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Abstract

In the last decades, the geography of innovation activity became much more
concentrated. By focusing on the US metropolitan statistical area of residence of the
inventors of patents filed to the United States Patents and Trademark Office between
1990 and 2016, we show that this is increasingly true also for “green” innovation,
i.e. patents covering mitigation or adaptation to climate change. We find a sharp
increase in concentration across areas after the beginning of the 2000s, with areas
that are generally more innovative also producing more green patents. Focusing on
the relationship between green innovation and urban density, we find evidence of a
positive significant relationship only after 2002. To shed some light on this puzzling
outcome, we further qualified the concept of density to urban human capital density,
finding the expected significant relationship between green innovation and density

before and after 2002, and we aim at possibly rationalizing these findings.
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1 Introduction

The spatial distribution of innovative activity is clearly uneven, with a tendency for
innovation to cluster in urban areas. Starting from Jacobs (1969), a sizeable theoretical
literature (see, among others, Glaeser et al., 1992, Black and Henderson, 1999, Glaeser,
1999) has recognized that cities, characterized by their high concentrations of individu-
als, firms, and institutions, are powerful engines of innovation and economic growth. In
parallel, starting from the seminal paper by Ciccone and Hall (1996), a vast number of
empirical studies have reported the existence of a positive relationship between population
density, a fundamental characteristic of urban environments, and the intensity of innova-
tion, often measured by patenting activity. The explanation for this behavior rests mainly
on the role of knowledge spillovers and the circulation of ideas: dense urban environments
act as fertile breeding grounds for the rapid dissemination of knowledge and ideas.

In the present paper, we study the differences in the locational patterns of “green”
patenting activity compared to other types of patenting across US metropolitan urban
areas between 1990 to 2016. In particular, we do so by placing a strong attention on how
density is measured. While population and employment density are rather immediate
concepts, other forms of qualification of density may be more complex to be calculated
but may demonstrate to be more appropriate from a conceptual point of view. In our
case, given the nature of the phenomenon under study, we follow a process of progressive
qualification of the density variable employed in the empirical analysis, guided by the
theoretical considerations and empirical evidence at hand.

In particular, after starting with a traditional measure of population density, the first
qualification of density we provide stems from the observation that, given the way in which
the spatial units of analysis, namely the Metropolitan Statistical Areas, are constructed,
a simple calculation of density as the number of individuals per unit geographic area
may not accurately reflect the level of density actually faced by economic agents. In
particular, the problem arises from the fact that metro areas are built as aggregations of
counties, and especially in some parts of the United States, the more peripheral counties
include substantial portions of rural territory. To overcome this problem, we first derive
an estimate of the urban component of the counties, both in terms of area and population,
and through this estimate, we “clean up” the notion of population density.

Subsequently, we enter more directly into the nature of the density relevant to the phe-
nomenon we are studying. There is in fact a significant body of literature that emphasizes
the role of human capital in shaping the agglomeration economies which are relevant to
the innovation process. We refer here to the role played by human capital both in knowl-
edge spillover processes and in defining the quality of the labor supply within an urban
labor market. Consequently, after deriving a measure of the number of individuals with

at least two years of college education in each metro area, we analyze how a measure of



urban density of human capital modifies the relationship between density and innovative
activity, with a specific focus on green patenting activity.
In the next sections, we present our analysis and our preliminary results, as well as

the lines along which our ongoing research in proceeding.

2 Data

We measure innovation with the flow number of patents (an exclusionary right con-
ferred for a set period to the patent holder, in exchange for sharing the details of the inven-
tion) eventually granted by the United States Patents and Trademarks Office (USPTO).
We associate a patent to a year using the application date, which is the year when the
provisional application is considered complete by the USPTO.! Since patent application
data should be considered 95% complete for applications filed 8 years prior (Aghion et al.,
2019), we limit our analysis to patent filed before 2017; for other data limitations explained
below, we start our analysis from patents filed in 1990. As common in the literature, we
restrict our attention to utility patents (thus excluding design patents and plant patents),
which cover the creation of a new or improved product, process or machine; these represent
approximately 90% of all patents granted by USPTO.

