipality.

It is important to highlight the declared strategy implemented by Iren in implementing the TRL network. Indeed, Turin's network is composed of two heat production plants, that are situated in the southern and north-western parts of the city, respectively. As illustrated in Figure 1, the company began by linking the closed plant area and subsequently expanded to various parts of the city. Indeed, the orange colour indicates areas where at least one pipeline was already in place during that specific timeframe. The extension of the TLR network is physically constrained, as the temperature of the heat-carrying fluid decreases with the distance travelled. Iren claims that the choice to implement the TRL in a specific area is guided by two primary considerations: potential consumer demand and the cost of laying pipelines. As the TRL serves as an alternative to the traditional centralized heating system, Iren conducts market research to identify areas with a higher density of such traditional systems. Additionally, the cost of pipeline installation varies across different parts of the city. Some areas show significantly higher expenses for pipeline placement compared to others. In Turin, two neighborhoods were deliberately excluded from TRL implementation: the downtown ("Centro") and the hilly neighborhoods (see Figure 6). The Centro constitutes the historical part of the city of Roman origin, and the TRL's provider decided to exclude this area from the network to avoid costly delays in construction due to archaeological discoveries. Similarly, the hilly part of the city was excluded due to the high cost associated with the area's morphological structure.

The data set, directly provided by Iren, is composed of the entire system, both PI and HU. Due to the sensitive nature of these data for the company, all subsequent representations of the data will be in aggregate form at the census track level. To provide an idea of the granularity and detail of the data, a small sample is shown in Figure A2.

2.2 Housing Prices and Local Economic Businesses

The second source of data is the list of licenses for retailers, bars, restaurants, beauticians and hairdressers in Turin from 2012 to 2019 provided by the City Council. To open a new business or expand an existing one, the owner must request a license without

Notes: The graph plots the incremental variation over time of sale and rent price with respect to 2012, with the standard deviation per semester.

Notes: The graph plots the evolution of the businesses over time, divided into tradable good sellers and non-tradable services providers. The value is the area's average

any additional cost. The database includes information about the type of merchandise, location, and opening and closing dates for each license. The licenses are divided into 41 categories (see Table A1) by the City Council. Since the request for a license is a more reliable indicator of economic business than the opening or closing of a physical establishment, I use the opening and closing dates of the licenses to construct a variable that counts the number of active licenses per semester and category.

The average number of local economic businesses significantly increased from 2012 to 2019. Figure 3 illustrates the evolution of tradable and non-tradable sectors over time, with non-tradable sectors being bars, restaurants beauticians and hairdressers, and tradable goods being everything else. The two types of sectors show a similar trend until the latter half of 2018 when tradable sectors experienced a sharp decline. The variety of different goods and services for residents also follows a similar trend, with a consistently increasing supply until a few years before the pandemic when the trend turns. Anecdotally, this decrease in establishments number follows the European trend already started before the COVID-19 pandemic and continued even after⁶.

Furthermore, I gathered the data for both house and rental prices from Idealista, a popular online real estate platform in Italy. The data is semestral, covering the years 2012-2019, and reports the "median asking price" per squared meters at the census track level. This median is computed by taking the mean of prices listed on the platform once

Figure 3: Economic Businesses Descriptive

⁶Examples of newspaper articles: England (2019), Italy (2022) and Spain (2023)

the outliers and duplicated advertisements have been removed, therefore it may not reflect the final market price for either houses or rentals. These measures have advantages and disadvantages. On one hand, they do not allow for a direct comparison of posted prices with actual prices. Despite this, Garcia-López et al. (2020) and Chapelle and Eyméoud (2022) have shown that posted prices can be a good indicator of actual prices. Moreover, since bargaining is a common part of the buying and renting process, the asking price could show the house owner's attempt to monetize several possible features related to the house or the neighborhood.

During the period of analysis the city experienced a significant decrease in real estate prices (see Figure 2), following the average national trend. Over the period between 2012 to 2019, sale prices experienced an average decrease of nearly 25%, with a steeper decline observed from 2012 to 2014, followed by a more gradual decline. Similarly, rent prices also decreased, hitting a low point of approximately -15% in 2016. It is important to highlight that rental contracts in Italy may be categorized as either agreed or free. In case of agreed rent, property owners offer houses for rent within a specified price range, with both a maximum and minimum limit. In such cases, they are eligible for tax reductions. The quotations are established through agreements between the municipality and local housing associations, aligning with market dynamics⁷. Notably, these quotations generally cover a broad spectrum of prices, with the actual proposed price typically following market trends. However, it is noteworthy that the confidence interval for rental prices is considerably narrower than that for sales prices, indicating a lower variability in rental prices within the city.

Lastly, Table $A2^8$ reports further descriptive statistics of these variables, both for housing prices and local economic business variables. Notably, the housing prices have zero as minimum values in tracts where there are no residential buildings.

2.3 Further Data

I supplement the primary data sets with additional information that includes timevariant socio-demographic variables from the Turin City Council's statistical department, as well as some time-invariant characteristics from the 2011 National Census. Moreover,

⁷An example here

⁸The count reports 3848 census tracts instead of 3850 because I exclude two industrial tracts. Moreover, the statistics computed taking into account all the tracts.

the Piedmont Region office provided the distribution in 2011 of both centralized and independent heating systems in the city.

3 Empirical Analysis

The primary objective of the empirical analysis is to quantify the impact of shifts in housing prices on local economic businesses. This analysis digs into three key aspects of economic businesses: the variety of goods offered and the densities of both tradable and non-tradable goods and service providers. These outcomes collectively contribute to shaping the welfare that consumers derive from participating in the local market.

Analysing the impact of housing prices on local economic businesses poses challenges, given that housing prices may be influenced by the concentration of nearby shops and the variety of supplies available to consumers. Furthermore, various local factors, such as gentrification processes and changes in both amenities and disamenities, may simultaneously and distinctly affect both housing prices and the supply of goods and services. To address these endogenous concerns, the empirical strategy relies on leveraging the variations in housing prices induced by the implementation of the TRL. Specifically, I utilize the staggered roll-out of the TRL adoption in the city of Turin, occurring between 2012 and 2019. Under a set of assumptions described below, the quasi-experimental variation generated by the staggered TRL roll-out allows me to estimate the causal effect of housing prices on local economic businesses. Initially, I demonstrate how the TRL network influenced shifts in housing prices, and subsequently, I discuss the methodology and the conceptual framework for estimating the effect of housing price shifts on local economic businesses.

