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Air pollution has important consequences on human health and life expectancy. There is strong

evidence that exposure to inhalable pollutants decreases circulatory performance and leads to higher

rates of illness, hospitalization, and infant mortality (Pope and Raizenne, 1995; Pope, 2006; Currie

et al., 2009). Estimating the effects of air quality on health parameters is fundamental to evaluat-

ing and designing environmental regulations. The United States Environmental Protection Agency

(EPA) estimates that the Clean Air Act Amendments from 1990 avoided 135 thousand hospital ad-

missions and 17 million lost workdays due to respiratory illness and other diseases related to air

pollution by limiting fine-particle and ozone pollution levels.(DeMocker, 2003). Following these lines,

The European Commission (COM) through the Zero Pollution Action Plan from 2021 intends to

improve air quality and reduce the number of premature deaths caused by air pollution by 55% un-

til 2030 (COM, 2021). However, these estimates are complicated to obtain by widely-documented

methodological issues, including omitted variable bias and measurement errors. Possible omitted

characteristics correlated with both air pollution and health (e.g., income and exercise) can bias the

estimates. Moreover, individuals can respond to ambient air pollution by taking actions to limit their

exposure. Heterogeneous avoidance preferences for clean air may self-select individuals into locations

based on these unobserved differences.

In this project, I aim to investigate the link between acute exposure to inhalable pollution and

health outcomes in Italy. I attempt to overcome the endogeneity and measurement error issues follow-

ing the identification strategy from Deryugina et al. (2019). Our approach exploits daily variations in

air pollution concentration caused by changes in daily wind direction. The main assumption is that

after controlling for fixed effects and climate covariates, wind direction should impact the evaluated

health outcomes only through air pollution. The key contribution of this study is the application of

the framework from Deryugina et al. (2019) to Italy, exploring its unique institutional and geograph-

ical characteristics. And, taking advantage of a higher density municipality and pollution measuring

stations datasets in comparison with United States data, used in the first place.

Recent literature applies similar quasi-experimental methods to estimate the effects of inhalable

pollution on health (Hanna et al., 2012; Schlenker and Walker, 2016; Knittel et al., 2016; Giaccherini

et al., 2021). The first study exploits the number of thermal inversions, a phenomenon known to
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trap air pollutants, to instrument for local average air quality. The second estimates the effect of

air pollution on health using variations in pollutants driven by upwind airport runway congestion.

The third investigates the role of local air pollution on infant mortality by comparing close-knit

neighbourhoods that differ in downwind exposure from highways. The last uses public transportation

strikes to instrument for local daily air quality in major cities. Our approach, by contrast, does not

require identifying specific events, pollution sources or climate phenomena. This characteristic allows

our study to easily encompass an extensive number of municipalities and a larger time frame.

The concentration of air pollutants at a given location corresponds to pollution produced locally

and pollution transported long distances through the wind. Long-distance air pollution has an impor-

tant effect on most region’s air quality (Feng et al., 2017). In this project’s empirical specification, we

exploit only the variation in pollution transported long distances following wind-induced patterns. In

addition, we use daily average wind direction to instrument daily average air pollution concentration

to avoid using variation due to prevailing wind patterns. The predictability of prevailing wind may

cause agents to endogenously sort themselves upwind or downwind from pollution sources, thereby

biasing the estimates. In that case, our approach is most useful to examine the impacts of acute

(short-run) exposure to air pollution.

Assuming the following short-term health production function:

H = H(P,A, S) (1)

where health is a function of the ambient pollution level P , pollution avoidance preferences or

avoidance behavior A and other behavioral, socio-economic factors affecting health S. The total

derivative of health with respect to pollution:

∂H

dP
=

∂H

∂P
+

∂H

∂A

∂A

∂P
(2)

On the right-hand side, the first term is the pure biological effect of pollution, and the second term

is the role of avoidance behaviour in limiting the impact of pollutants on health. As the avoidance

behaviour term is not observed, in our instrumental variable strategy, wind direction shifts pollution

levels but is unrelated to the individual’s avoidance behaviours and other unobserved determinants

of health, keeping them fixed.

The dataset’s time frame ranges from 2017 to 2023. I use the mortality rate at the daily munici-

pality level as the main health indicator with data from the Italian National Institute of Statistics. I

then separate the resident population into four groups: 65 years of age and older, 75 years of age and

older, 85 years of age and older and all ages. I obtain air pollution data from the Italian Regional

Agency for Environmental Prevention and Protection. The dataset comprehends hourly PM 2.5, PM

10 and Ozone measurements in microgram per cubic meter from 360 monitor stations distributed

through 221 municipalities in Italy. Climate data including wind direction, wind speed, temperature

and precipitation are from Copernicus ERA-5 reanalysis. This data source comprises climate esti-

mates on a latitude-longitude data points grid at 0.25 x 0.25 degrees resolution. The direction of

the wind is given in degrees from 0° (wind blowing from north), 90° (east), 180° (south) and 270°
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(west). In this examination, I divide the daily average wind direction angle into 90-degree bins. I

then aggregate monitor readings and data points to the daily municipality level by first matching

each monitor station to the closest data point and afterwards averaging all readings located within

the same municipality on a given day.