We focus on inventors residing in the conterminous United States (i.e. the 48 adjoining
states and the District of Columbia). We assign patents to areas according to the location
in which the inventor of the innovation resides (as in e.g. Castaldi and Los, 2017, Aghion
et al., 2019, Berkes and Gaetani, 2021, Moretti, 2021), which is extracted from patent
text and used to determine latitude and longitude. We use the residential addresses of
the inventors and not the one of the assignee (usually, the company that first owned
the patent), because we are mainly interested in the location of processes that lead to
inventions, whereas the assignee address often reflects the address of the corporate head-
quarters and not the R&D facility (Moretti, 2021). When a patent is coauthored by more
than one inventor, we split it equally among them, as in e.g. Aghion et al. (2019), Berkes
and Gaetani (2021), and Moretti (2021). Henceforth, we thus attribute a fraction m/n of
a patent to an area a, where n is the total number of inventors in that patent and m is
the number of inventors of that patent who reside in area a.

To define a patent as “green”, we use the Cooperative Patent Classifications (CPC),
which has been introduced in 2013 by the USPTO and the European Patent Office. Unlike
existing patent classifications such as the International Patent Classifications, the CPC

can be indexed with a focus on emerging technologies (Veefkind et al., 2012). These new

'We follow the patent literature in focusing on application year rather than the award year. As noted
by Lerner and Seru (2022), the motivation is that, whereas firms will generally tend to file for patents
as soon as the discoveries are made in order to protect their intellectual property, the time at which the
patent is granted depends on many external factors, like the technological area or the state of the patent
office.



Table 1: The Y02/Y04S Scheme

CPC Code Technological Domain

Y02A Technologies for adaptation to climate change

Y02B Climate change mitigation technologies related to buildings,
e.g. housing, house appliances or related end-user applications

Y02C Capture, storage, sequestration or disposal of GHG

Y02D Climate change mitigation technologies in information and

communication technologies, i.e. information and communication
technologies aiming at the reduction of their own energy use

YO02E Reduction of GHG emissions, related to energy generation,
transmission or distribution

YO02P Climate change mitigation technologies in the production
or processing of goods

Y02T Climate change mitigation technologies related to transportation

Y02W Climate change mitigation technologies related to wastewater
treatment or waste management

Y04S Systems integrating technologies related to power network

operation, communication or information technologies for
improving the electrical power generation, transmission,
distribution, management or usage, i.e. smart grids

Source: https://www.uspto.gov/web/patents/classification/cpc/html/cpc-Y.html

classifications have been backtracked into the existing databases. We exploit this system
by classifying a patent as green if it belongs to at least one subclass in the Y02/Y04S
scheme, like e.g. Corrocher et al. (2021). Within the CPC, the Y02 class covers “technolo-
gies which control, reduce, or prevent anthropogenic emissions of greenhouse gases (GHG),
in the framework of the Kyoto Protocol and the Paris Agreement, and technologies which
allow the adaptation to the adverse effects of climate change”, whereas the Y04S cov-
ers “systems integrating technologies related to power network operation, communication,
or information technologies for improving the electrical power generation, transmission,
distribution, management, or usage”. Table 1 identifies the technological classes under
investigation.

In total, there are 2,750,623 utility patents filed by inventors residing in the conter-
minous US between 1990 and 2016, of which 178,653 (approximately 6.5%) belong to at
least one green subclass. It is well known that the number of patents granted by the
USPTO annually has greatly increased since the 1990s. Figure 1 shows that the number
of green patents granted has also been growing, with an impressive acceleration from 2006
(in line with the findings by Corrocher et al., 2021).