3.1 Housing Prices and TRL

3.1.1 Empirical Strategy

To estimate the TRL-induced variation on housing prices, I employ the following two-way *difference-in-difference* (TWFE) specification:

$$Log(P_{ijt}) = \beta(TRL_{ijt}) + \delta_i + \tau_{jt} + \epsilon_{ijt}$$
(1)

Notes: The graph plots the treated (green) and control (blue) tracts in 2012

Notes: The graph plots the treated (green) and control (blue) tracts in 2019

where $Log(P_{ijt})$ denotes either the sale or rent price (\mathfrak{C}/m^2) in the census tract i at semester and year t. The variable TRL_{ijt} takes the value 1 if TRL operates in census tract i during semester j of year t and 0 otherwise. Figure 4 and 5 show the treatment's distribution across the city in 2012 and 2019 respectively. The specification is complemented with both tract δ_i and semester-year, τ_{jt} , fixed-effects and the error term, ϵ_{ijt} .

In Eq.1, the control group consists of census tracks that were not subjected to treatment by the TRL in semester j of year t. Furthermore, in the baseline specification, the control group is comprised exclusively of individuals who have not yet been treated. To address concerns associated with employing a TWFE model in a staggered adoption scenario, as heterogeneous treatment exposure (Borusyak, Jaravel, et al. 2021; De Chaisemartin and d'Haultfoeuille 2020; Goodman-Bacon 2021), I utilize the robust estimation method proposed by Callaway and Sant'Anna (2021) in both the static (Eq.1) and the dynamic specification.

The validity of Eq.1 relies on three identification assumptions: the stable unit treatment value assumption (SUTVA), the no-anticipation effect assumption and the parallel trend assumption. SUTVA may be compromised if either individual transits from the treatment group to the control group or if potential outcomes for a given observation are influenced not only by its treatment status but also by the random assignment of others, leading to spillover effects. It is important to note that the TRL installation is permanent concerning the treated census tracts, making the shift from treated to control groups by census tracts technically unfeasible. Nevertheless, spillover effects are note-worthy in cities, especially in short distances. While the individual fixed effect partially addresses externalities from nearby areas that maintained constant influence throughout the analyzed period, robustness checks are conducted to provide additional evidence in support of the SUTVA.

Concerning the assumption of no-anticipation effects, it would be violated if the treatment has a causal impact before its implementation. However, this scenario appears unlikely, as the TRL is provided by a private firm that lacks any advantage in anticipating the implementation schedule. Moreover, both the pipeline's installation and the boiler installation require no more than 40 days, and this duration is encompassed within the semesterly data exploited in the analysis.

Ultimately, the parallel trend assumption holds, conditioning on time-invariant covariates (Callaway and Sant'Anna 2021). These variables are managed by exploiting a Doubly Robust Estimator (Sant'Anna and Zhao 2020). As discussed in Section 2, the TRL implementation has followed a declared strategy, assessing potential demand and cost implications. However, Iren may have, consciously or unconsciously, considered various factors, such as prioritizing wealthier areas over poorer ones. The observable and unobservable processes underlying TRL implementation can potentially influence both the trend of outcomes and treatment effects differently. To address this, I complement the specification by matching tracts on a list of covariates. Firstly, I include the density of residential buildings with an independent heating system due to the relevance of the heating system composition in the area in determining the potential TRL demand. Secondly, I consider the distance of the area from the two plants, as the TRL network has progressively expanded from these production plants. These variables are relevant for improving the matching between treated and controlled areas, favouring comparisons among neighboring tracts that share more similarities. Thirdly, I account for the building composition in the area, including the share of residential buildings, the share of build-

Notes: The graph plots both the Centro (in green) and the hilly (in brown) neighborhoods.

Notes: The graph plots the census tracts included in the baseline analysis. The black lines represent the Centro and the hilly neighborhoods' edges.

ings constructed in each decade since the 70s, and the proportion of residential buildings in excellent and poor conditions. Moreover, I account for areas with different propensities in hosting both retailers and service providers, including the density of commercial licenses in the tract. Lastly, even though it is not explicitly stated, TRL construction may be prioritized based on areas with either higher income levels or varying degrees of gentrification. While this scenario is plausible, the current structure of the TRL network does not seem to support it. As illustrated in Section 2, Iren made rational decisions to avoid the Centro and hilly neighborhoods (see Figure 6), despite their status as some of the city's wealthiest areas, as shown in Table A3. Nevertheless, to further account for this possibility, the covariates match for sociodemographic characteristics in the area, including the share of foreign residents, young residents (ages 0-30), old residents (over 66 years old), the population and household densities, the share of employment, the share of household owner and the level of education. Additionally, these sociodemographic variables allow for further matching areas by differences in consumer demand. Figures A4, A5 and A6 show the balance test of all these variables concerning the outcome variables and the TRL treatment. Particularly, they show how the generation of these variables is strictly correlated with the covariates proposed.

Lastly, a concluding discussion is necessary for The Centro and the hilly neighbourhoods. Due to their structural constraints⁹, location in the cities and population composition¹⁰, these areas could potentially affect both the expansion of the TRL and possibly the generation of the outcome variable in further unclear ways beyond those identified. Therefore, to address this issue and strengthen both the SUTVA and the parallel trend assumption, I exclude tracts located at a distance up to 200 meters from the Centro edge. In contrast, the hilly neighborhood is separated from the other tracts by the city's river, and, therefore, I consider the barrier represented by the river sufficient for mitigating the identified problem. As a result, Figure 7 illustrates the census tracks included in the final sample.

3.1.2 Conceptual Framework

This section introduces a conceptual framework to explain how TRL may impact housing prices. Additionally, the framework guides the interpretation of the results.

The effect of TRL treatment on housing prices, as in Eq.1, is expected to be positive. As discussed in Section 2, the TRL heating system offers a cost-effective alternative for consumers compared to traditional heating systems. Typically, the primary installation and management costs are borne by the service provider. With this more economical option available to consumers, those selling or renting houses may seek to leverage these savings by increasing their asking prices. Consequently, TRL adoption could result in elevated selling and rental prices.

