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Abstract

This paper extends the de�nition of time series convergence beyond the conventional

parity condition by allowing for positive cointegration (β > 0, with β the cointegration

coe�cient) between pairs of unit roots. The paper also develops a novel one-sided

test of time series convergence and presents its asymptotic properties under the null

hypothesis of no convergence and the alternative hypothesis. The test is robust to

general forms of weak dependence in the transitory components and does not require

the estimation of the cointegration coe�cient. These features are illustrated in a

Monte-Carlo simulation exercise for a battery of ARMA(1,1) innovations of the unit

root processes. As a byproduct, we propose a methodology to detect convergence

clubs. This procedure is based on centrality measures of network dependence given

by the degree and betweenness. The empirical application analyzes regional data

on population and per-capita income at the NUTS-2 level from France, Italy and

Spain. Our results uncover the presence of di�erent convergence clubs for population

dynamics and convergence to a single regime for per-capita income.
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1 Introduction

One salient topic in the literature on economic growth and development, see Barro

(1991) and Mankiw, Romer, and Weil (1992) as seminal contributions, is the analysis of

economic convergence (Abramovitz 1986; Baumol 1986). This hypothesis suggests that

economies should converge to a single steady-state equilibrium. In practice, however, we

observe the occurrence of di�erent equilibria across countries with di�erent macroeconomic

conditions and historical backgrounds, leading to the presence of convergence clubs and

poverty traps (Azariadis and Drazen 1990; Durlauf and Johnson 1995; Galor 1996; Quah

1996a, 1996b).

Testing for the presence of economic convergence empirically requires a formal de�nition

that varies depending on whether the interest is on cross-sectional analysis or time series

studies. In this paper, we revisit the concept of time series convergence (Bernard and

Durlauf 1995, 1996; Durlauf, Romer, and Sims 1989; Pesaran 2007), which takes advantage

of the concept of long-run dependence and cointegration, see Granger (1981), Engle and

Granger (1987), Johansen (1988, 1991), and Johansen and Juselius (1990), as seminal

examples. According to this notion, two economies converge if their per-capita income move

together in the long run such that the di�erence is a stationary process. This de�nition of

convergence is appealing both from an economic and a statistical point of view because it

combines concepts of economic theory with well known statistical procedures. In fact, and

as acknowledged by Kong, Phillips, and Sul (2019), the concept of cointegration is closely

related to the concept of convergence.

A standard testing procedure consists of applying residual-based cointegration tests for

unit root processes. Prominent examples are Augmented Dickey-Fuller (ADF) and Phillips-

Perron (PP) tests, see Said and Dickey (1984) and Phillips and Perron (1988), respectively.

As a result, time series convergence tests su�er from the same problems of unit root tests

in �nite samples, namely, the existence of size distortions under several forms of serial

dependence. This has been documented in early studies by Schwert (1989), Ng and Perron

(2001) and Perron and Ng (1996). The related literature has developed modi�cations of

the original ADF and PP tests that, under di�erent assumptions, solve the size problem.

These methods involve, in general, complex corrections of the test statistic for removing
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the e�ect of serial dependence, the choice of suitable estimators of nuisance parameters

a�ecting the test distribution, or the application of modi�ed information criteria to select

the truncation lag in residual-based tests.

The �rst contribution of our study is to develop a test of time series convergence be-

tween pairs of unit roots that is based on the idea of cointegration. This de�nition extends

the standard notion of time series convergence by allowing for a cointegration relationship

between the variables (1,−β) that may be di�erent from the conventional (1,−1) combi-

nation postulated by Bernard and Durlauf (1996) and Pesaran (2007), among others. We

di�erentiate between positive (β > 0) and negative (β < 0) cointegration. Convergence

is characterized by the presence of positive cointegration such that both unit roots are

generated by a common unit root factor.

To test this form of time series convergence, we propose a hypothesis test similar to the

residual-based tests of cointegration extant in the literature. The null hypothesis is compos-

ite and given by one of the following two conditions: (i) the processes are two independent

unit roots or (ii) there is negative cointegration between the time series (β < 0). The alter-

native hypothesis is characterized by the presence of positive cointegration (β > 0). These

hypotheses are tested using a novel test statistic constructed as the Euclidean distance

between the standardized versions of the unit roots. Under the presence of convergence,

the Euclidean distance between both time series converges to zero in probability. The

absence of convergence is characterized by two possible scenarios. If the unit roots are

stochastically independent, the Euclidean distance between the standardized versions of

both processes converges to a limiting distribution that is free of nuisance parameters, and

critical values can be universally tabulated. The second scenario is characterized by two

unit root processes that are negatively cointegrated. In this case the Euclidean distance

converges to four in probability. In contrast to standard residual-based tests of cointegra-

tion, our test statistic does not require suitable modi�cations to account for the presence

of serial and mutual correlation between the innovations of the unit root processes.

The �nite-sample performance of the convergence test is analyzed in a Monte-Carlo

simulation exercise for unit root processes with di�erent degrees of persistence in the tran-

sitory components. The empirical size of the test is close to the nominal size at the 5%

signi�cance level for all data generating processes. The power of the test to reject the
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null hypothesis of no convergence is also very high across di�erent sample sizes, achieving

values close to one for T = 100. Our test is compared with standard ADF and PP tests

for di�erent speci�cations of ARMA(1,1) models. These simulation results illustrate the

typical size distortions characterizing the ADF and PP methods and o�er strong support

to our testing approach for the hypothesis of convergence as an alternative to standard

residual-based cointegration tests. It is also important to remark that testing for cointe-

gration is a necessary condition for the presence of convergence between time series but

not su�cient.

The second contribution of the study is to extend the analysis of time series convergence

to a system of n unit roots. The main purpose of the multivariate analysis is to detect

the existence of convergence clubs (see Quah (1997) and Quah (1996a, 1996b)). We de�ne

a convergence club as a group of time series with long-run dynamics driven by the same

non-stationary common factors and such that the common factors of di�erent clubs are

mutually independent. The novelty of our approach is to apply network measures of

centrality such as the degree of a node and its betweenness. A node is interpreted as a unit

of the set of n unit roots. Two nodes are related by an edge if the corresponding pair of

non-stationary time series converges. The betweenness statistic is particularly important

in this setting to assess the sensitivity of the formation of clubs to speci�c units. Nodes

with large betweenness belong to several clusters indicating spurious convergence results

between di�erent pairs of time series. We remove the spurious edges from the network

to reduce the betweenness. This strategy allows us to obtain clusters of time series that

are self contained with no spillovers to other clusters satisfying, in turn, our de�nition of

convergence club.

These methodologies are illustrated in an empirical application investigating the exis-

tence of economic and demographic regional convergence in France, Italy and Spain at the

NUTS-2 level. Our �exible characterization based on the concept of positive cointegration

uncovers more convergence relationships than conventional formulations of convergence

based on the parity between time series. More speci�cally, we �nd convergence clubs for

regional population that are not observed when testing for a one-to-one relationship.

The rest of the paper is organized as follows. Section 2 reviews the literature on economic

convergence and discusses di�erent measures of convergence and related hypothesis tests.
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Section 3 introduces our de�nition of pairwise convergence and convergence clubs. The

section also proposes a statistical test of convergence, and derives its asymptotic properties

under the null and alternative hypotheses. In Section 4, we carry out an exhaustive Monte-

Carlo simulation exercise. The critical values of the convergence test are tabulated and its

�nite-sample performance is studied both under the null and alternative hypotheses. The

performance of our test is also compared to that of standard residual-based tests. Section

5 contains an empirical application to the study of economic and demographic regional

convergence in selected European countries. Section 6 concludes. The mathematical proofs

can be found in the appendix.

2 A review of convergence tests of economic growth

The rise of economic growth theory in the 1980s and, especially, the 1990s led to the

formulation of two empirical questions: (i) what factors explain observed growth rate

di�erences across countries or regions?, and (ii) do di�erences between economies decrease

over time? (Durlauf, Johnson, and Temple 2005). The latter issue is labelled convergence,

and has several statistical notions, see Durlauf, Johnson, and Temple (2009). The �rst

of them, mainly related to neoclassical growth models, is known as the β−convergence

hypothesis and refers to the concept of catching-up. This notion is tested using regression

analysis and tries to disentangle whether initial levels of income per capita are inversely

related to subsequent growth.

A second notion is σ−convergence and refers to the decrease in the dispersion of income

per capita across economies over time1. Although initial studies focused on this evolution,

regression-based tests have also been proposed (Cannon and Duck 2000; Friedman 1992).

Nonetheless, they have been shown to be di�cult to interpret if the data generating process

is not invariant, and in the presence of unit roots (Bliss 1999). This connects with the time

series approach to convergence2, which is of a statistical nature and not directly related to

any particular growth theory. Therefore, this approach can be applied to other variables

1In fact, and as shown by Young, Higgins, and Levy (2008), β−convergence is a necessary but not a
su�cient condition for σ−convergence.