In terms of areas, we focus on metropolitan statistical areas (MSAs), i.e. regions “con-
sisting of a large urban core together with surrounding communities that have a high degree
of economic and social integration with the urban core” (Ruggles et al., 2020). We con-

sider MSAs for various reasons. First, MSAs represent economic spatial units and so are
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Figure 1: Total Patents
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Notes. Number of utility patents filed to USPTO in any given year between 1990 and 2016 by innovators
residing in the conterminous US. Own elaborations using data from USPTO.

considered more appropriate to study economic dynamics than states, regions, or even
counties (e.g. Drennan, 2005). Second, innovation is mainly an urban phenomenon (Bet-
tencourt et al., 2007); for example, the vast majority of patents in our dataset come from
inventors residing in a metropolitan area (approximately 85% for utility patents and 83%
for green patents). Third, there is large heterogeneity across MSAs in terms of capac-
ity to innovate. We assign an inventor location to a MSA using the 2013 Cartographic

Boundary Files provided by the United States Census Bureau.?

3 Concentration and Agglomeration

There is a great deal of evidence that research and development activities tend to
be more concentrated than manufacturing activities (e.g. Buzard et al., 2017) and that
patenting activities in the US have become more geographically concentrated since the end
of the last century (e.g. Castaldi and Los, 2017, Andrews and Whalley, 2021, Forman and
Goldfarb, 2021, Magrini and Spiganti, 2024). In this section, we first measure the spatial
concentration in green patenting activities and then examine the relationship between
green patenting and urban density across MSAs, comparing these patterns with those for

other (i.e. non-green) patents.

2 Source: https://www.census.gov/geographies/mapping-files/time-series/geo/cartogra

phic-boundary.html. The definition used for the identification of MSAs has evolved over time, with
significant changes made especially around census years: results are qualitatively identical independently
of the boundary files used.
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Figure 2: Patents Concentration
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Notes. The first (second) panel shows the yearly dartboard (Herfindahl-Hirschman) innovation intensity
concentration index across metropolitan statistical areas in the United States between 1990 and 2016.
Own elaborations using data from USPTO, Manson et al. (2020), and US Census.

3.1 Concentration

Following Andrews and Whalley (2021), we first measure concentration using Ellison
and Glaeser’s (1997) dartboard approach. This consists of calculating an index of the spa-
tial concentration of innovation intensity by comparing the observed spatial distribution
of innovators to what it would have been if it had been proportional to (urban) population
distribution. In particular, for each year ¢ and all areas a € A, the dartboard innovation

intensity concentration index is

Zle (SharePaty, — SharePopg)?
1— % | SharePop?,

Concentration; = : (1)
where SharePat,; and SharePop,; are, respectively, the shares of patents granted and of
urban population living in area a in year ¢. The scale of this index is such that a value
of zero can be interpreted as indicating a complete lack of agglomerative forces, whereas
a value of one would indicate that all patenting occurs in one area.

The evolution of this index is reported in Figure 2a, where an increase in concentration
across areas is evident, starting in the mid 1990s for non-green patents and at the begin-
ning of the 2000s for green ones. Figure 2b confirms these findings using the Herfindahl-
Hirschman index, which is calculated by taking each area’s share of total patents in a
year, squaring them, and summing the result; this index equals 10,000 if all patents come
from one area and approaches zero if each area is responsible for a low share of patents.
As underlined by e.g. Andrews and Whalley (2021), the increase in concentration goes
hand-in-hand with increasing assortative sorting of skills across cities and the emergence
of superstar cities.

A second feature that clearly emerges from the evolution of the Herfindahl-Hirschman

index is the sudden and sizeable change in the slope of the series related to green patents at



the beginning of the 2000s, which seems to suggest the presence of a structural break in the
relationship between green and brown patents. To further explore this aspect, we apply
a Bai and Perron (1998) test of structural breaks to the monthly series of the Herfindal-
Hirschman concentration index of green and brown patenting activity from January 1990
to December 2016. Before carrying out the test, however, we handle an evident outlier in
the index for green patents by applying a 6-month average (excluding current observation),
and then concentrate on the trend component of the series obtained by applying an
Hodrick-Prescott filter with a smoothing parameter as suggested by Ravn and Uhlig
(2002). As shown in Table 2, the test (Bai and Perron, 1998) detects a statistically
significant break in March 2002; consequently, hereafter we split our samples into two
parts: 1990-2001 and 2002-2016.

