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Abstract. Climate change adaptation policy is essential, and the adaptation plan should be 

different depends on the region due to regional heterogeneity issues of climate change. 

However, the impact of flood disaster is not comparable since the empirical definition of flood 

is different according to the research papers. Furthermore, the indirect effects of the flood are 

rarely investigated, even though flood event could damage regional infrastructure, causing 

indirect damage by inter-regional relationship. This paper tries to build an integrated direct 

and indirect flood risk model to understand the impact of the flood and their effects on the 

entire economic system. First, we approximate the precipitation distribution to define flood 

disaster, and the non-linearity effects of a flood are demonstrated in the flood damage function. 

Second, in the simulation study using the estimated coefficient in damage function, the 

Gyeonggi-do, which is one of the highly developed city is forecasted as the most vulnerable 

region. Lastly, IRIO analysis indicates that the variance of the economic recovery path tends 

to increase according to the regional resilience level. 
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1 Introduction 

Adapting to climate change become essential, given that the increase in the magnitude of 

climate change and expanding the regional scope of its impact are expected. In particular, as 

disasters such as extreme events with low occurrence probability but significant influence tend 

to arise more frequently, the importance of effective adaptation policy targeting extreme 

events has been well recognized. However, guaranteeing the efficiency of adaptation policy 

under a limitation of a regional resource is not an easy task. The exact impacts and economic 

effects of climate change should be investigated thoroughly and interpreted with numerical 

values before establishing an adaptation policy. In reality, the economic assessment of climate 

change has been focused on the direct effects; the indirect effects are hardly considered, even 

though the impact of the disaster could spread on a full range of society through inter-industry 

effects. In addition to this, the impact of climate change or extreme events has not been 

evaluated thoroughly. For instance, the definition of flood in research paper represents several 

different forms, and the utilized model cannot fully capture the characteristics of the flood. 

Under these circumstances, an integrated direct and indirect flood risk model needs to be 

evaluated to capture extreme events-related issues and estimate the entire economic effects of 

a flood as resources for policymakers to look up. 

The purpose of this paper is to evaluate the economic recovery path in the flooded region 

through inter-regional input-output model (IRIO Model) in terms of indirect effects of the 

flood events. The contents are as follows. First, we define flood as the random variable which 

belongs to 10% occurrence rate in the upper side of precipitation distribution (IPCC, 2007), 

which is approximated by a log-normal distribution. Along with the distributional assumption, 

the characteristics of flood such as rarity, severity, rapidity are reflected in the flood impact 

variable. Second, the flood damage function is estimated by using MVTOBIT Model 

(Multivariate Tobit Model) to reflect an error correlation issue between damage categories. 

Furthermore, the step function of flood impact variable reveals the non-linearity effects of 
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extreme events while regional adaptive capacity is controlled. Third, this paper utilizes a 

regional input-output analysis to quantify the indirect economic impact of flood under 

imbalances of post-catastrophe economies (Steenge and Bočkarjova, 2007; Hallegatte, 2008; 

2014, Koks et al., 2015; Shibusawa et al., 2017). In particular, the economic recovery path 

after a flood event is derived under the assumption of two bottleneck effects ((i) production 

activity interruption, (ii) transport network disruption). We simulate the most vulnerable city 

in the future (2020-2030), and evaluate time duration for recovering the regional economy 

entirely concerning recovery scenarios. Our efforts in estimating the indirect economic cost 

and dynamic aspects of economic recovery can be viewed as an empirical contribution of this 

paper. 

This paper utilizes an inter-regional input-output table of the year 2013 (the bank of Korea), 

the table includes 16 regions of Korea, and the entire industry is divided into 161 sub-

industries. The simulation results of damage function indicate that the most vulnerable city is 

found to be ‘Gyeonggi-do’ which is one of the highly developed cities in Korea. Moreover, 

the flooded region recovers its economy 16 periods after the extreme event under base 

recovery scenario. Furthermore, the recovery period has been expanded to 17 when the 

transport network bottleneck effects are assumed. 

The structure of this paper is as follows. The next section develops models and discusses 

the data used for empirical analysis. In section 3, we provide the estimate results of the damage 

function as well as the simulation results under RCP 8.5 scenario. Section 4 presents the 

economic recovery period of ‘Gyeonggi-do’ as a flooded region, and sensitivity analysis is 

performed with bottleneck effects. The final section concludes with the policy implications 

obtained from the estimated results. 
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2 Model and Data 

2.1 Flood Damage Function 

The flood damage data has been collected at the regional level (‘Sigun-gu’). The damage categories 

consist of death, flee, ship, agricultural land, crop, building, and infrastructure damage. Since our 

primary research purpose is investigating the indirect effects of flood due to production activity 

interruption and transport network malfunction; we exclude the death and flee damage. In addition, this 

paper estimates two damage functions based on two industries, (i) agricultural sector (ship, agricultural 

land, crop), (ii) manufacturing and construction sector (building and infrastructure). 