The expected positive result finds additional support in the energy policy literature. Since 2005, Italy has implemented the *Energy Performance Certificate* (EPC) in accordance with the guidelines outlined in the 2002/91/CE Directive on the energy performance of buildings¹¹. The EPC serves as a certification of a house's energy performance and must be presented at the time of purchase or rental. Accredited certifying bodies, listed nationally and regionally, are responsible for issuing the EPC, which considers the individual energy services utilized in the house. By EPC construction, the heating system,

⁹see Section 2

¹⁰As mentioned in the previous paragraph.

¹¹Source: Legislative Decree 19/05/2005

Dep. Variable	(1) Log (Sale)	(2) Log (Rent)
TRL	0.002	0.018^{***}
Obs.	38,080	38,080

Table 3: ATT - Housing Prices on TRL

Notes: Significance is indicated by * p<0.1. ** p<0.05, and *** p<0.001. Standard errors, in parenthesis, are clustered at the census tract level. Control variables are the share of independent heating systems, the distance of the area from the two plants, the share of residential buildings, the share of buildings constructed in each decade since the 70s, the share of residential buildings in excellent and poor conditions, the density of commercial licenses in the tract, the share of foreign residents, young residents (ages 0-30), old residents (over 66 years old), the population and household densities, the share of employment, the share of the household owner and the level of education.

or in general the heating water system, is a key contributor in determining the house's energy class and directly impacts energy performance. The system energy assessment is based on the *Primary Energy Factor* (PEF). The PEF quantifies the amount of primary energy required to generate a unit of electricity or usable thermal energy. Therefore, lower PEF values mean higher system efficiency. Certified controllers identify the PEF, and as demonstrated in Table 1, the TRL provided by Iren exhibits greater efficiency than other energy carriers, resulting in a higher energy class. The literature on energy policy provides further evidence of the positive impact of EPC on housing prices with an increase in EPC ratings (Fuerst et al. 2016; De Ayala et al. 2016; Kholodilin et al. 2017).

3.1.3 Results

Before delving into the empirical analysis of housing prices' impact on local economic businesses, I first present the results showing how housing prices respond to the introduction of the TRL in the tracts. Table 3 displays the static average treatment effect. Column 1 details the outcomes using the logarithm of sale prices, while Column 2 considers the logarithm of rent prices. Both results are conditioned on time-invariant covariates, encompassing various socio-demographic characteristics that reflect differences in population, households, education, and income, as well as several building and local commerce attributes. As specified in Eq.1, the coefficients indicate the elasticity of real estate prices to the TRL treatment. The TRL's effect on sale prices appears positive but not statistically significant. In contrast, a notable and significant impact is observed Figure 8: Event study - Sale prices on TRL

Figure 9: Event study - Rent prices on TRL

Notes: Time to treatment are semester. Control variables are the share of independent heating systems, the distance of the area from the two plants, the share of residential buildings, the share of buildings constructed in each decade since the 70s, the share of residential buildings in excellent and poor conditions, the density of commercial licenses in the tract, the share of foreign residents, young residents (ages 0-30), old residents (over 66 years old), the population and household densities, the share of employment, the share of the household owner and the level of education.

with rent prices, where the elasticity is approximately 2. This aligns with the rationale presented in Section 3.1.2. However, at first glance, sale prices do not seem to follow this expectation.

Figures 8 and 9 depict the dynamic effect of housing prices following the TRL implementation, using an event study approach. This approach allows for the evaluation of the parallel trend assumption and the evolution of results over time. These results remain conditioned on the covariates. In the pre-treatment period, as shown by the blue areas representing the 95% confidence interval, each coefficient is not significantly different from zero. However, for rent prices, the coefficient at t - 3 notably differs from zero.

Focusing on the post-treatment periods in Figures 8 and 9, the outcomes differ. For sale prices, as shown in Figure 8, the effect is, on average, positive and significant during the first five semesters following the TRL implementation, and then becomes non-significant and negative in the later periods. Conversely, rent prices demonstrate consistently positive and significant results, particularly in the periods closest to the TRL implementation.

3.2 Economic Businesses and TRL

3.2.1 Empirical Strategy

The empirical strategy now turns on the effect of the TLR on the local economic businesses. The estimation relies on the following TWFE *difference-in-difference*:

$$Log(Y_{ijt}) = \beta(TRL_{ijt}) + \gamma X_{i,2011} + \delta_i + \tau_{jt} + \epsilon_{ijt}$$
⁽²⁾

The specification aligns with Eq. 1 in the composition. In contrast, $Log(Y_{ijt})$ represents other outcomes. To examine the impact of TRL on economic businesses, I explore both the logarithm of tradable licenses and non-tradable licenses active in area *i* during semester *j* and year *t*. Tradable goods sellers encompass categories providing goods to consumers, while non-tradable service providers include bars, restaurants, beauticians, and hairdressers. Additionally, I investigate whether TRL implementation influences the availability of diverse products and services in an area. This variable is defined as the number of category varieties, computed as the count of categories experienced in an area.

The discussion of assumptions and the composition of the sample follow the previous discussion in Section 3.1.1. Moreover, the balance tests are illustrated in Tables A7, A8 and A9.

3.2.2 Conceptual Framework

The positive impact of TRL on housing prices raises questions regarding its influence on local economic businesses. To address this, I employ the rise in housing prices attributable to TRL as an exogenous shock to local economic businesses. This approach allows for a focused analysis solely on the impact of TRL on local economic businesses.

Local businesses mostly consume in the rental market. Fluctuations in rental prices could affect businesses through two main channels, as suggested by their plausible location choice function. The first is the direct channel related to the cost structure of businesses. The main cost of running a business is composed of rental and operating costs. An increase in rental costs may cause marginal firms to exit the market, while incumbents may not enter the market. However, TRL works in the opposite direction by reducing operating costs. Therefore, the direction of this direct effect is not immediately evident. The same applies to the second channel, the indirect channel. In fact, changes in house

Dep. Variable	(1)	(2)	(3)
	Log (Tradable)	Log (Non-Tradable)	Log (Variety)
TRL	-0.012	-0.029^{**}	0.010
	(0.017)	(0.015)	(0.012)
Obs.	38,080	38,080	38,080

Table 4: ATT - Local economic businesses outcome on TRL

Notes: Significance is indicated by * p<0.1. ** p<0.05, and *** p<0.001. Standard errors, in parenthesis, are clustered at the census tract level. Control variables are the share of independent heating systems, the distance of the area from the two plants, the share of residential buildings, the share of buildings constructed in each decade since the 70s, the share of residential buildings in excellent and poor conditions, the density of commercial licenses in the tract, the share of foreign residents, young residents (ages 0-30), old residents (over 66 years old), the population and household densities, the share of employment, the share of the household owner and the level of education.

prices can lead to an indirect effect. Indeed, changes in house prices can lead to shifts in business demand, potentially accelerating or inhibiting gentrification processes that change the average income of the area. This may involve changes in population density, population composition, consumer behaviour or a combination of these factors. Variations in demand may affect profits and, consequently, firms' decisions to enter, remain or exit the market. The direction of this indirect effect remains ambiguous.