Table 2: Test for Structural Breaks at Unknown Breakdates

test 1% critical 5% critical 10% critical
statistic value value value
supW (tau) 1,306.71 7.68 5.74 4.91

Estimated break point 2002m3

Notes: the Bai and Perron (1998) test is carried out using the Stata package xtbreak

3.2 Urban Density and Innovation

Cities, characterized by their high concentrations of individuals, firms, and institu-
tions, have often been recognized as the engines of innovation and economic growth.
This observation has spurred extensive research into the relationship between population
density and the intensity of innovation.

High population density, by its very nature, fosters several distinct types of agglom-
eration economies. Dense urban environments act as fertile breeding grounds for the
rapid dissemination of knowledge and ideas. This occurs through both formal and infor-
mal channels. Formally, universities, research institutions, and specialized training centers
provide structured platforms for knowledge creation and transfer. Informally, the constant
interaction between individuals in diverse fields, whether through professional networks,
social gatherings, or chance encounters, facilitates the cross-fertilization of ideas and the
serendipitous sparking of innovation. Several empirical studies thus suggest that larger
cities exhibit increasing returns to scale in innovation activity, a phenomenon largely
attributable to the amplified knowledge spillovers that occur within these densely popu-
lated areas. Carlino et al. (2007) focus on employment density and find that doubling its
level determines a 20 percent increase in patent intensity. Similarly, Bettencourt et al.

(2007) provide evidence supporting the presence of a superlinear relationship between



metropolitan size and patenting rates.

Dense urban areas attract a diverse and highly specialized labor pool, creating a “thick”
labor market. This concentration of skilled workers, researchers, and entrepreneurs pro-
vides firms with unparalleled access to the specific human capital they require. The
presence of a large and diverse labor pool allows for more efficient matching between
inventors and firms, optimizing the allocation of talent and facilitating the complex pro-
cesses of technology development and commercialization. Moretti (2021) analyses the
productivity-enhancing effects of high-tech clusters on top inventors and reports the pres-
ence of significant benefits accruing to inventors from being embedded within localized,
specialized labor markets, where they can readily collaborate with peers, access specialized
resources, and benefit from a supportive ecosystem.

While agglomeration forces generally exert a positive influence on innovation, the un-
relenting increase in population density can, beyond a certain point, lead to significant
congestion diseconomies. These negative effects can counteract the benefits of agglomera-
tion and ultimately stifle innovative activity. High population density invariably leads to
increased competition for limited resources, particularly land and housing. This drives up
the costs of both residential and commercial real estate, making it increasingly challenging
for startups and smaller, resource-constrained firms to compete with established, larger
corporations. The high cost of living can also deter skilled workers from relocating to or
remaining in extremely dense areas, eroding the specialized labor pool that is so crucial
for innovation. Overcrowding places immense strain on existing infrastructure, includ-
ing transportation networks, utilities (water, electricity, waste management), and public
services. This can result in traffic congestion, power outages, water shortages, and other
disruptions that negatively impact productivity and the overall efficiency of research and
development activities. Congestion often leads to a decline in the overall quality of life.
Increased noise levels, air pollution, limited access to green spaces, and longer commute
times can contribute to higher stress levels and a reduced sense of well-being. These
factors can make it significantly harder to attract and retain the top-tier talent that is
essential for driving innovation. The simultaneous presence of agglomeration economies
and congestion diseconomies strongly suggests that the relationship between population
density and patenting activity is inherently non-linear. The work of Berkes and Gaetani
(2021) on the geography of “unconventional innovation” provides valuable insights into
this non-linear dynamic. Their research indicates that while conventional innovation (in-
cremental improvements to existing technologies) tends to be highly concentrated in dense
urban cores, unconventional innovation (more radical and disruptive breakthroughs) ex-
hibits a more dispersed spatial pattern. This finding lends support to the argument that
optimal conditions for innovation may not be found at the absolute highest densities.