2Another alternative is the approach that consists of analyzing the income distribution and its dynamics;
see Quah (1993a, 1993b) and Bianchi (1997), among many others. The main techniques that are applied
with this aim are nonparametric and stochastic dominance methods, transition matrices, and mixture
models (Durlauf, Johnson, and Temple 2009).
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such as prices, wages or unemployment rates. Bernard and Durlauf (1996) introduces a

formal de�nition of time series convergence that is based on the limit of the expected

output gap. According to these authors, convergence takes place if the di�erence in per-

capita income between a pair of economies is a stationary stochastic process, property

that is tested using cointegration techniques. Bernard and Durlauf (1995, 1996) also show

that time series-based tests are associated with a weaker notion of convergence than cross-

sectional ones, in terms of the permanent or transitory character of contemporary output

di�erences. Cross-sectional tests are more appropriate for economies that are far from their

steady state. Silva Lopes (2016) shows that the power of time series tests depends, to a

great extent, on the speci�cation of the deterministic component, see also Carvalho and

Harvey (2005) and Harvey and Carvalho (2005).

Hobijn and Franses (2000) establish three alternative de�nitions of convergence in a

time series context and develop an algorithm to endogenously select convergence clubs.

Similarly, and in a panel data framework, Phillips and Sul (2007, 2009) propose an al-

gorithm based on a log-t regression for the study of relative σ−convergence. Under the

assumption of a common factor, this convergence notion requires the ratio of two time

series to tend to unity in the long run. In contrast to traditional time series tests, Phillips

and Sul (2007, 2009)'s method does not su�er from the small sample problems of unit

root and cointegration tests, and is appropriate under temporal transitional heterogeneity.

Kong, Phillips, and Sul (2019) introduce the notion of weak σ−convergence in order to

capture convergent behavior in panel data that does not involve stochastic or divergent

deterministic trends. Beylunio�glu, Yazgan, and Stengos (2020) develop a set of statistical

criteria for club formation combining unit root tests and graph theory concepts (cliques).

Pesaran (2007) extends the de�nition of convergence in Bernard and Durlauf (1996)

by introducing the concept of probabilistic convergence. This probabilistic version of out-

put convergence does not assume that the economies are identical, but the time series

should be cotrended and cointegrated with vector (1 − 1). To study this notion, Pe-

saran (2007) proposes a convergence test that considers all possible pairs of output gaps

across economies, not requiring to establish a reference unit. These results are exploited

to establish convergence clubs.
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A recent framework to characterize time series convergence is proposed by Garcia-

Hiernaux and Guerrero (2021). These authors consider convergence as steady-state or

catching-up, as well as both strong and weak versions, and model a wide range of transi-

tion paths. In a price context, these authors claim that two time series converge if they

are cointegrated with vector (1 − β). Nevertheless, they assume that β = 1 � i.e., goods

are homogeneous with a extremely large elasticity of substitution � in order to base their

methodology on the implementation of univariate unit root tests, rather than on coin-

tegration analysis. The following section extends this approach by proposing a test of

cointegration that requires the cointegration coe�cient to be positive.

3 A novel test of time series convergence

This section presents a novel test of convergence between pairs of unit roots that is

robust to the presence of weak dependence in the innovations of the unit root processes.

Another novel feature of the test is that it does not require estimation of the cointegration

coe�cients. Before introducing the test we motivate it and provide some background and

de�nitions.

3.1 Background

We consider n time series xt = (x1t, . . . , xnt)
′ and study pairwise convergence. A general

speci�cation of any pair of unit roots in the system is

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

xit = αxi + θifit + uit

fit = πif + fi,t−1 + vit,
(1)

where fit are the unit root processes generating the stochastic trend in the processes xit; uit

and vit are the corresponding innovations to each process that are assumed to be mutually

independent for all leads and lags. Under this assumption the innovations uit characterize

the transitory component of xit. The vector of innovations ut = (u1t, . . . , unt) exhibits weak

dependence and is de�ned as ut = C(L)εt, where C(z) =
∞
∑
j=0
zj with C(0) = In (the n × n

identity matrix); εt = (ε1t, . . . , εnt)
′ is an iid vector normally distributed with mean zero

and covariance matrix Ωε. Furthermore, we impose
∞
∑
j=1
j∣Cj ∣ < ∞ to limit the amount of

serial dependence in ut. The above process generates a deterministic trend such that each
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component of the vector of time series xt can be expressed as

xit = αxi + πit + θif
o
it + uit, (2)

where πi = πifθi and foit =
t

∑
s=1
vis is a random walk process without drift. In this setting,

convergence is de�ned as follows.

De�nition 1: The unit root processes xit and xjt converge if there exists a positive coe�-

cient βij such that xit − βijxjt is stationary.

Using this de�nition, we characterize convergence between a pair of unit roots (xit, xjt)

by the existence of a common factor fij,t = πij,f +fij,t−1+vij,t driving the deterministic and

stochastic trends of both processes. Then,

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

xit = αxi + πit + θif
o
ij,t + uit,

xjt = αxj + πjt + θjf
o
ij,t + ujt,

(3)

where πi = πij,fθi, πj = πij,fθj and foij,t =
t

∑
s=1
vij,s is a random walk without drift. The

properties of the innovation sequences are de�ned in model (1). The convergence hypothesis

entails the following relationship between the parameters: θi = βijθj and πi = βijπj , with

βij > 0.

3.2 Testing pairwise convergence

Let zij,t(β) = xit − βxjt. The hypothesis of pairwise convergence is represented as

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

H0 ∶ zij,t(β) ∼ I(1), for all β ∈ R OR zij,t(β) ∼ I(0), for some β ∈ R−,

HA ∶ zij,t(β) ∼ I(0), for some β ∈ R+.
(4)

In the same spirit of residual-based tests such as Dickey-Fuller and Engle-Granger proce-

dures, see also Pesaran (2007) in the context of time series convergence, the null hypothesis

corresponds to absence of convergence and the alternative hypothesis to the existence of

time series convergence.

This section proposes a statistical test of time series convergence based on the Euclidean

distance between the standardized versions of the unit root processes xit and xjt. The
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test is based on the recent contribution of Olmo (2022) that develops a simple test of

cointegration that accommodates weak dependence in the innovation sequences. In this

paper, we specialize this test and adapt it to the hypothesis of pairwise convergence between

two unit root processes. A major advantage of this test is that knowledge or estimation of

the cointegration coe�cient is not required. This is possible by the standardization of the

unit root processes xit and xjt prior to testing for cointegration.

Let xdrt be the detrended process of xrt de�ned as xdrt = xrt − αxr − πrt, for r = i, j, and

let x̃rt be its sample counterpart de�ned as x̃rt = xrt − xr − π̂r (t − T+1
2

), for r = i, j, with

xr the sample mean and π̂r the OLS estimator of πr obtained from the regression of xrt

on (1, t). Similarly, let σ̂2x̃r = 1
T

T

∑
t=1
x̃2rt be the sample variance such that the standardized

unit root process is yrt = x̃rt
σ̂x̃r

. The proposed test statistic for the hypothesis of pairwise

convergence is

D̂ij,T =
1

T

T

∑
t=1

(yit − yjt)
2 . (5)

Proposition 1. If the processes xit and xjt are de�ned as in (3) with βij = θi/θj > 0, then

D̂ij,T
p
→ 0 as T →∞.

The absence of convergence between the processes xit and xjt yields di�erent asymp-

totic results depending on the relationship between the unit roots. If these processes are

negatively cointegrated (βij < 0), we obtain the following result.

Corollary 1. If the processes xit and xjt are de�ned as in (3) with βij = θi/θj < 0, then

D̂ij,T
p
→ 4 as T →∞.

In contrast, if the time series xit and xjt are characterized by two independent unit root

processes foit and fojt as in (2), then the test statistic D̂ij,T has the following limiting

distribution.

Proposition 2. Let xrt = αxr + πrt + θrf
o
rt + urt for r = i, j, with f

o
it and f

o
jt two mutually

independent unit root processes. Let uit and ujt be the corresponding innovation sequences

exhibiting weak and mutual dependence as described in (2). Then,

D̂ij,T
d
→ 2 (1 +BπAπiAπj −BπZij) , (6)
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with

Zij =
∫
1
0 Wi(r)Wj(r)dr − ∫

1
0 Wi(r)dr ∫

1
0 Wj(τ)dτ

[∫
1
0 Wi(r)2dr − (∫

1
0 Wi(r)dr)

2
]
1/2

[∫
1
0 Wj(r)2dr − (∫

1
0 Wj(r)dr)

2
]
1/2 , (7)

Aπi =
√
12 ∫ 1

0 (r− 1
2
)Wi(r)dr

[∫ 1
0 Wi(r)2dr−(∫ 1

0 Wi(r)dr)
2
]
1/2 , Bπ = (1 −A2

πi)
−1/2(1 −A2

πj)
−1/2, and Wi(r) and Wj(r)

are two independent Brownian motions.