The interplay between the so-called indirect and direct effect determines the significance of these two channels.

3.2.3 Results

This section presents the results on the impact of house prices on local economic business. By using the TRL as an exogenous shock to house prices, the empirical strategy is based on quantifying its impact on economic businesses, following the methodology described in Eq.2. Table 4 shows these results, using the TRL as the explanatory variable. Columns 1, 2 and 3 present different dependent variables: the log of tradable sectors, the log of non-tradable sectors and the log of sectors' variety, respectively. These results include control variables that take into account the socio-demographic characteristics of the area, variables on the composition of the buildings and the initial composition of the heating systems.

Looking at the results, I observe distinct patterns across sectors. In the tradable sectors (Column 1), the average treatment effect is negative but not statistically significant. Figure 10: Event study - Tradable Sectors on TRL

Figure 11: Event study - Non-Tradable Sectors on TRL

Figure 12: Event study - Sectors' Variety on TRL

Notes: Time to treatment are semester. Control variables are the share of independent heating systems, the distance of the area from the two plants, the share of residential buildings, the share of buildings constructed in each decade since the 70s, the share of residential buildings in excellent and poor conditions, the density of commercial licenses in the tract, the share of foreign residents, young residents (ages 0-30), old residents (over 66 years old), the population and household densities, the share of employment, the share of the household owner and the level of education.

In the non-tradable services sector, on the other hand, the coefficient is not only negative but also significantly different from zero. Specifically, the elasticity is -2.9. Concerning the variety of goods and services offered in the tract, the coefficient is not statistically significant but suggests a positive effect.

Figures 10, 11 and 12 illustrate the event study specification for the tradable sector, non-tradable sectors, and sector variety, respectively. Building on the findings from Section 3.1.3, these figures graphically represent the dynamic effects of the TRL on the dependent variables under study. Their purpose is twofold: validating the parallel trend assumption and assessing how the effect of TRL has evolved over time. In these figures,

Year			Students	š		First Year Students						
	Other Region	% wrt 09/10	Other Country	% wrt 09/10	All	% wrt 09/10	Other Region	% wrt 09/10	Other Country	% wrt 09/10	All	% wrt 09/10
2009/10	15.045		5.194		82.608		4.955		1.762		22.176	
2010/11	16.791	12%	6.012	16%	83.575	1%	5.648	14%	2.148	22%	22.825	3%
2011/12	19.478	29%	7.228	39%	86.101	4%	6.928	40%	2.666	51%	23.956	8%
2012/13	21.006	40%	7.474	44%	86.229	4%	7.515	52%	2.221	26%	25.633	16%
2013/14	23.129	54%	7.778	50%	87.070	5%	8.199	65%	2.472	40%	25.762	16%
2014/15	25.159	67%	7.736	49%	88.430	7%	8.881	79%	2.301	31%	26.636	20%
2015/16	27.227	81%	7.615	47%	89.486	8%	9.565	93%	2.303	31%	26.984	22%
2016/17	29.090	93%	7.568	46%	92.011	11%	10.363	109%	2.464	40%	28.728	30%
2017/18	31.503	109%	8.638	66%	96.163	16%	10.862	119%	3.022	72%	30.362	37%
2018/19	32.419	115%	8.288	60%	97.738	18%	11.033	123%	2.762	57%	30.623	38%
2019/20	33.265	121%	8.845	70%	99.951	21%	11.385	130%	2.970	69%	31.701	43%
2020/21	34.179	127%	9.268	78%	102.025	24%	12.113	144%	2.981	69%	34.456	55%
2021/22	33.650	124%	9.991	92%	101 617	23%	10.881	120%	3 342	90%	30.865	39%

Table 5: Descriptive statistics of students by origins and year of enrollment

Source: Osservatorio Regionale per l'Università e per il Diritto allo studio universitario *Note:* All data refers to students enrolled at the university only in Turin.

the blue coefficients represent the pre-treatment periods, while the red coefficients denote the post-treatment periods.

During the pre-treatment period, Figures 10 and 11 show coefficients that are not significantly different from zero in all periods for both tradable and non-tradable sectors. This representation supports the validity of the parallel trend assumption in analyzing the TRL's impact on these sectors.

In contrast, the analysis of sector variety, as depicted in Figure 12, indicates a potential violation of the parallel trend assumption, particularly in periods t - 3 and t - 4.

I now turn to compare the results from before and after the treatment. In Figures 10 and 12, the coefficients for both the tradable sector and the variety of goods and services are not statistically significant. Specifically, the coefficient for the tradable sector remains close to zero around the time of the TRL's implementation and shows a decline in the subsequent periods. Conversely, for the variety offered in the tracts, an increase in the effect is observed in the latter period. In the case of the non-tradable sectors, there is a continuous decrease in the effect after the implementation of the TRL. In particular, this effect is statistically significant in the first semesters after the introduction of the TRL.

4 Discussion

In this section I proceed with the discussion of the results, providing a conceptual interpretation of them and the mechanism that might occur. Regarding the TRL effect on house prices, the effect follows the conceptual framework illustrated in Section 3.1.2, with few exceptions. Notably, for the rent prices the effect is positive and significant for most

of the post-treatment periods. On the other hand, the sale prices effect is positive and significant for the initial semesters afterwards the TRL implementation, turning firstly no significant and close to zero, and lastly negative and statistically different from zero. The initial positive influence is explained by the increase in energy performance due to the TRL adoption in the area. The subsequent decreasing effect appears just two and a half years after the TRL implementation. Notably, this coincides exactly with the duration of the initial service discount offered by the firm to consumers. Nonetheless, the discount is limited around the 5-10%, therefore it seems to small to impact so much as the event study illustrates.