We now have a look at the relationship between urban density and innovative ac-

tivity across the US. Before doing that, however, we must address a fundamental issue:



the choice of the scale of the analysis. The overview of the forces that, via population
density, can exert an influence on innovation activity clearly suggests that, conceptually,
the urban area constitutes the most appropriate spatial unit for this type of analysis.
In the US context, a possible choice would then be the Metropolitan Statistical Area.
Quite simply, the MSA comprises a core with a relatively high population density and
adjacent communities linked to the core by intense commuting flows. On the positive
side, as MSAs include both employment and the residents who hold the jobs, they are in
economic terms as self-contained as spatial subdivisions of national economies are likely
to be thus containing within themselves most of the agglomeration economies and disec-
onomies described above. However, metropolitan areas comprise complete counties, and
counties on the outer fringes often have the majority of their land areas and significant
portions of their populations classified as rural. As emphasized by Duranton and Puga
(2020), MSAs tend to understate the density experienced by most economic actors, par-
ticularly where the match between urban and county boundaries is systematically looser
as in the western part of the Unites States. Seeking to avoid this bias, researchers have
exploited the availability of data at a finer spatial resolution. Berkes and Gaetani (2021),
for instance, conduct their analysis at the County Sub-Division (CSD) level, which allows
them to separate low- and high-density areas within larger units. However, because in
western and southern parts of the United States County Sub-Division boundaries tend to
align with County boundaries, this approach makes it difficult to address the bias problem
previously discussed. Hence, we follow a different route.

In particular, to address the issue and concentrate on urban population density, we
resort to census data, originally at census block level and then to county level (for cotermi-
nous US), about the percentage of population and land that is defined urban.® It should
be emphasized that urban is sometimes confused with metropolitan, but they are different
concepts. The metropolitan concept is more related to whether the population live in an
area where they are either within or have access to an urban center, for example because
they can commute to work there (this is the primary criteria to being included in a metro
area), or they have access local TV and radio stations, subscribe to local newspapers, et
cetera. Urban (as opposed to rural) does not focus on the distance from the urban center;
instead, it has to do with the density of the population in the immediate area around.

The data set includes 4 observations (years 1990, 2000, 2012, 2022) and from these it
is possible extrapolate other years for our analysis. With the percentage of urban density
at county level, we derived the percentage of the urban density at MSA level that, in turn,

gives us what we call the urban population density.

3The database is Master Area Block-Level Equivalency (MABLE) to create the correlation lists, where
"block" refers to census blocks. The MABLE databases are almost entirely based on the Census Bureau’s
TIGER databases. Each version of MABLE is based on its own set of census blocks (1990, 2000, 2010,
2020), source: https://mcdc.missouri.edu/
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Now we look at the relationship between urban population density and innovative
activity across MSAs. To do this, we first employ binned scatterplots (Cattaneo et al.,
2024), a tool which provides a graphical representation of the conditional, nonparamet-
ric relationship between two variables. For large samples, binned scatterplots condense
the information from a traditional scatterplot by partitioning the z-axis into bins, and
calculating the mean of y within each bin. The resulting plot thus shows the nonparamet-
ric relationship between the independent variable (in bins) and the mean of dependent
variable.