The asymptotic distribution in (6) does not depend on nuisance parameters such as

the long-run variance of the transitory components uit and ujt. These asymptotic results

enable a simple testing procedure for the hypothesis of pairwise convergence. Thus, there

is evidence to reject the hypotheses of (i) independent unit roots and (ii) negative cointe-

gration if D̂ij,T < cα, with cα the α−quantile of the asymptotic distribution (6), and α the

corresponding signi�cance level.

Critical values of the one-sided test of time series convergence are tabulated by sim-

ulation. These values are obtained by computing the test statistic D̂ij,T for B draws of

two independent unit root processes xit = xi,t−1 + vit, with vit ∼ WN(0,1). Importantly,

the test is robust to the presence of serial correlation in the innovations vit, thus, it is not

necessary to account for such dependence in the simulation of the critical values.

3.3 Network measures and convergence clubs

The seminal contribution of Pesaran (2007) to study time series convergence also discusses

multi-country convergence. This de�nition requires pairwise convergence across the n time

series in the system. The scope of this approach is limited in practice as it can e�ciently

handle only a small number of series simultaneously. To be able to analyze the convergence

properties of a large number of units, whilst at the same time avoiding the pitfalls that

surround the use of a given benchmark, Pesaran (2007) adopts a pairwise approach that

considers the unit root and trending properties of all n(n − 1)/2 possible combinations.

This section discusses an alternative de�nition of convergence clubs and proposes a

novel approach based on network statistics to detect these formations. We also assess

the sensitivity of the clusters to the in�uence of speci�c time series. More formally, a

convergence club is de�ned as a group of units with long-run dynamics driven by the same
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vector of common factors. Let xt = (x
(1)
t , . . . , x

(K)
t )′ with x(k)t = (x

(k)
1t , . . . , x

(k)
nkt

)′ a group

of nk series forming cluster k and such that
K

∑
k=1
nk = n. The time series in cluster k have

the following speci�cation:

x
(k)
t = α(k)

x + π(k)t + θ(k)fo(k)t + u
(k)
t , for k = 1, . . . ,K, (8)

with α(k)
x = (α

(k)
x1 , . . . , α

(k)
xnk

)′ and π(k) = (π
(k)
1 , . . . , π

(k)
nk

)′ the vectors of deterministic com-

ponents and θ(k) a 1 × nk vector of factor loadings associated to the scalar non-stationary

common factor fo(k)t . The common factors driving the long-run dynamics of di�erent clus-

ters are mutually independent such that any linear combination between them is a unit

root. The error term for each cluster is de�ned as u(k)t = (u
(k)
1t , . . . , u

(k)
nkt

)′ and may exhibit

weak dependence as de�ned in (2).

To identify the clusters of time series, we follow a procedure similar in spirit to the

method proposed in Pesaran (2007). We construct an n × n interaction matrix re�ecting

all the pairwise combinations between the time series. Let 1(D̂ij,T ) be an indicator function

that takes a value of one if the hypothesis of convergence is not rejected for (xit, xjt). This

is given by the condition D̂ij,T < cα. Otherwise, the indicator function takes a value of zero

in the entry (i, j) of the interaction matrix. The entries of the interaction matrix can be

interpreted as a network. Each time series in the vector xt is a node. Two time series share

an edge if their dynamics converge in the long run. The degree of a node is de�ned as the

number of connections with the rest of the network. More formally, let Zi =
n

∑
j=1
j≠i

1(D̂ij,T ).

In self-contained clusters without spillovers to other clusters, this statistic is the same for

all time series in the same cluster and such that Zi = nk −1. In this setting, the interaction

matrix accepts a representation into a K ×K block-diagonal matrix, with each block given

by an nk × nk submatrix of ones and comprised by all time series in the same cluster

(convergence club).

In practice, some time series are grouped into two or more di�erent clusters. This

fact contradicts the de�nition of convergence club in (8) that establishes a unique one-to-

one relationship between the K clusters of time series and the common factors fo(k)t for

k = 1, . . . ,K. This apparent contradiction is empirically possible due to the occurrence

of type I error of the test (5). This error is interpreted as not rejecting the hypothesis
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of convergence between two time series HA when these series are in fact not positively

cointegrated. This may be due to the presence of negative cointegration between xit and

xjt or simply to the absence of any long-run relationship between the variables exhibiting

unit root behavior. The presence of these in�uencing nodes linking di�erent clusters can be

detected in the interaction matrix as those entries with a value of one located outside the

block-diagonal matrices. The following matrices illustrate this for 8 time series grouped into

four clusters. The left matrix corresponds to a network with four self-contained groups. In

contrast, in the right matrix, clusters 1 and 2 given by (x1, x2) and (x3, x4), respectively,

are related through the edge between x1 and x4 in bold font. This entry suggests the

presence of convergence between the time series {x1, x3, x4}, which contradicts the fact

that the pairs (x1, x3) and (x2, x3) do not converge.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0 0 0 0 0

1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 1 0 0 0 0

1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

1 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The betweenness of a network is a useful empirical measure to detect the presence of

these in�uencing observations spuriously linking di�erent clusters. This network statistic

measures the proportion of shortest paths (fewest steps from i to j) containing a given

node h. To formalize this concept, let sh(i, j) denote the proportion of shortest paths

containing node h such that B(h) denotes the corresponding betweenness of that node.

More formally,

B(h) =
n

∑
i=1
i≠h

n

∑
j=1
j≠h,i

sh(i, j). (9)

This statistic measures how much in�uence a node has over connections between others.

In the above example the betweenness is close to zero for all the nodes in the left matrix.

In contrast, the betweenness of nodes 1 and 4, corresponding to time series x1 and x4, is
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greater than zero. This value of the betwenness statistic is due to the edge relating x1 and

x4. To correct for the spurious presence of time series in more than one convergence club a

possibility is to remove from the interaction matrix those edges outside the block-diagonal

matrices.

4 Monte-Carlo simulation

This section studies the �nite-sample properties of the convergence test developed above.

The test is characterized by the statistic D̂T and the critical values are obtained by simula-

tion of two independent unit root processes as discussed below. The aim of the simulation

exercise is to investigate the performance of the test under di�erent degrees of time series

persistence in the innovations of the unit root processes, and compare it against standard

unit root tests for the hypothesis of cointegration such as the Augmented Dickey-Fuller

(ADF) test, see Said and Dickey (1984), and the Phillips-Perron (PP) test in Phillips and

Perron (1988).

To tabulate the critical values of the convergence test, we consider the following data

generating process characterizing the null hypothesis. Let

xit = xi,t−1 + vit, with vit ∼ N(0,1), for i = 1,2,

with v1t and v2t mutually independent. To avoid the e�ect of the initial values of the

di�erent processes, we discard the �rst 500 observations from each of them. The critical

values are the empirical percentiles of the simulated distribution of the test statistic D̂T

de�ned in (5), computed from a sample size T = 5000 and B = 1000 iterations. The critical

values at 1%, 5% and 10% signi�cance level are 0.3944, 0.6498 and 0.9013, respectively.

We should note that these critical values are used under both iid and general forms of

weak dependence in the innovation vector ut in (1).

Table 1 reports the empirical size and power of the ADF and PP tests, both allowing for

two lags, and of D̂T . Under the null hypothesis (β = 0), there is no time series convergence

and x1t and x2t are two independent unit root processes. The data generating process
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(DGP) is

x1t = f
o
1t + u1t,

x2t = f
o
2t + u2t,

with foit = f
o
i,t−1 + vit, for i = 1,2, where vit ∼ iid N(0,1) are mutually independent, and u1t

and u2t are the innovations with the following ARMA(1,1) structure

uit = ρui,t−1 + εit + θεi,t−1,

for both sequences; ε1t, ε2t are two iid N(0,1) random variables and {ρ, θ} are the coef-

�cients characterizing both ARMA(1,1) processes. The alternative hypothesis of conver-

gence is represented by the processes

x1t = f
o
t + u1t,

x2t = βf
o
t + u2t,

with fot = f
o
t−1 + vt a unit root process without drift characterizing the common stochastic

trend driving the dynamics of both processes. Importantly, the cointegration coe�cient β

needs to be positive, otherwise, the two processes are cointegrated but do not converge.

We show below the power of the test under β < 0, which is close to zero, con�rming the

validity of the test statistic under this characterization of the null hypothesis.