Lavell at al. (2012) defines climate change risk as to the function of hazard, exposure, sensitivity, 

and capacity. This paper follows the definition of Lavell at al. (2012), and constitute the function with 

independent variable related to the above mentioned factors. 

Below, equations (1) and (2) denote flood damage in agriculture, fait, and a flood damage in 

manufacturing and construction, fmit, in county i in year t, respectively. The flood variable indicates 

a hazard, and also represents the consecutive days of flood weighted with frequency. The number, 30, 

70, 110, 150 shows the threshold of the flood event, for instance, flood_30it is a number of consecutive 

days of the flood when accumulated rain per two days belongs to the first category (30mm≤ rain 

<70mm). Flood_70 it, Flood_110 it are defined the consecutive flood day when the total rainfalls into 

70mm to 110mm, 110mm to 150mm, respectively. Lastly, flood_150 it shows the most extreme flood 

case of rainfall is greater than 150mm. As a regional sensitivity, Impervious it is the sum of the 

impermeable area; the positive coefficient is expected to reflect the inundation tends to increase as an 

impermeable area increase. The local capacity variable to flood event is a levee_rpit which represents 

the percentage of levee area over the total area. It is one of hardware-improving adaptation measures 

for protecting the asset from the flood damage. The yearly trend term, trendit formed a quadratic function; 

𝜖it is an idiosyncratic error. 
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𝑓𝑎𝑖𝑡  = 𝛽0  + 𝛽1𝑓𝑙𝑜𝑜𝑑_30𝑖𝑡 + 𝛽2𝑓𝑙𝑜𝑜𝑑_70𝑖𝑡 + 𝛽3𝑓𝑙𝑜𝑜𝑑_110𝑖𝑡 + 𝛽4𝑓𝑙𝑜𝑜𝑑_150𝑖𝑡  + 

𝛽5𝑖𝑚𝑝𝑒𝑟𝑣𝑖𝑜𝑢𝑠𝑖𝑡  + 𝛽6𝑙𝑒𝑣𝑒𝑒_𝑟𝑝𝑖𝑡  + 𝛽7𝑡𝑟𝑒𝑛𝑑𝑖𝑡  + 𝛽8𝑡𝑟𝑒𝑛𝑑𝑖𝑡
2   + 𝜖𝑖𝑡             (1) 

where i(=1, 2, …, 230), t(=1, 2, …, 7). 

 

Below equation (2) is subtly different from equation (1) since it contains grdpit as another sensitivity 

variable. The flood damage in manufacturing and construction tends to increase when the urbanization 

proceeds and grdp (Gross Regional Domestic Product) variable is known to well represent the degree 

of urbanization. The uit is an idiosyncratic error.  

 

𝑓𝑚𝑖𝑡  = 𝛼0  + 𝛼1𝑓𝑙𝑜𝑜𝑑_30𝑖𝑡 + 𝛼2𝑓𝑙𝑜𝑜𝑑_70𝑖𝑡 + 𝛼3𝑓𝑙𝑜𝑜𝑑_110𝑖𝑡 + 𝛼4𝑓𝑙𝑜𝑜𝑑_150𝑖𝑡  + 

𝛼5𝑔𝑟𝑑𝑝𝑖𝑡  + 𝛼6𝑖𝑚𝑝𝑒𝑟𝑣𝑖𝑜𝑢𝑠𝑖𝑡 + 𝛼7𝑙𝑒𝑣𝑒𝑒_𝑟𝑝𝑖𝑡 + 𝛼8𝑡𝑟𝑒𝑛𝑑𝑖𝑡 + 𝛼9𝑡𝑟𝑒𝑛𝑑𝑖𝑡
2  + 𝑢𝑖𝑡   (2) 

 

However, OLS (Ordinary Least Squares) estimation is not recommended in this case, since the 

decent portion of data is left-censored at 0; the Tobit model could be useful to estimate (Greene, 2011). 