The effect of TRL on local economic business, while not immediately clear, is consistent with Glaeser, Luca, et al. (2023) findings, despite differences in research focus and treatment definition. In Section 3.2.2, the result is not straightforward, arising from the interaction between direct effects on housing costs and indirect effects on sociodemographic characteristics. Section 3.2.3 shows that for tradable sectors the interaction of direct and indirect effects seems to neutralise each other. This suggests that although there is a small, statistically insignificant downward effect, the variety of goods in these areas is not significantly affected by rising housing costs. Several establishments at the margin may exit the market, but they are replaced by others, maintaining the variety of goods. Since the tradable sectors are characterized by a large presence of primary goods, the result suggests that despite cost variations, the inelastic demand for these goods compensates for the direct effects, leading to no significant changes.

Significant impacts are observed in non-tradable sectors, particularly in the initial periods post-TRL adoption, where a meaningful negative effect emerges. This is attributed to TRL-induced shifts in housing prices. Previous findings indicate that TRL positively influences rental and sale prices, especially in the initial post-treatment periods. Consequently, when both rental and sale prices increase due to TRL, the effect on non-tradable sectors is negative and statistically significant. However, in later periods, when sale prices are no longer positively impacted by TRL, the effect on non-tradable service providers becomes non-significant, though it remains negative.

The interpretation of this effect on the non-tradable distribution is related to the high rent extraction by the establishment owners. Moreover, the literature on urban revival (Couture and Handbury 2020; Baum-Snow and Hartley 2020) suggest a further additive interpretation. Indeed, the literature highlight how the presence of college students has changed the distribution and consumption of non-tradable services in America, showing the establishments' tendency to stay close to these young students, who are identified as the main consumers. It is not hard to believe that university students massively consume in the rental housing market, and therefore they are particularly hit by changes in prices. Thus, the continuous rent price increase due to TRL alters the presence of students in the city, and consequently, the distribution of non-tradable services. Although lacking direct data on student distribution, anecdotal evidence suggests that the favorable condition of the rent market in Turin (see Figure 2) has encouraged the increase in the student population (Table 5), around 20% in ten years, especially from other Italian regions or countries, while the general population measures have changed not more than 4%(Column 1 in A5). Therefore, given this significant student presence, it is plausible that students are opting for areas with lower rents, leading to a decline in non-tradable service providers. Figure A15 provides a graphical correlation between the presence of bars and restaurants and the locations of university departments, near which students are more likely to decide to live.

5 Robustness Checks

In this section, I provide several exercises to test the robustness of the findings.

First, I repeat the main analysis (see Section 3.1.1) excluding the covariates I used to condition the parallel trend assumption. For house prices, the results are shown in Figures A10 and A11. In these cases, the parallel trend is violated compared to the main specifications. In contrast, for the local economic outcomes, in Figures A12 and A13, the absence of the time-invariant covariates would not significantly change the parallel trends compared to the main results. The same applies to sectors' variety in Figure A14. The results presented here are meaningful. The observed parallel trend only holds for local economic outcomes when covariates are not taken into account, which is not the case for house prices. In Section 3 of the identification strategy, I provide a full discussion of the importance of covariates. Essentially, they allow for a more accurate matching between treatment and control areas and account for various unobservable processes that might otherwise compromise the integrity of the treatment and outcome variables. For Figure 13: Sample used for the spillover robustness check

Notes: Blue tracts are those included in the sample for the robustness check. White areas are contiguous to neighborhood borders, therefore are excluded from the sample for the robustness check. Neghborhoods' borders are plots with the thick black line.

Table	6:	Robustness	Check	-	ATT	with	re-
duced	sar	nple					

	TF	RL
Dep. Var.	Coef.	St.Err.
Log (Sale)	0.003	0.006
Log (Rent)	0.014**	0.007
Log (Tradable)	-0.008	0.019
Log (Non-Tradable)	-0.027*	0.016
Log (Variety)	0.018	0.013
Obs.	29,392	

Notes: Significance is indicated by * p<0.1. ** p<0.05, and *** p<0.001. Standard errors, in parenthesis, are clustered at the census tract level. Control variables are the share of independent heating systems, the distance of the area from the two plants, the share of residential buildings, the share of buildings constructed in each decade since the 70s, the share of residential buildings in excellent and poor conditions, the density of commercial licenses in the tract, the share of foreign residents, young residents (ages 0-30), old residents (over 66 years old), the population and household densities, the share of employment, the share of the household owner and the level of education.

example, both TRL and local economic businesses might be affected by the presence of rich people in their realisation (selection bias). If this were the case, TRL would not be exogenous to local economic businesses. Consequently, the main specification includes socio-demographic characteristics to mitigate this potential bias, which also applies to house prices. However, the robustness check also shows that local economic businesses in both treatment and control groups maintain their initial trends, whether or not these variables are controlled for. This consistency suggests that the concerns raised in the identification strategies, in particular the potential endogeneity of the TRL variable to local economic businesses, are probably unfounded, at least for the possible biased I identified. Although my analysis does not use directly an instrumental variable approach, this could be interpreted as supporting the exclusion restriction. However, the situation is different for house prices, which require the inclusion of covariates to ensure random assignment of the TRL variable.

As discussed in Section 3.1.1, a potential threat to the empirical analysis is the spillover effect. This issue arises from the proximity of the tracts under study, which may influence each other. In urban environments, eliminating the spillover effect is challenging. Nevertheless, I propose a method to mitigate this by excluding from the initial sample the areas contiguous to the neighborhood's administrative borders. While areas within a single neighborhood may not be homogeneous, the differences between neighborhoods are more pronounced. The individual fixed effect partially addresses externalities from nearby areas that maintained constant influence throughout the analyzed period. These influences are more likely to occur within the same neighborhood. By additionally excluding bordering tracts of contiguous neighborhoods, as depicted in Figure 13, I further address differences and spillovers between neighborhoods.

Table 6 presents the results derived from omitting the white areas shown in Figure 13. The impact of the TRL on the outcome variables is consistent with previous findings. However, the significance for rent prices and non-tradable sectors have diminished with the reduced sample size, leading to increased standard errors.