We closely follow the simulation exercises in Perron and Ng (1996) and Ng and Perron

(2001), and consider a battery of ARMA(1,1) processes given by all possible combinations

of ρ = {−0.8,−0.5,0,0.5,0.8} and θ = {−0.8,−0.5,0,0.5,0.8}. These combinations include

the case of iid innovations and also strong persistence given by values of the parameters

close to the unit circle. As discussed by the above authors, it is well documented that both

ADF and PP tests su�er �nite-sample distortions for the moving-average polynomial with

a large negative root and also when the autoregressive root takes a large positive value.

The simulation exercise in this section shows that this problem is also present when testing

for time series convergence between two unit root processes using the ADF and PP tests,

but not with the test D̂T introduced above.
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Table 1: Empirical size of convergence tests for di�erent values of β under the null hypothesis
H0 at 5% signi�cance level.

ρ T ADF PP D̂T ADF PP D̂T ADF PP D̂T ADF PP D̂T ADF PP D̂T

θ = −0.8 θ = −0.5 θ = 0 θ = 0.5 θ = 0.8

β = 0

-0.8 50 0.02 0.90 0.01 0.04 0.88 0.01 0.04 0.74 0.03 0.07 0.45 0.05 0.05 0.28 0.06
-0.8 100 0.03 0.90 0.01 0.02 0.88 0.02 0.06 0.69 0.06 0.06 0.35 0.08 0.09 0.24 0.06
-0.8 500 0.05 0.87 0.04 0.02 0.83 0.05 0.05 0.59 0.06 0.07 0.28 0.08 0.07 0.20 0.09
-0.5 50 0.03 0.76 0.03 0.04 0.71 0.04 0.05 0.47 0.05 0.07 0.29 0.06 0.05 0.22 0.04
-0.5 100 0.04 0.75 0.04 0.05 0.63 0.06 0.06 0.44 0.07 0.07 0.23 0.07 0.08 0.24 0.08
-0.5 500 0.05 0.65 0.09 0.05 0.50 0.07 0.07 0.32 0.08 0.09 0.21 0.09 0.08 0.19 0.10
0.0 50 0.05 0.55 0.05 0.04 0.41 0.06 0.04 0.26 0.06 0.07 0.19 0.05 0.08 0.26 0.04
0.0 100 0.06 0.45 0.07 0.04 0.38 0.06 0.08 0.27 0.09 0.08 0.21 0.09 0.10 0.25 0.06
0.0 500 0.06 0.35 0.08 0.04 0.29 0.06 0.08 0.22 0.08 0.10 0.22 0.09 0.09 0.24 0.09
0.5 50 0.06 0.34 0.06 0.07 0.31 0.07 0.08 0.20 0.07 0.09 0.13 0.06 0.11 0.14 0.04
0.5 100 0.06 0.34 0.06 0.06 0.23 0.08 0.09 0.18 0.09 0.12 0.20 0.05 0.16 0.23 0.05
0.5 500 0.08 0.26 0.08 0.09 0.18 0.09 0.14 0.21 0.09 0.16 0.24 0.08 0.19 0.29 0.05
0.8 50 0.07 0.29 0.06 0.08 0.22 0.06 0.06 0.09 0.07 0.09 0.08 0.04 0.08 0.07 0.05
0.8 100 0.05 0.23 0.07 0.10 0.22 0.06 0.12 0.15 0.07 0.14 0.13 0.05 0.16 0.14 0.02
0.8 500 0.07 0.20 0.08 0.07 0.15 0.08 0.16 0.20 0.07 0.28 0.32 0.05 0.29 0.33 0.07

β = −1

-0.8 50 0.74 1.00 0.00 0.76 1.00 0.00 0.87 1.00 0.00 0.99 1.00 0.00 0.95 1.00 0.00
-0.8 100 0.88 1.00 0.00 0.91 1.00 0.00 0.99 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
-0.8 500 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
-0.5 50 0.92 1.00 0.00 0.96 1.00 0.00 0.97 1.00 0.00 0.96 1.00 0.00 0.86 1.00 0.00
-0.5 100 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
-0.5 500 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
0.0 50 1.00 1.00 0.00 1.00 1.00 0.00 0.97 1.00 0.00 0.90 1.00 0.00 0.73 1.00 0.00
0.0 100 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
0.0 500 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
0.5 50 1.00 1.00 0.00 0.97 1.00 0.00 0.69 0.99 0.00 0.49 0.77 0.00 0.41 0.71 0.00
0.5 100 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 0.99 1.00 0.00 0.94 1.00 0.00
0.5 500 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
0.8 50 0.96 1.00 0.00 0.46 0.99 0.00 0.23 0.40 0.00 0.20 0.14 0.00 0.10 0.12 0.00
0.8 100 1.00 1.00 0.00 0.97 1.00 0.00 0.71 0.90 0.00 0.56 0.64 0.00 0.41 0.60 0.00
0.8 500 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

β = −2

-0.8 50 0.96 1.00 0.00 0.95 1.00 0.00 0.99 1.00 0.00 0.98 1.00 0.00 0.97 1.00 0.00
-0.8 100 0.99 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
-0.8 500 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
-0.5 50 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 0.97 1.00 0.00 0.92 1.00 0.00
-0.5 100 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
-0.5 500 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
0.0 50 1.00 1.00 0.00 1.00 1.00 0.00 0.98 1.00 0.00 0.84 1.00 0.00 0.78 1.00 0.00
0.0 100 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
0.0 500 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
0.5 50 1.00 1.00 0.00 0.97 1.00 0.00 0.72 1.00 0.00 0.54 0.79 0.00 0.39 0.72 0.00
0.5 100 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 0.98 1.00 0.00 0.94 1.00 0.00
0.5 500 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
0.8 50 0.98 1.00 0.00 0.54 0.99 0.00 0.25 0.41 0.00 0.18 0.18 0.00 0.13 0.12 0.00
0.8 100 1.00 1.00 0.00 0.96 1.00 0.00 0.75 0.93 0.00 0.58 0.66 0.00 0.46 0.62 0.00
0.8 500 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

Table 1 reports the size of the ADF and PP tests applied to the residuals of the coin-

tegration equation between x1t and x2t. Both methodologies consider two lags and are

computed using Matlab routines. The null hypothesis is represented by two di�erent sce-

narios: i) β = 0, that corresponds to two independent unit root processes, and ii) β < 0,

that corresponds to a cointegration relationship between x1t and x2t given by a negative
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coe�cient. The top panel of Table 1 reports the empirical size of the tests for β = 0 and

all possible combinations of ARMA(1,1) processes under consideration. The results con-

�rm the strong size distortions of the PP test across values of the parameter space, and

smaller but still signi�cant distortions for the ADF test. This is particularly the case for

those combinations given by the joint condition ρ, θ > 0. In contrast, the columns for the

one-sided test D̂T report estimates of the nominal size α = 0.05 in the interval (0.03,0.09)

across models and sample sizes. These results show an adequate performance of the test

D̂T when the unit root processes are independent.

These empirical �ndings provide strong support to the approximation of the asymptotic

critical value at the 5% signi�cance level given by 0.6498, obtained by simulation of two

independent unit root processes. Related to this is the study of the performance of the

test when there is negative cointegration between x1t and x2t. Corollary 1 shows that, for

β < 0, the test statistic D̂T converges to 4 in probability as the sample size increases. The

large di�erence between the critical value 0.6498 and the limit of the test statistic for β < 0

that is equal to four implies a strong performance of the test in these cases. The middle

and bottom panels in Table 1 report the rejection probability of the di�erent tests for

β = −1 and β = −2. The columns corresponding to D̂T report values of zero, implying that

negative values of β are correctly classi�ed under the null hypothesis of no convergence.

In contrast, the ADF and PP tests obtain values close to one, implying the rejection of

the null hypothesis of no cointegration. In order for these tests to be meaningful in this

scenario, one needs to jointly assess the p-value of the ADF and PP tests along with the

sign of the cointegration coe�cient such that negative and statistically signi�cant values

of β can be identi�ed with the absence of time series convergence. Importantly, in contrast

to these methods, the test statistic D̂T does not require knowledge nor estimation of the

cointegration coe�cient β for testing the convergence hypothesis.

Table 2 reports the empirical power for two models that re�ect convergence between

the time series x1t and x2t. Both processes are positively cointegrated. The case β = 1 in

the top panel corresponds to the conventional hypothesis of convergence between two unit

root processes and is given by the condition x1t −x2t being stationary. The three methods

(ADF, PP and D̂T ) perform very satisfactorily under this scenario with the empirical

power increasing with the sample size. It is worth noting, though, that the power of the
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PP test is not size-adjusted so it may overestimate the true power of the test for rejecting

the null hypothesis under the presence of convergence between the variables. The bottom

panel reports the empirical power for β = 2. The results are similar to the empirical

power reported in the upper panel but the magnitude of the power is slightly higher as the

cointegration coe�cient increases.