The specification for the first stage is:

Pcdmy =

50∑
g=1

2∑
b=0

βg
b 1[Gc = g]WINDDIR90b

cdmy + f(Tempcdmy + Preccdmy +WScdmy)

+

d+2∑
t=d+1

gt(1[Gc = g]WINDDIRcdmy)

+

d−2∑
t=d−1

gt(1[Gc = g]WINDDIRcdmy)

+αc + αmy + ϵcdmy

(3)

Where the dependent variable is the average pollutant concentration in municipality c, on day d,

month m and year y. We control for daily, municipality-level climate variables including temperature,

precipitation and wind speed. To account for the heterogeneous effect of wind on air quality across

geography we group pollution monitor stations into 50 clusters using the k-means algorithm 1. It is

then assumed that the monitor stations within the same group follow the same daily wind direction

and pollution concentration relationship. The parameters β are the coefficients of the 90-degree bins

for each of the 50 cluster groups. We add a set of leads and lags to account for the effects of wind

variation on the two following and previous days that could be correlated with variation measured on

the day d. I then include municipality (αc) fixed effects to account for any time-invariant determinants

of local average pollution levels that also covary with wind direction, and month-by-year (αmy) fixed

effects to control for the seasonal and trend components. Finally, ϵcdmy is the error term for each

municipality, day, month, year.

We account for short-run delayed effects of pollution exposure on mortality (e.g. being exposed to

acute pollution levels on the day d may cause death on the day d+2) building a 3-day sum mortality

rate. For each day d, I sum the number of deaths from days d, d + 1 and d + 2 per group on each

day-municipality and divide by the respective municipality’s group population on that given year.

As robustness checks, I also measure the delayed effects with 2-day and 5-day sum mortality rates.

The relationship between air pollution and the mortality rate is defined by the following second stage

regression equation:

Ycdmy = βP̂cdmy + f(Tempcdmy + Preccdmy +WScdmy)

+

d+2∑
t=d+1

[γtP̂cdmy + ft(Tempcdmy + Preccdmy +WScdmy)]

+

d−2∑
t=d−1

γtP̂cdmy + αc + αmy + ϵcdmy

(4)

120 and 80 cluster groups are also tested as robustness checks.
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Where the dependent variable is the 3-day sum mortality rate for one of the age groups in the

municipality c, on the day d, month m and year y. The parameter of interest is β, the coefficient of

daily average pollution concentration. We add a set of leads to account for the effects of pollution

variation on the two following days that could be correlated with variation measured on the day d

2. And, the set of lags guarantees that the estimator on the day d is not capturing effects from

past pollution. The αc and αmy terms are respectively the municipality and the month-by-year fixed

effects. Finally, ϵcdmy is the error term for each municipality, day, month, year.

This study, in the end, presents the application of a novel method in estimating the effects of

air pollution on health in the Italian case. The quasi-random characteristics of daily wind direction

variation allow the estimation of the impacts of spikes in pollution concentration on the short-run

mortality rate especially for the more vulnerable segments of the population.

References

E. C. COM. Pathway to a healthy planet for all—eu action plan:“towards zero pollution for air,

water and soil”, 2021.

J. Currie, M. Neidell, and J. F. Schmieder. Air pollution and infant health: Lessons from new jersey.

Journal of health economics, 28(3):688–703, 2009.

M. J. DeMocker. Benefits and costs of the clean air act 1990–2020: revised analytical plan for epa’s

second prospective analysis. United States Environmental Protection Agency (EPA), 2003.

T. Deryugina, G. Heutel, N. H. Miller, D. Molitor, and J. Reif. The mortality and medical costs

of air pollution: Evidence from changes in wind direction. American Economic Review, 109(12):

4178–4219, December 2019. doi: 10.1257/aer.20180279.

T. Feng et al. Transboundary health impacts of transported global air pollution and international

trade.”. Nature, 543(7647):705–209, 2017.

M. Giaccherini, J. Kopinska, and A. Palma. When particulate matter strikes cities: Social disparities

and health costs of air pollution. Journal of Health Economics, 78:102478, 2021. ISSN 0167-

6296. doi: https://doi.org/10.1016/j.jhealeco.2021.102478. URL https://www.sciencedirect.

com/science/article/pii/S0167629621000631.
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