Figure 3 reports the binned scatterplots for green and brown patents sub-dividing the
analysis in the two periods separated by the structural break detected in Section 3.1.
The main features that emerge can be summarized as follows. In both sub-periods, the
relationship between the log of urban density and the log of brown patents (Figure 3,
panes (a) and (b)) is globally increasing, although not necessarily in a linear fashion:
it seems more strongly positive in the left portion of the distribution, while easing off
for MSAs with a higher density. This result is in line with Berkes and Gaetani (2021)
who report a inverted U-shaped relationship between population density and patents per
capita across CSDs between 2000 and 2010. A similar behavior is found in the later period
for green patents. As shown in Figure 3, panel (d), also the relationship between urban
density and per capita green patents, whilst globally positive, lessens in the right-most
portion of the distribution.

In contrast, a different behavior characterizes green patenting activity during the first
period of analysis. Here, net of a limited degree of variation, the relationship between
green patents per capita and urban density is essentially flat.

To further examine these features, we run fixed-effects, linear regressions on the same
data. In particular, we regress the log of patents per capita against the log of urban
density for both green and brown innovative activity and over both periods thus producing
estimates of the elasticity of patenting with respect to urban population density. Table 3
shows that the elasticity of brown patenting is always statistically significant, increasing
from a value of 0.41 in the first sub-period, to a value of 0.82 in the second; in contrast,
the elasticity of green patenting is statistically significant only in the 2001-2016 period,
whilst being not-significant in the earlier one.

To sum up, we have found that patenting activities have increasingly became more
concentrated over time. In addition, we have found that the relationship between brown
patenting and urban population density is, in general, positive, although not necessarily
linear, during the entire period, while green patenting shows a positive relationship with

urban density only over the 2001-2016 sub-period.
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Figure 3: Urban Population Density and Patenting Per Capita
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Notes. The bin-scatter plot is obtained applying the methodology described Cattaneo et al. (2024)
through the Stata package Binsreg. The dependent variable is the log number of patents per inventor
per year, and the independent variable is the log density of urban population. Binscatter estimates are
based on log population weights and control for year fixed effects. Pointwise intervals and global bands
denote 95 percent nominal confidence level using a robust variance estimator. The number of bins is
chosen following the IMSE-optimal direct plugh-in rule.

4 Geographical Patterns

In the previous section, we have found that brown patenting activities have increasingly
became more concentrated in the period 1990-2016 while the degree of concentration in
green patenting has remained rather stable in the first sub-period, whilst substantially
increasing in the second. It is not clear however whether these activities have concentrated
across the same areas. This is the focus of this Section.

Figure 4 shows the evolution of the number of total and green innovators across MSAs
and over time; to make the comparisons meaningful, the number of patents is scaled by
the area’s urban population (as in e.g. Aghion et al., 2019, Castaldi and Los, 2017).

Through these maps, we have a further qualification of the results established in
Section 3. Each maps reports, through the grey dots, the location of the MSAs in the
sample, together with the level of green or brown patenting activity for those MSAs with a
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Table 3: Fixed-effect Regressions - Urban Population Density

(1) (2) (3) (4)
log patents green log patents brown
1990-2001  2002-2016 1990-2001 2002-2016
urban density  0.0812 0.773%**  0.406***  0.817***
(0.0654) (0.0716) (0.0495) (0.0600)

constant 1.975%*%* 2. g78¥¥* 9 onARk*x () 940**
(0.494)  (0.542)  (0.369)  (0.451)
N 3199 4432 4171 5228

Standard errors in parentheses
*p < 0.10, ** p < 0.05, *** p < 0.01

Notes: log of (green or browns patents) on log of urban population density over the subperiods 1990-
2001 and 2002-1996. Models control for year and state fixed effects. Robust standard errors are used.
Weighting is done with log of urban population. The measure of innovation is winsorized at the 1% level.

level of activity that exceeds the sample average through the colored cicles. Looking at the
spatial distribution of the circles we can note a high degree of stability: brown patents
tend to concentrate within the same MSAs over the entire period. In particular, the
areas that end up showing the highest concentration of patenting activity of this type are
Boulder, CO; Burlington-South Burlington, VT; Corvallis, OR; Midland, MI; Rochester,
MN; and Sunnyvale-Santa Clara, CA. In contrast, we once more note a different behavior
of green patenting activity over the two sub-periods: the spatial distribution of brown
patenting is more evenly spread across the MSAs during the first sub-period and tends to

exhibit the same spatial characteristics as brown activity in the most recent period.