Table 2: Empirical power of convergence tests at 5% signi�cance level.

ρ T ADF PP D̂T ADF PP D̂T ADF PP D̂T ADF PP D̂T ADF PP D̂T

θ = −0.8 θ = −0.5 θ = 0 θ = 0.5 θ = 0.8

β = 1

-0.8 50 0.73 1.00 0.21 0.75 1.00 0.32 0.89 1.00 0.59 0.96 1.00 0.86 0.95 1.00 0.91
-0.8 100 0.89 1.00 0.41 0.94 1.00 0.54 0.99 1.00 0.86 1.00 1.00 0.99 1.00 1.00 0.99
-0.8 500 1.00 1.00 0.95 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.5 50 0.95 1.00 0.53 0.95 1.00 0.64 0.98 1.00 0.87 0.96 1.00 0.93 0.90 1.00 0.89
-0.5 100 1.00 1.00 0.77 1.00 1.00 0.89 1.00 1.00 0.98 1.00 1.00 0.99 1.00 1.00 0.99
-0.5 500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.0 50 0.99 1.00 0.80 1.00 1.00 0.85 0.96 1.00 0.93 0.86 1.00 0.87 0.71 1.00 0.80
0.0 100 1.00 1.00 0.96 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 0.96
0.0 500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.5 50 1.00 1.00 0.90 0.95 1.00 0.92 0.70 0.99 0.84 0.56 0.78 0.69 0.38 0.68 0.50
0.5 100 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.98 0.98 1.00 0.90 0.95 1.00 0.78
0.5 500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.8 50 0.96 1.00 0.92 0.44 0.99 0.88 0.26 0.46 0.67 0.16 0.15 0.43 0.09 0.09 0.31
0.8 100 1.00 1.00 0.99 0.97 1.00 0.98 0.74 0.92 0.85 0.59 0.68 0.63 0.41 0.59 0.45
0.8 500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 0.96

β = 2

-0.8 50 0.93 1.00 0.37 0.96 1.00 0.51 0.98 1.00 0.80 0.99 1.00 0.97 0.96 1.00 0.99
-0.8 100 1.00 1.00 0.61 1.00 1.00 0.76 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00
-0.8 500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.5 50 0.99 1.00 0.73 1.00 1.00 0.83 1.00 1.00 0.96 0.97 1.00 0.99 0.90 1.00 0.98
-0.5 100 1.00 1.00 0.91 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
-0.5 500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.0 50 1.00 1.00 0.94 1.00 1.00 0.97 0.95 1.00 0.99 0.85 1.00 0.97 0.72 1.00 0.93
0.0 100 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
0.0 500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.5 50 1.00 1.00 0.97 0.98 1.00 0.99 0.73 0.99 0.96 0.55 0.77 0.88 0.40 0.68 0.76
0.5 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.98 0.95 1.00 0.93
0.5 500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.8 50 0.97 1.00 0.98 0.48 1.00 0.96 0.26 0.44 0.82 0.18 0.17 0.61 0.12 0.10 0.47
0.8 100 1.00 1.00 1.00 0.98 1.00 1.00 0.76 0.92 0.96 0.61 0.65 0.81 0.43 0.64 0.70
0.8 500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99

5 Empirical application

This section explores the application of our novel test to uncover the presence of con-

vergence clubs in economic (per-capita income) and demographic (population) variables.

With this aim, we have extracted data from Eurostat for the set of NUTS-2 regions com-

prising France, Italy and Spain over the period 1980 to 2021. These countries are divided

into a large number of NUTS-2 regions: France contains 27 regions, Italy is divided into

21 regions, and Spain into 19 regions. The regions are reported in Table 3.
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Table 3: NUTS-2 regions for France, Italy and Spain

France Italy Spain

1 Ile de France Piemonte Galicia
2 Centre - Val de Loire Valle d'Aosta/Vallée d'Aoste Principado de Asturias
3 Bourgogne Liguria Cantabria
4 Franche-Comté Lombardia PaÃs Vasco
5 Basse-Normandie Abruzzo Comunidad Foral de Navarra
6 Haute-Normandie Molise La Rioja
7 Nord-Pas de Calais Campania Aragón
8 Picardie Puglia Comunidad de Madrid
9 Alsace Basilicata Castilla y León
10 Champagne-Ardenne Calabria Castilla-la Mancha
11 Lorraine Sicilia Extremadura
12 Pays de la Loire Sardegna Cataluña
13 Bretagne Provincia Autonoma di Bolzano/Bozen Comunidad Valenciana
14 Aquitaine Provincia Autonoma di Trento Illes Balears
15 Limousin Veneto Andalucía
16 Poitou-Charentes Friuli-Venezia Giulia Región de Murcia
17 Languedoc-Roussillon Emilia-Romagna Ciudad Autónoma de Ceuta
18 Midi-Pyrénées Toscana Ciudad Autónoma de Melilla
19 Auvergne Umbria Islas Canarias
20 Rhone-Alpes Marche
21 Provence-Alpes-Cote d'Azur Lazio
22 Corse
23 Guadeloupe
24 Martinique
25 Guyane
26 La Réunion
27 Mayotte

For illustrative purposes, we report �rst the results of the conventional tests of pairwise

convergence proposed in the literature and based on the existence of parity between the

time series. These tests rely on the unit root hypothesis for the di�erence between time

series (xit − xjt = c + εij,t, with c a constant and εij,t an error term) and are usually

implemented through the ADF statistic. Figure 1 presents the case of Italy and Figure

2 describes the case of Spain. Top panels report the analysis of per-capita income and

bottom panels report the analysis of population. The construction of convergence clubs

is done as discussed above (see also Pesaran (2007)). For each variable and country, we

construct an n×n interaction matrix re�ecting all the pairwise combinations between per-

capita income or population, with n the number of NUTS-2 regions. The element (i, j) of

the interaction matrix takes a value of one if the stationarity condition for εij,t above is not

rejected using the ADF test. The interaction matrix is used to construct a graph re�ecting

all the combinations as edges of a network. The maps in these �gures represent with the

same color those regions that share edges, forming clusters. The analysis in Figures 1

and 2 suggests that the presence of conventional convergence in per-capita income and

18



population is very limited across regions for the two countries. Unreported results for the

case of France show similar �ndings, however, for this country, per-capita income does not

exhibit any cointegration relationship across NUTS-2 regions.

Figure 1: These panels present the NUTS-2 regions of Italy in several clusters characterized
by pairwise convergence tests given by the hypothesis xit = xjt, with i, j denoting di�erent
NUTS-2 regions. Top panels for per-capita income and bottom panels for population. Left
panel for the network representation of the interaction matrix re�ecting the pairwise rela-
tionships between the regions uncovered by the ADF test for the residuals of the regression
x1t−x2t = c+εt at 1% signi�cance level. Right panel for the representation of these relationships
as a map.
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Figure 2: These panels present the NUTS-2 regions of Spain in several clusters characterized
by pairwise convergence tests given by the hypothesis xit = xjt, with i, j denoting di�erent
NUTS-2 regions. Top panels for per-capita income and bottom panels for population. Left
panel for the network representation of the interaction matrix re�ecting the pairwise rela-
tionships between the regions uncovered by the ADF test for the residuals of the regression
x1t−x2t = c+εt at 1% signi�cance level. Right panel for the representation of these relationships
as a map.

In what follows, we repeat the exercise but allowing for a more �exible de�nition of

pairwise convergence given by the combination (1,−β), with β a positive coe�cient. The

testing procedure is as before: (i) compute the test statistic D̂ij,T for all pairwise com-

binations of regions in each country; (ii) construct the interaction matrix and network
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Figure 3: These panels present the NUTS-2 regions of France in several clusters characterized
by pairwise convergence tests given by the hypothesis xit = β0+βxjt, with i, j denoting di�erent
NUTS-2 regions. Left panels present the graphs with the network analysis. Each number
represents a NUTS2-region. Top left panel for per-capita income and bottom left panel for
population. The top right panel represents the OLS estimates of the cointegration vector for
per-capita income for each of the 27 regions. The bottom right panel reports a map of France
divided into NUTS2-regions. Each color represents a di�erent cluster as per the graph analysis
in the bottom left panel. The pairwise relationships between regions are obtained from testing
at 1% signi�cance level the convergence hypothesis in (4) using the test D̂T de�ned in (5).

graph, and; (iii) plot the map for each country at NUTS-2 level. We focus on the test of

convergence carried out at the 1% signi�cance level. A suitable critical value is 0.3944, as

calculated in the Monte-Carlo simulation section. Figure 3 presents the study of clusters
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for France. The graph on the top left panel contains the network analysis for per-capita

income. All of the regions are interconnected with a positive cointegration coe�cient. The

top right panel reports the value of such parameter for each of the 27 NUTS-2 regions.