6 Conclusions and Next Steps

This paper provides an analysis of the relationship between real estate prices and local economic businesses, using the city of Turin, Italy, as a case study. The unique dataset employed in this research, combined with the use of the staggered adoption of Teleriscaldamento (TRL) as an exogenous shock for housing prices, affords a detailed exploration of this challenging research question.

The introduction of the TRL system, designed to enhance energy performance in housing, is expected to influence housing prices. Theoretically, improvements in energy efficiency should translate into higher property values. This study confirms this hypothesis, at least in the initial semesters post-TRL implementation, where an increase in rental prices is observed, reflecting the capitalization of energy efficiency benefits. However, while rental prices continue to show a significant positive effect, the impact on sale prices diminishes and eventually becomes negative over time. Potentially, this effect might be attributed to demographic shifts in the city, particularly the decrease in the young resident population.

A significant finding of this paper is the differentiated impact of housing price changes on tradable versus non-tradable sectors in the local economy. While tradable sectors show resilience to these changes, non-tradable sectors experience a notable negative impact, especially in the periods immediately following the TRL's implementation. This phenomenon can be linked to the demographic shifts driven by rising housing costs, particularly among college students who are pivotal consumers of non-tradable services. As housing prices, especially rentals, increase, these demographic groups might opt to relocate, leading to a decline in demand for services such as bars, restaurants, and personal care.

The empirical strategy employed leads to questions about the internal validity. The use of the TRL as exogenous variation provides a robust mechanism to isolate the effects of housing price changes on local economic businesses. The staggered nature of the TRL's implementation allows for a quasi-experimental setup, reducing concerns about confounding variables and ensuring that the observed effects can be attributed more confidently to the treatment. However, when considering external validity, the study's findings may have limitations in their applicability to other contexts. Turin's unique demographic changes, urban structure, and the specific characteristics of the TRL system may not be directly comparable to other cities, especially those outside of Italy or Europe. Nonetheless, in Section 2, I provide several information to support the comparability of this specific case with both the Italian and European general settings.

Further analyses are needed. While in this paper I propose a conceptual framework and comprehensive analysis, additional research is needed to delve deeper into the underlying mechanisms and better disentangle them. These could entail diverse analytical exercises, potentially requiring access to more extensive data. The robustness of the Teleriscaldamento (TRL) as an exogenous shock is a key of this study, however, more robustness checks would reinforce the findings. Moreover, the unique nature of TRL's implementation, dating back to the 1980s, opens up opportunities to apply advanced empirical strategies. For instance, employing the methodology suggested by Borusyak and Hull (2020) could offer a new perspective, treating the TRL as an exogenous shock with a non-random exposure.

In conclusion, this study highlights the significant influence of housing market shifts

on local economic businesses, shedding light on the intricate interplay between neighborhood change, demographic shifts, and economic dynamics. The findings provide insights into urban economic processes, contributing to the ongoing debate of urban planning and policymaking.

References

- Allcott, Hunt et al. (2019). "Food deserts and the causes of nutritional inequality". In: The Quarterly Journal of Economics 134.4, pp. 1793–1844.
- Almagro, Milena and Tomás Dominguez-Iino (2022). "Location sorting and endogenous amenities: Evidence from Amsterdam". In: Available at SSRN 4279562.
- Baum-Snow, Nathaniel and Daniel Hartley (2020). "Accounting for central neighborhood change, 1980–2010". In: Journal of Urban Economics 117, p. 103228.
- Behrens, Kristian et al. (2022). "Gentrification and pioneer businesses". In: Review of Economics and Statistics, pp. 1–45.
- Borraz, Fernando et al. (2023). "Local retail prices, product varieties and neighborhood change". In: American Economic Journal: Economic Policy. Forthcoming.
- Borusyak, Kirill and Peter Hull (2020). Non-random exposure to exogenous shocks: Theory and applications. Tech. rep. National Bureau of Economic Research.
- Borusyak, Kirill, Xavier Jaravel, et al. (2021). "Revisiting event study designs: Robust and efficient estimation". In: *arXiv preprint arXiv:2108.12419*.
- Brummet, Quentin and Davin Reed (2019). "The effects of gentrification on the wellbeing and opportunity of original resident adults and children". In: Available at SSRN 3421581.
- Callaway, Brantly and Pedro HC Sant'Anna (2021). "Difference-in-differences with multiple time periods". In: *Journal of Econometrics* 225.2, pp. 200–230.
- Chapelle, Guillaume and Jean Benoit Eyméoud (2022). "Can big data increase our knowledge of local rental markets? A dataset on the rental sector in France". In: *PloS one* 17.1, e0260405.
- Couture, Victor (2016). "Valuing the consumption benefits of urban density". In: University of California, Berkeley, Working Paper.
- Couture, Victor, Cecile Gaubert, et al. (2023). "Income Growth and the Distributional Effects of Urban Spatial Sorting". In: *The Review of Economic Studies*, rdad048. ISSN: 0034-6527.
- Couture, Victor and Jessie Handbury (2020). "Urban revival in America". In: Journal of Urban Economics 119, p. 103267.
- (2023). "Neighborhood Change, Gentrification, and the Urbanization of College Graduates". In: *Journal of Economic Perspectives* 37.2, pp. 29–52.