5 Green Patenting and the Nature of Density

As stressed by Duranton and Puga (2020), population or employment density is easy
to calculate but, on the other hand, may not appropriately reflect the density actually
faced by relevant economic agents. In other words, other types of density may matter
for the phenomenon under study and alternative characteristics of population should be
considered.

In Section 3.2, we noted that the agglomeration forces that might exert a positive
influence on innovation activity involve learning and knowledge spillovers. The extent
and intensity of these phenomena, in turn, may be influenced by the size and quality of
the human capital stock that is present within the urban area, a point similar to Abel et al.
(2012) suggestion regarding the role of the density of human capital in urban productivity.

Consequently, while in the previous analyses we concentrated on urban population
density, we now further qualify the concept of density by considering a form of urban

human capital density. To do this, we divide the number of people in each MSA with at
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Figure 4: Map of patenting activity
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Notes. Own elaborations. Each dot represents an MSA in the sample. The circles are proportional to the
extent of patenting activity; circles, grouped into quintiles, are depicted only for MSAs with patenting
activity above the sample average.

least 2 years of college by the extent of the urban area, a rather conventional measure
of human capital (although focusing exclusively on educational attainment might not be
able to capture the full array of knowledge and skills within a metropolitan area).

Figure 5 shows the binned scatterplots obtained, for green and brown patents, when
density takes the form of human capital density. The effect of the change in independent
variable is rather evident: all four plots display a clear, positive relationship between
density and innovative activity. In other words, both the tendency for patenting activity
to ease off at higher levels of density, and the anomaly in the slope of the relationship for
green patents during the first sub-period are not present anymore.

The latter aspect is confirmed by the regression results reported in Table 4. The
elasticity of green patents per capita with respect to urban human capital density is now
significant also in the first of the two sub-periods, and has a size that is comparable to the
one estimated for green patents. In addition, also the elasticities estimated in the second
sub-period are similar for green and brown patents, reaching a value slightly above 1.

These results, still rather preliminary, indicate that human capital may play a partic-

ularly significant role in shaping the relationship between density and innovative activity.
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Figure 5: Urban Human Capital Density and Patenting Per Capita
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Notes. The bin-scatter plot is obtained applying the methodology described Cattaneo et al. (2024)
through the Stata package Binsreg. The dependent variable is the log number of patents per inventor
per year, and the independent variable is the log density of urban human capital. Binscatter estimates
are based on log population weights and control for year fixed effects. Pointwise intervals and global
bands denote 95 percent nominal confidence level using a robust variance estimator. The number of bins
is chosen following the IMSE-optimal direct plug-in rule.

This opens up the possibility of multiple perspectives along which we will seek to further

deepen our analysis.
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Table 4: Fixed-effect Regressions - Urban Human Capital Density

(1) (2) (3) (4)
log patents green log patents brown
1990-2001  2002-2016 1990-2001 2002-2016
urban density — 0.649%%%  1.041%%%  0.770%FF  1.128%F*

(0.075)  (0.077)  (0.052)  (0.064)

constant -1.303**%%  _3.287F**k (.83 7*F**  _1.348**
(0.442)  (0458)  (0.307)  (0.378)
N 1905 3001 2320 3361

Standard errors in parentheses
*p <0.10, ** p < 0.05, ¥** p < 0.01

Notes: log of (green or browns patents) on log of urban human capital density over the sub-periods
1990-2001 and 2002-1996. Models control for year and state fixed effects. Robust standard errors are

used. Weighting is done with log of urban population. The measure of innovation is winsorized at the
1% level.
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