Each line corresponds to a speci�c region and represents the OLS estimates of the cointe-

gration coe�cient with respect to the remaining regions. The estimates oscillate around a

value of one implying that the standard one-to-one relationship may be a bit strong, but

the values of per-capita income across regions are close to satisfying that condition. The

bottom panels correspond to the study of population. The bottom left panel displays the

network analysis explained above associated to the interaction matrix. The bottom right

panel presents the corresponding representation as a map. The population of most regions

converges as de�ned in this paper. However, in contrast to the study of per-capita income,

the cointegration coe�cient varies signi�cantly across pairs of regions. The convergence

test and the map imply that regional population grows at the same rate even if the levels

of population are quite di�erent. There are just a few regions with very di�erent dynam-

ics. These di�erences are studied in Figures 6 and 7 discussed below. Table 4 reports

the degree and betwenness statistics for the analysis of regional population in France. The

degree of each region is in most cases equal to 21 that corresponds to the number of regions

that belong to the same cluster. The degree for those regions not belonging to the major

convergence club is close to zero. In contrast, the betweenness is close to zero in all cases

implying that there are no in�uencing observations biasing the classi�cation of regions into

clusters.

Table 4: Summary statistics of network analysis for population (France).

NUTS-2 region 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Degree 21 21 19 21 21 20 21 21 21 0 0 21 21 21

Betweenness 0.2 0.2 0 0.2 0.2 0.1 0.2 0.2 0.2 0 0 0.2 0.2 0.2

NUTS-2 region 15 16 17 18 19 20 21 22 23 24 25 26 27
Degree 0 21 21 21 1 21 21 21 19 0 21 21 21

Betweenness 0 0.2 0.2 0.2 0 0.2 0.2 0.2 0 0 0.2 0.2 0.2
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Figure 4: These panels present the NUTS-2 regions of Italy in several clusters characterized
by pairwise convergence tests given by the hypothesis xit = β0+βxjt, with i, j denoting di�erent
NUTS-2 regions. Left panels present the graphs with the network analysis. Each number
represents a NUTS2-region. Top left panel for per-capita income; middle and bottom left
panels for population. The top right panel represents the OLS estimates of the cointegration
vector for per-capita income for each of the 21 regions. The middle and bottom right panels
present a map of Italy divided into NUTS2-regions. Each color represents a di�erent cluster
as per the graph analysis in the middle and bottom left panels, respectively. Middle panel
correspond to the analysis with all connections and bottom panels correspond to the analysis
removing the connections from Region 7 (Campania). The pairwise relationships between
regions are obtained from testing at 1% signi�cance level the convergence hypothesis in (4)
using the test D̂T de�ned in (5).
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Figure 4 presents the case of Italy. The top panel corresponds to the analysis of per-

capita income. The �ndings are very similar to those obtained for France. All regions

converge in per-capita income and the cointegration coe�cients oscillate around a value of

one, suggesting that convergence of per-capita income is close to the conventional one-to-

one relationship. Population dynamics are studied in the middle and bottom panels. The

middle left panel presents the network analysis of the interaction matrix and the middle

right panel the corresponding map. Italian NUTS-2 regions are divided into three clusters.

Most regions belong to the same cluster implying that the dynamics of population are

positively cointegrated for most regions. There are, however, a few southern regions that

reject the convergence hypothesis re�ecting a di�erent rate of population growth over the

last forty years. This is illustrated in more detail in Figure 6 below.

Table 5: Summary statistics of network analysis for population (Italy).

NUTS-2 region 1 2 3 4 5 6 7 8 9 10 11
Degree 1 10 2 10 10 2 3 2 3 3 1

Betweenness 0 18 0 0.8 18 0 33 24 0.5 0.5 0

NUTS-2 region 12 13 14 15 16 17 18 19 20 21
Degree 2 10 10 10 1 10 8 10 10 10

Betweenness 13 0.8 0.8 0.8 0 0.8 0 0.8 0.8 0.8

Table 6: Summary statistics of reduced network analysis for population (Italy).

NUTS-2region 1 2 3 4 5 6 7 8 9 10 11
Degree 1 10 2 10 10 2 2 1 3 3 1

Betweenness 0 4.5 0 0.4 4.5 0 0 0 0.5 0.5 0

NUTS-2region 12 13 14 15 16 17 18 19 20 21
Degree 2 10 10 10 1 10 8 10 10 10

Betweenness 1 0.4 0.4 0.4 0 0.4 0 0.4 0.4 0.4

To study further the formation of these convergence clubs, we also present in Tables

5 and 6 the degree and betweenness for all the NUTS-2 regions in Italy. Table 5 consid-

ers the unrestricted analysis with all regions in the interaction matrix. There are a few

regions reporting large values of the betweenness statistic. According to our de�nition

of convergence club in (8), these units spuriously link several clusters and can entail the

24



missclassi�cation of units into multiple clusters. This is the case for region 7 (Campa-

nia) that reports a betweenness of 33 and region 8 (Puglia) that reports a betweenness

of 24. Most of the remaining regions report values smaller than one. The bottom panels

of Figure 4 report the convergence analysis for Italy's regional population but removing

the connections from the interaction matrix departing from Campania. In this case, we

�nd four groups of regions converging at di�erent rates. This is also re�ected in Table 6

that considers the reduced network. The degree is very similar to the analysis in Table 5,

however, the betweenness has been drastically reduced for all regions.

Figure 5 presents the results for the analysis of regional convergence in Spain. The study

of per-capita income is not discussed further, as it is analogous to the cases of France and

Italy. The bottom panel presents the analysis of population. The Eastern regions exhibit

similar population growth rates and are characterized by positive pairwise cointegration

relationships. The Western and Northern regions show di�erent patterns. This is further

con�rmed by the dynamics of population in the bottom panels of Figure 6. Table 7 presents

the summary statistics for the degree and betwenness for the analysis of population. The

results are consistent with the �ndings in Figure 5 and clearly re�ect the presence of a few

di�erentiated convergence clubs.

Figure 6 reports the dynamics of standardized log population for representative groups

of regions. The top left panel analyzes the case of France. The top right panel presents the

dynamics of region 19 (Auvergne). Although both panels show an increasing trend in log

population over time, the dynamics of Auvergne present signi�cant discrepancies at the

beginning of the period with respect to the rest. The middle panels of Figure 6 consider

the case of Italy. The left panel presents the dynamics of standardized log population

for regions belonging to the largest cluster and the right panel presents the demographic

evolution for Liguria, Basilicata and Calabria (in green in the map of Italy). In contrast to

the dynamics of the remaining regions, the population of these three regions has steadily

declined over the evaluation period. The bottom panels consider the case of Spain. The

left panel reports the dynamics of standardized log population for the converging regions

whereas the right panel reports the dynamics of region 2 (Principado de Asturias), which

are similar to those observed for region 11 (Castilla y León). Interestingly, population in

the East of Spain has been steadily growing over the last forty years whereas regions in
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Figure 5: These panels present the NUTS-2 regions of Spain in several clusters characterized
by pairwise convergence tests given by the hypothesis xit = β0 + βxjt, with i, j denoting
di�erent NUTS-2 regions. Left panels present the graphs with the network analysis. Each
number represents a NUTS2-region. Top left panel for per-capita income and bottom left
panel for population. The top right panel represents the OLS estimates of the cointegration
vector for per-capita income for each of the 19 regions. The bottom right panel reports a
map of Spain divided into NUTS2-regions. Each color represents a di�erent cluster as per
the graph analysis in the bottom left panel. The pairwise relationships between regions are
obtained from testing at 1% signi�cance level the convergence hypothesis in (4) using the test
D̂m de�ned in (5).

the North West have witnessed ups and downs, with a sharp decline in population after

2008-2009.
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Table 7: Summary statistics of network analysis for population (Spain).

NUTS-2region 1 2 3 4 5 6 7 8 9 10
Degree 0 1 13 0 13 13 13 13 1 13

Betweenness 0 0 0 0 0 0 0 0 0 0

NUTS-2region 11 12 13 14 15 16 17 18 19
Degree 0 13 13 13 13 13 13 13 13

Betweenness 0 0 0 0 0 0 0 0 0

Figure 7 presents a similar analysis but focusing on standardized log per-capita in-

come. Top panel corresponds to France, middle panel is for Italy and bottom panel is for

Spain. The dynamics are very homogeneous across NUTS-2 regions for the three countries

con�rming graphically the regional convergence in per-capita income once we allow for

heterogeneity in the cointegration coe�cients.