- Curci, Federico and Hasin Yousaf (2022). "Gentrifying Cities, Amenities and Income Segregation: Evidence from San Francisco". In: Available at SSRN 4315271.
- Davis, Donald R et al. (2019). "How segregated is urban consumption?" In: Journal of Political Economy 127.4, pp. 1684–1738.
- De Ayala, Amaia et al. (2016). "The price of energy efficiency in the Spanish housing market". In: Energy Policy 94, pp. 16–24.
- De Chaisemartin, Clément and Xavier d'Haultfoeuille (2020). "Two-way fixed effects estimators with heterogeneous treatment effects". In: American Economic Review 110.9, pp. 2964–2996.
- Ding, Lei and Jackelyn Hwang (2016). "The Consequences of Gentrification: A Focus on Residents' Financial Health in Philadelphia". In: *Cityscape* 18.3, pp. 27–56. ISSN: 1936007X.
- Fuerst, Franz et al. (2016). "Energy performance ratings and house prices in Wales: An empirical study". In: *Energy Policy* 92, pp. 20–33.
- Garcia-López, Miquel-Ángel et al. (2020). "Do short-term rental platforms affect housing markets? Evidence from Airbnb in Barcelona". In: Journal of Urban Economics 119, p. 103278.
- Glaeser, Edward L, Jed Kolko, et al. (2001). "Consumer city". In: Journal of Economic Geography 1.1, pp. 27–50.
- Glaeser, Edward L, Michael Luca, et al. (2023). "Gentrification and retail churn: theory and evidence". In: *Regional Science and Urban Economics* 100, p. 103879.
- Goodman-Bacon, Andrew (2021). "Difference-in-differences with variation in treatment timing". In: *Journal of Econometrics* 225.2, pp. 254–277.
- Guerrieri, Veronica et al. (2013). "Endogenous gentrification and housing price dynamics".In: Journal of Public Economics 100, pp. 45–60.
- Handbury, Jessie and David E Weinstein (2015). "Goods prices and availability in cities".In: The Review of Economic Studies 82.1, pp. 258–296.
- Kholodilin, Konstantin A et al. (2017). "The market value of energy efficiency in buildings and the mode of tenure". In: *Urban Studies* 54.14, pp. 3218–3238.
- Sant'Anna, Pedro HC and Jun Zhao (2020). "Doubly robust difference-in-differences estimators". In: Journal of Econometrics 219.1, pp. 101–122.

- Stroebel, Johannes and Joseph Vavra (2019). "House prices, local demand, and retail prices". In: *Journal of Political Economy* 127.3, pp. 1391–1436.
- Vigdor, Jacob L (2010). "Is urban decay bad? Is urban revitalization bad too?" In: Journal of Urban Economics 68.3, pp. 277–289.
- Vigdor, Jacob L et al. (2002). "Does gentrification harm the poor?" In: Brookings-Wharton papers on urban affairs, pp. 133–182.

Appendix

Tables

Category	Category
Animals Articles	Automatic Machines
Appliances and Electronics	Bar and Restaurants
Building Material	Candies
Children Articles	Clothing
Cosmetics and Perfumery	Coffee Pods
Extralimentary	Food
Fabrics and Rugs	Gift Articles
Flowers and Plants	Hairdressers and Beauticians
Fuels	Mixed
Furniture	Objects
Games	Second Hand
Hardware Store	Sport Articles
Health and Orthopedic Articles	Supermarkets
Home Articles	Newspapers
House and Person Hygiene Articles	Optics
Jewellery	Pharmacy and Herbalist Articles
Laundry	Photography
Libraries	Sexy Shop
Motor and Car	Spare Accessories
Musical Instruments	Stationery Articles
Tobacco	

Table A1: List of license categories in the dataset

 $\it Notes:$ the Table includes the list of licence categories in the dataset.

	Year	2012	2013	2014	2015	2016	2017	2018	2019
	Ν	3848	3848	3848	3848	3848	3848	3848	3848
	Mean	2372,04	2196, 23	$1982,\!43$	1881,04	1834, 36	$1815,\!27$	1822,44	$1834,\!38$
Sale Price	Sd	$883,\!27$	$818,\!03$	743, 16	$713,\!00$	$697,\!84$	696, 18	$726,\!48$	746, 37
	Min	$0,\!00$	$0,\!00$	$0,\!00$	$0,\!00$	$0,\!00$	$0,\!00$	$0,\!00$	$0,\!00$
	Max	$4545,\!45$	4090, 91	3840,00	$4097,\!22$	3699, 21	$3576,\!80$	$3683,\!66$	$4020,\!63$
	Ν	3848	3848	3848	3848	3848	3848	3848	3848
	Mean	7,70	$7,\!24$	6,91	$6,\!67$	$6,\!65$	$6,\!59$	6,70	6,74
Rent Price	Sd	2,71	$2,\!48$	2,38	$2,\!30$	$2,\!31$	2,29	$2,\!35$	$2,\!45$
	Min	$0,\!00$	$0,\!00$	$0,\!00$	$0,\!00$	$0,\!00$	$0,\!00$	$0,\!00$	$0,\!00$
	Max	$13,\!85$	$13,\!20$	12,79	12,02	$11,\!90$	$12,\!67$	$13,\!29$	$15,\!00$
	Ν	3848	3848	3848	3848	3848	3848	3848	3848
	Mean	$4,\!63$	4,72	$4,\!83$	$4,\!90$	4,98	4,98	$5,\!01$	4,84
Tradable Sectors	Sd	6,26	$6,\!38$	$6,\!50$	$6,\!60$	6,70	6,74	6,75	$6,\!56$
	Min	0	0	0	0	0	0	0	0
	Max	82	82	82	84	85	101	92	92
	Ν	3848	3848	3848	3848	3848	3848	3848	3848
	Mean	$2,\!00$	2,03	2,07	$2,\!12$	$2,\!13$	2,16	$2,\!20$	$2,\!23$
No-Tradable Sectors	Sd	2,38	$2,\!43$	2,51	2,59	2,59	$2,\!64$	$2,\!69$	2,74
	Min	0	0	0	0	0	0	0	0
	Max	33	32	34	36	37	37	37	37
	Ν	3848	3848	3848	3848	3848	3848	3848	3848
	Mean	$4,\!27$	$4,\!30$	$4,\!35$	$4,\!40$	4,44	4,44	4,44	$4,\!36$
Sectors' Variety	Sd	$3,\!65$	$3,\!68$	3,72	3,76	3,79	$3,\!77$	3,78	3,72
	Min	0	0	0	0	0	0	0	0
	Max	20	20	21	22	22	23	22	22

Table A2: Descriptive statistics for the main variables by year

Notes: taking into account the initial sample. There are 3848 census tracts instead of 3850 because I exclude two industrial tracts. In terms of price, those areas with no house prices have no residential buildings.