6 Conclusion

This paper extends the standard de�nition of time series convergence in per-capita

income, given by the parity condition (1,−1), between pairs of unit root variables, by

allowing for a �exible cointegration relationship (1,−β), with β > 0. The paper also

introduces a novel test to statistically assess this hypothesis. The main novelty of our

method is that it is a test of positive cointegration against the composite null hypothesis

given by (i) two independent unit roots or (ii) negative cointegration between the variables.

Another important feature of the proposed test of convergence is that it is robust to

general forms of weak dependence in the transitory component of the unit root processes

and produces more accurate empirical size, in �nite samples, than standard residual-based

tests of cointegration. Its implementation does not require knowledge or estimation of the

cointegration coe�cient.

As a byproduct of the above analysis, we propose a methodology to detect convergence

clubs. This procedure is based on centrality measures of network dependence given by

the degree and betweenness. The degree indicates the number of individuals in a cluster

whereas the betweenness of a node indicates if such observation spuriously belongs to more

than one cluster. We propose a simple procedure to remove those spurious relationships
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Figure 6: Dynamics of standardized log population over 2002-2020 for representative regions
in each country. Left panels report the dynamics of regions with convergent patterns and right
panels the dynamics of regions that do not converge. Top panels study the case of France,
middle panels focus on Italy and bottom panels report the case of Spain. The top right panel
presents the dynamics of Region 19 (Auvergne). Middle right panel presents the dynamics of
population for Liguria, Basilicata and Calabria. Bottom right panel reports the dynamics of
Region 2 (Principado de Asturias).

and obtain self-contained clusters of regions. These clusters are interpreted as convergence

clubs.

The proposed methods are illustrated with European regional data on per-capita income

and population from France, Italy and Spain at the NUTS-2 level. The outputs of the
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Figure 7: Dynamics of standardized log per-capita income over 2002-2020 for representa-
tive groups of regions in each country. Top panel reports the case of France; middle panel
corresponds to Italy and bottom panel presents the case of Spain.

pairwise convergence tests are used as inputs of an interaction matrix that uncovers the

presence of clusters of regions exhibiting convergence. The empirical results show similar

�ndings across countries. Regional per-capita income converges for most regions. The

analysis of long-run population dynamics is more complex. Our analysis shows two types of

regional clusters. Population grows at similar rates in most regions for the three countries,

however, we have identi�ed regions with declining population patterns, in particular, for
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Italy and Spain. Both types of regions are clustered geographically suggesting that the

phenomenon of depopulation a�ects regions with speci�c geographical, environmental and

climatological characteristics.
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Mathematical Appendix

The following auxiliary lemmas are useful for proving the main results in the paper. Addi-

tional technical details for the general test of cointegration under the presence of di�erent

deterministic trends can be found in Olmo (2022).

Lemma A.1: Let xit = αxi + πit + θif
o
t + uit, with fot =

t

∑
s=1
vs and u1t as in (2). Then,

π̂i−πi = Op(T
−1/2), with π̂i the corresponding OLS estimator. The asymptotic distribution

is

√
T (π̂i − πi)

d
→ 12θiσv ∫

1

0
(r −

1

2
)Wi(r)dr, as T →∞, (10)

with σ2v the long-run variance of the innovation vt of the common factor fot and Wi(r) a

Brownian motion.

Proof. Let xit be de�ned as in process (1) for i = 1, . . . , n. The OLS estimator of the

drift component satis�es that

π̂i =

T

∑
t=1

(t − T+1
2

) (xit − xi)

T

∑
t=1

(t − T+1
2

)
2

= πi +

1
T 3

T

∑
t=1

(t − T+1
2

)x0it

1
T 3

T

∑
t=1

(t − T+1
2

)
2

= πi + 12
1

T 3

T

∑
t=1

(t −
T + 1

2
)x0it + op(1),

with x0it = θi(f
o
t − f

o) + uit − ui a demeaned unit root process without drift, given that

1
T 3

T

∑
t=1

(t − T+1
2

)
2
→ 1/12, as T → ∞. Note also that 1

T 5/2

T

∑
t=1
tfot

d
→ σv ∫

1
0 rWi(r)dr and

1
T 5/2

T

∑
t=1
tfo

d
→ 1

2σv ∫
1
0 Wi(r)dr. Furthermore, under weak dependence of uit, it also holds

that 1
T 3/2

T

∑
t=1
tuit = Op(1) and 1

T 1/2

T

∑
t=1
uit = Op(1). Then,

π̂i − πi =
12θi
T 3

T

∑
t=1

(t −
T + 1

2
) (fot − f

o) +
12

T 3

T

∑
t=1

(t −
T + 1

2
) (uit − ui) + op(1)

= Op(T
−1/2

) +Op(T
−3/2

) + op(1).
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It also follows that 1
T 5/2

T

∑
t=1
t(fot − f

o)
d
→ σv (∫

1
0 rWi(r)dr −

1
2 ∫

1
0 Wi(r)dr). Then,

√
T (π̂i − πi)

d
→ 12θiσv (∫

1

0
rWi(r)dr −

1

2
∫

1

0
Wi(r)dr) , (11)

as T →∞.

Lemma A.2: If the processes xit and xjt are cointegrated as in (3),

x̃it − βij x̃jt = Op(T
−3/2

) (t −
T + 1

2
) + ε0t, (12)

with βij = θi/θj ; x̃it and x̃jt are the sample detrended processes associated to the unit roots

xit and xjt, and ε0t = uit − ui − βij(ujt − uj).

Proof. Let x̃it = xit −xi − π̂i (t − T+1
2

) be the sample detrended process for i = 1, . . . , n. If

the processes xit and xjt are cointegrated as in (3), we have

xit − xi = πi (t −
T + 1

2
) + θi(f

o
t − f

o) + uit − ui,

such that the detrended processes satisfy that

x̃it = θi(f
o
t − f

o) − (π̂i − πi) (t −
T + 1

2
) + uit − ui. (13)

Thus,

x̃it − βij x̃jt = [βij(π̂j − πj) − (π̂i − πi)] (t −
T + 1

2
) + ε0t, (14)

with ε0t = uit − ui − βij(ujt − uj).

Using the algebra in the proof of Lemma A.1, it follows that π̂i−πi = θi

T

∑
t=1

(t−T+1
2

)(fot −fo)
T

∑
t=1

(t−T+1
2

)2
+

Op(T
−3/2). Then,

x̃it − βij x̃jt = Op(T
−3/2

) (t −
T + 1

2
) + ε0t. (15)

Lemma A.3: Let xit and xjt be as in (3). Then,
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σ̂x̃i
σ̂x̃j

= ∣βij ∣ +Op(T
−1/2

) as T →∞. (16)

Proof. The proof of this result builds on Lemma A.2. Thus, using expression (15), we

obtain

1

T

T

∑
t=1
x̃2it = β

2
ij

1

T

T

∑
t=1
x̃2jt +Op(T

−3
)

1

T

T

∑
t=1

(t −
T + 1

2
)

2

+Op(T
−3/2

)
1

T

T

∑
t=1
x̃jt (t −

T + 1

2
)

+ 2βij
1

T

T

∑
t=1
x̃jt(uit − ui) − 2β2ij

1

T

T

∑
t=1
x̃jt(ujt − uj) +

1

T

T

∑
t=1

(uit − ui)
2
+ β2ij

1

T

T

∑
t=1

(ujt − uj)
2

+Op(T
−3/2

)
1

T

T

∑
t=1

(uit − ui) (t −
T + 1

2
) +Op(T

−3/2
)

1

T

T

∑
t=1

(ujt − uj) (t −
T + 1

2
) .

The time series uit and ujt are two stationary processes exhibiting weak dependence as

described in (3). The following asymptotic conditions hold in this case: 1
T

T

∑
t=1

(t − T+1
2

)
2
=

O(T 2) and 1
T

T

∑
t=1

(uit−ui) (t −
T+1
2

) = Op(T
1/2). Furthermore, we also require the asymptotic

conditions 1
T

T

∑
t=1
x̃jt (t −

T+1
2

) = Op(T
3/2) and 1

T

T

∑
t=1
x̃jt(uit − ui) = Op(1). The validity of the

latter two conditions is shown below:

1

T

T

∑
t=1
x̃jt (t −

T + 1

2
) =

θj

T

T

∑
t=1

(fot − f
o) (t −

T + 1

2
) − (π̂j − πj)

1

T

T

∑
t=1

(t −
T + 1

2
)

2

(17)

+
1

T

T

∑
t=1

(ujt − uj) (t −
T + 1

2
)

= Op(T
3/2

) +Op(T
−1/2

)O(T 2
) +Op(T

1/2
) = Op(T

3/2
).

Similarly,

1

T

T

∑
t=1
x̃jt(ujt − uj) =

θj

T

T

∑
t=1

(fot − f
o)(ujt − uj) − (π̂j − πj)

1

T

T

∑
t=1

(ujt − uj) (t −
T + 1

2
) (18)

+
1

T

T

∑
t=1

(ujt − uj)
2
= Op(1) +Op(T

−1/2
)Op(T

1/2
) +Op(1) = Op(1),

if the long run variance of ujt is �nite as imposed in model (3). Thus,

1

T

T

∑
t=1
x̃2it = β

2
ij

1

T

T

∑
t=1
x̃2jt +Op(1), (19)
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given that 1
T

T

∑
t=1

(uit − ui)
2 = Op(1), under weak dependence.

We now prove that 1
T 2

T

∑
t=1
x̃2jt = Op(1). The dynamics of this process are derived in (13).

1

T 2

T

∑
t=1
x̃2jt =

θ2j

T 2

T

∑
t=1

(fot − f
o)

2
+ (π̂j − πj)

2 1

T 2

T

∑
t=1

(t −
T + 1

2
)

2

+
1

T 2

T

∑
t=1

(ujt − uj)
2

− 2(π̂j − πj)θj
1

T 2

T

∑
t=1

(fot − f
o) (t −

T + 1

2
) + 2θj

1

T 2

T

∑
t=1

(fot − f
o) (u1t − u1)

+
1

T 2

T

∑
t=1

(u1t − u1) (t −
T + 1

2
) .

Using the limiting results for unit root processes in Phillips (1986, 1987) and Lemma A.1,

we obtain

1

T 2

T

∑
t=1
x̃2jt = Op(1) +Op(T

−1
)O(T ) + op(1) +Op(T

−1/2
)Op(T

1/2
) + op(1) + op(1) = Op(1).

Dividing by σ̂2x̃j in expression (19), we obtain

σ̂2x̃i
σ̂2x̃j

= β2ij +Op(T
−1

) = β2ij + op(1) as T →∞. (20)

Proof of Proposition 1. Let yit =
x̃it
σ̂x̃i

and note from Lemma A.2 that x̃it = βij x̃jt +

Op(T
−3/2) (t − T+1

2
)+ε0t, with ε0t = uit−ui−βij(ujt−uj). Combining this result with (20),

we obtain

1

T

T

∑
t=1
yityjt = sgn(βij)

1

T

T

∑
t=1

x̃2jt

σ̂2x̃j
+Op(T

−3/2
)

1

T

T

∑
t=1

x̃jt

σ̂2x̃j
(t −

T + 1

2
) +

1

T

T

∑
t=1

x̃jt

σ̂2x̃j
ε0t

= sgn(βij) +Op(T
−3/2

)
1

T

T

∑
t=1

x̃jt

σ̂2x̃j
(t −

T + 1

2
) +Op(T

−1
)

= sgn(βij) +Op(T
−3/2

)Op(T
1/2

) +Op(T
−1

) = sgn(βij) +Op(T
−1

),

noting that 1
T 5/2

T

∑
t=1
x̃jt (t −

T+1
2

) = Op(1),
σ̂2
x̃j

T = Op(1) and 1
T

T

∑
t=1
x̃jt(ujt − uj) = Op(1) as

shown in the proof of Lemma A.3.
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Note also that the test statistic D̂ij,T can be expressed as 2(1 − 1
T

T

∑
t=1
yityjt) given that

1
T

T

∑
t=1
y2rt = 1, for r = i, j, due to the standardization. Therefore, D̂T = 2 (1 − sgn(βij) +Op(T

−1)),

implying that for βij > 0, sgn(βij) = 1 such that D̂T = Op(T
−1).

Proof of Corollary 1. The proof of this result is immediate from the proof of Proposition

1 by noting that sgn(βij) = −1 for βij < 0, such that D̂ij,T = 4 +Op(T
−1) as T →∞.

Proof of Proposition 2. Let the time series xit and xjt be generated from two inde-

pendent unit root processes without drift (foit and f
o
jt) such that xit = αxi + πit + θif

o
it + uit

and xjt = αxj + πjt + θjf
o
jt + ujt, with uit and ujt exhibiting weak dependence as described

in (3). The detrended versions of these processes are x̃it = x0it − (π̂i − πi) (t −
T+1
2

), with

x0it = θi(f
o
it−f

o
i )+uit−ui, and x̃jt = x

0
jt−(π̂j −πj) (t −

T+1
2

), with x0jt = θj(f
o
jt−f

o
j )+ujt−uj .

Then, the asymptotic distribution of the test statistic D̂ij,T is determined by the asymp-

totic distribution of 1
T

T

∑
t=1
yityjt, with yit =

x̃it
σ̂x̃i

. Thus,

1

T

T

∑
t=1
x̃itx̃jt =

1

T

T

∑
t=1
x0itx

0
jt − (π̂i − πi)

1

T

T

∑
t=1
x0jt (t −

T + 1

2
) − (π̂j − πj)

1

T

T

∑
t=1
x0it (t −

T + 1

2
)

+ (π̂i − πi)(π̂j − πj)
1

T

T

∑
t=1

(t −
T + 1

2
)

2

.

Note also from Lemma A.1 that π̂r − πr =
1
T

T

∑
t=1
x0rt(t−T+1

2
)

1
T

T

∑
t=1

(t−T+1
2

)2
, for r = i, j, such that

1

T

T

∑
t=1
x̃itx̃jt =

1

T

T

∑
t=1
x0itx

0
jt −

T 2

12
(π̂i − πi)(π̂j − πj) + op(1), (21)

given that 1
T 3

T

∑
t=1

(t − T+1
2

)
2
→ 1

12 as T →∞. Similarly, we study the sample variance terms.

Thus,

σ̂2x̃i =
1

T

T

∑
t=1
x̃2it =

1

T

T

∑
t=1

(x0it)
2
− (π̂i − πi)

2 1

T

T

∑
t=1

(t −
T + 1

2
)

2

,
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such that σ̂2x̃i = σ̂
2
x0i
−T

2

12 (π̂i−πi)
2+op(1). Then, simple algebra shows that σ̂x̃i = σ̂x0i (1 − Â2

πi
)
1/2
+

op(1), with Âπi =
1√
12

(

√
T (π̂i−πi)
σ̂
x0
i
/
√
T

), and σ̂x̃i σ̂x̃j = σ̂x0i σ̂x0j (1 − Â2
πi
)
1/2

(1 − Â2
πj)

1/2
+ op(1).

Using this algebra, the test statistic can be expressed as

1

T

T

∑
t=1
yityjt =

σ̂x0i
σ̂x0j

σ̂x̃i σ̂x̃j
(

1

T

T

∑
t=1
y0ity

0
jt − ÂπiÂπj) ,

with y0rt =
x0rt
σ̂
x0r

, for r = i, j, the standardized version of the unit root processes without drift

de�ned above.

Olmo (2022) shows that 1
T

T

∑
t=1
y01ty

0
2t can be interpreted as the OLS estimator of the

linear regression of y0it on y0jt, given that both unit root processes have unit variance,

by construction. Phillips (1986) derives the asymptotic distribution of this quantity in

spurious regressions between two independent unit root processes. Thus, we obtain

1

T

T

∑
t=1
y0ity

0
jt

d
→ Zij =

∫
1
0 Wi(r)Wj(r)dr − ∫

1
0 Wi(r)dr ∫

1
0 Wj(τ)dτ

[∫
1
0 Wi(r)2dr − (∫

1
0 Wi(r)dr)

2
]
1/2

[∫
1
0 Wj(r)2dr − (∫

1
0 Wj(r)dr)

2
]
1/2 .

Additionally,
σ̂
x0
i
σ̂
x0
j

σ̂x̃i σ̂x̃j
= (1 − Â2

πi)
−1/2(1 − Â2

πj)
−1/2 + op(1), with Âπi =

1√
12

(

√
T (π̂i−πi)
σ̂
x0
i
/
√
T

), such

that

Âπi
d
→ Aπi =

√
12 ∫

1
0 (r − 1

2
)Wi(r)dr

[∫
1
0 Wi(r)2dr − (∫

1
0 Wi(r)dr)

2
]
1/2 (22)

using the asymptotic result in Lemma A.1 and the results in Phillips (1986) that imply that

1
T σ̂

2
x0i

d
→ θ2i σ

2
v1 [∫

1
0 Wi(r)

2dr − (∫
1
0 Wi(r)dr)

2
]. Therefore, 1

T

T

∑
t=1
yityjt

d
→ Bπ(Zij − AπiAπj),

with Bπ = (1 −Aπi)
−1/2(1 −Aπj)

−1/2, and

D̂ij,T
d
→ 2 (1 +BπAπiAπj −BπZij) .
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