Table A3: Descriptive statistics per city area

	All Tracks without Centro & Hill				Centro & I	Hill		All Tacks		
Share of graduate people in 2011	50896	.1285054	.1101622	10672	.2608681	.1596865	61568	.1514488	.1302394	
Share of undergraduate people in 2011	50896	.2529958	.1199731	10672	.2343875	.1320833	61568	.2497703	.1223601	
Share of people with secondary school license in 2011	50896	.2416164	.1232215	10672	.1479094	.1014285	61568	.2253735	.1248719	
Share of people with a primary school licence in 2011	50896	.1339976	.0785082	10672	.0819234	.0702353	61568	.1249712	.0796161	
Share of illiterates people in 2011	50896	.0067286	.0124406	10672	.0032928	.0121921	61568	.0061331	.0124658	

Source: ISTAT

Table A4: Population descriptive by age range

	Pop.	0y-17y ^a	Pop.	18y-29y ^a	Pop.	30y-39y ^a	Pop.	40y-49y ^a	Pop.	50y-65y ^a	Pop. More than 66y	
Year	Levels	% wrt 2010	Levels	% wrt 2010	Levels	% wrt 2010	Levels	% wrt 2010	Levels	% wrt 2010	Levels	% wrt 2010
2010	131,090		103,839		135,152		144,917		185,413		208,157	
2011	$131,\!947$	0.65%	102,594	-1.20%	$130,\!687$	-3.30%	$146,\!215$	0.90%	187,051	$0,\!88\%$	208,380	0.11%
2012	$133,\!244$	1.64%	$103,\!691$	-0.14%	$128,\!114$	-5.21%	$148,\!225$	2.28%	187,100	0,91%	211,449	1.58%
2013	$133,\!180$	1.59%	102,197	-1.58%	122,,424	-9.42%	$146,\!950$	1.40%	186,693	$0,\!69\%$	$213,\!570$	2.60%
2014	132,796	1.30%	100,626	-3,09%	$116,\!518$	-13.79%	$145,\!457$	0.37%	187,422	1,08%	$215,\!895$	3.72%
2015	131,704	0.47%	99,117	-4.55%	$112,\!055$	-17.09%	$143,\!949$	-0.67%	189,325	2,11%	216,126	3.83%
2016	130,246	-0.64%	98,804	-4.85%	$109,\!470$	-19.00%	$141,\!457$	-2.39%	191,964	$3{,}53\%$	216,980	4.24%
2017	129,188	-1.45%	99,155	-4.51%	106,720	-21.04%	$138,\!170$	-4.66%	$194,\!880$	5,11%	216,620	4.07%
2018	127, 192	-2.97%	98,864	-4.79%	$104,\!510$	-22.67%	$134,\!436$	-7.23%	$197,\!652$	$6,\!60\%$	$216,\!350$	3.94%
2019	125,168	-4.52%	$98,\!478$	-5.16%	$103,\!159$	-23.67%	129,943	-10.33%	199,829	7.78%	215,739	3.64%

Source: ^a Turin Statistical Office

Table A5: Population descriptive by year

	Tota	al Pop. ^a	Total Fo	oreign Pop. ^a	N. of h	ouseholds ^a
Year	Levels	% wrt 2010	Levels	% wrt 2010	Levels	% wrt 2010
2010	908,568		129,067		449,495	
2011	$906,\!874$	-0.19%	$133,\!869$	3.72%	449,904	0.09%
2012	$911,\!823$	0.36%	$142,\!191$	10.17%	$453,\!941$	0.99%
2013	$905,\!014$	-0.39%	$140,\!138$	8.58%	450,802	0.29%
2014	898,714	-1.08%	$138,\!076$	6.98%	449,036	-0.10%
2015	$892,\!276$	-1.79%	$136,\!262$	5.57%	447,067	-0.54%
2016	888,921	-2.16%	132,730	2.84%	447,845	-0.37%
2017	884,733	-2.62%	$132,\!806$	2.90%	447,638	-0.41%
2018	879,004	-3.25%	$133,\!137$	3.15%	$446,\!662$	-0.63%
2019	872,316	-3.99%	$132,\!878$	2.95%	$446,\!347$	-0.70%

Source: ^a Turin Statistical Office

Figures

 $\it Notes:$ Plots of the city of Turin divided in 3850 census tracts.

Notes: Detail of the TRL network. The pipelines are in orange and the boilers installed are in blue.

Figure A3: KWatts of TRL installed in the tracts - Year 2019

Notes: Detail per census tract of the TRL power installed until the end of 2019.

Figure A4: Balance Tests - TRL Treatment

Notes: Beta coefficients for the TRL dummy. Variables are standardised to facilitate graphical presentation.

Figure A5: Balance Tests - Sale Prices

Notes: Beta coefficients for the Sale price. Variables are standardised to facilitate graphical presentation.

Figure A6: Balance Tests - Rent Prices

Notes: Beta coefficients for the Rent price. Variables are standardised to facilitate graphical presentation.

Figure A7: Balance Tests - Tradable Sectors

Notes: Beta coefficients for the Tradable sectors. Variables are standardised to facilitate graphical presentation.

Figure A8: Balance Tests - Non-Tradable Sectors

Notes: Beta coefficients for the Non-tradable sectors. Variables are standardised to facilitate graphical presentation.

Figure A9: Balance Tests - Sectors' Variety

Notes: Beta coefficients for the sector variety. Variables are standardised to facilitate graphical presentation.

Figure A10: Event Study - Sale Prices on TRL without covariates

Notes: Time to treatment are semester. The event study includes tract fixed effects and semester-year fixed effects. The confidence interval is at the 95% level. The treatment variable is the TRL dummy, which equals one if the TRL was treated at a given point in time.

Figure A11: Event Study - Rent Prices on TRL without covariates

Notes: Time to treatment are semester. The event study includes tract fixed effects and semester-year fixed effects. The confidence interval is at the 95% level. The treatment variable is the TRL dummy, which equals one if the TRL was treated at a given point in time.

Figure A12: Event Study -Tradable Sectors on TRL without covariates

Notes: Time to treatment are semester. The event study includes tract fixed effects and semester-year fixed effects. The confidence interval is at the 95% level. The treatment variable is the TRL dummy, which equals one if the TRL was treated at a given point in time.

Figure A13: Event Study - Non-Tradable Sectors on TRL without covariates

Notes: Time to treatment are semester. The event study includes tract fixed effects and semester-year fixed effects. The confidence interval is at the 95% level. The treatment variable is the TRL dummy, which equals one if the TRL was treated at a given point in time.

Figure A14: Event Study - Sectors' Variety on TRL without covariates

Notes: Time to treatment are semester. The event study includes tract fixed effects and semester-year fixed effects. The confidence interval is at the 95% level. The treatment variable is the TRL dummy, which equals one if the TRL was treated at a given point in time.

Figure A15: Map of Universities Department Locations and Bar/Restaurant number per tract