The rate of left-censored data is 57.14% for fait and 48.57% for fmit indicating that there is no flood 

at a specific location and time, or physical damage does not exceed specific thresholds. In 

addition to this, the error term in equation (1) and equation (2) shows contemporaneous 

correlation due to unobserved effects in each damage function. For instance, the geographical 

attribute or drainage conditions in the flooded agricultural region can cause flood damage on 

manufacturing facilities implying each flood damage category cannot be generated 

independently. 

This paper utilizes an MVTOBIT (Multivariate Tobit) to control the error correlation 

between equations and censored data characteristics (Maddala, 1983; Cornick et al., 1994; 

Huang et al., 1987; Huang, 1999; Trivedi and Zimmer, 2005; Anastasopoulos et al., 2012). 

Below vector notation is referenced from Anastasopoulos et al. (2012) and Maddala (1983). 
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The 𝑌𝑖ℎ
∗  (NT× 1) is a latent variable presenting flood damage (one hundred million won) 

in ith region in hth damage category. 𝑋𝑖ℎ (NT× K) is an independent variable for hth damage 

category which is collected in the regional unit. 𝛽ℎ  (K× 1)  is a coefficient vector, 𝜖𝑖ℎ 

(NT×1) is an error term vector. N is 230 regions (i=1,2, …, 230), T is 7 (the year 2010 – the 

year 2016), K is the number of independent variables, and h(=1, 2) is flood damage for 

agricultural industry and manufacturing industry, respectively. 

 

𝑌𝑖ℎ
∗  = 𝑋𝑖ℎ𝛽ℎ + 𝜖𝑖ℎ,  𝜖𝑖ℎ ~ N(0, 𝜎𝑖ℎ

2 )                 (3) 

 

The relationship between a latent variable (𝑌𝑖ℎ
∗ ) and observed variable (𝑌𝑖ℎ) is summarized 

in equation (4). 0 is the censored point. 

 

𝑌𝑖ℎ= max (𝑌𝑖ℎ
∗ , 0)                            (4) 

 

The damage function for agricultural sector (h=1) and manufacturing sector (h=2) 

constitute the equation system in equation (5). 

 

[
𝑌1

𝑌2
] = [

𝑋1 0
0 𝑋2

] [
𝛽1

𝛽2
] + [

𝜖1

𝜖2
] = Xβ + ϵ                (5) 

 

This paper deals two equations and assumes error terms (𝜖1,  𝜖2) follow the bivariate 

normal distribution, which is summarized in equation (6). In the covariance matrix of an error 

term, σ is a standard deviation and ρ is a coefficient of correlation which indicates flood 

damage in each category tends to vary in the same direction when the sign is positive and vice 

versa. 
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(
𝜖1

𝜖2
)~𝑁 ((

0
0
) , (

𝜎1
2 𝜌𝜎1𝜎2

𝜌𝜎1𝜎2 𝜎2
2 ))                    (6) 

 

LR (Likelihood Ratio) test indicates the coefficient of correlation (ρ) is 0.4064, which is 

statistically significant with 1% significance level. The statistically significant ρ 

recommends MVTOBIT estimation, and a positive sign indicates increased damage in 

agriculture sector means more damage in manufacturing sector. 

According to the Maddala (1983) the probability density function of error term (𝜖1, 𝜖2) can 

be described in equation (7). 

 

f(𝜖1, 𝜖2) =  (2𝜋)−1|Σ−1|
1

2exp {−
1

2
(𝑦∗ − 𝑋𝛽)′Σ−1(𝑦∗ − 𝑋𝛽)}        (7) 

 

Finally, the likelihood function of bivariate model is summarized in equation (8). 

 

L = ∏ 𝑓(𝜖1, 𝜖2)𝐴1
× ∏ ∫ 𝑓(𝜖1, 𝜖2)

−𝑥2𝛽2

−∞𝐴2
𝑑𝜖2 × ∏ ∫ 𝑓(𝜖1, 𝜖2)

−𝑥1𝛽1

−∞𝐴3
𝑑𝜖1 ×

∏ ∫ ∫ 𝑓(𝜖1, 𝜖2)
−𝑥1𝛽1

−∞

−𝑥2𝛽2

−∞𝐴4
𝑑𝜖1𝑑𝜖2                           (8) 

 

2.2 IRIO (Inter-Regional Input-Output) for Post-Catastrophe Economies 

This paper uses a non-competitive Inter-Regional Input-Output (IRIO) tables which allow imported 

goods. Table 1 shows the standard form of IRIO in Korea. We assume the toy model for intuitive 

understanding, the model has an economy consists of two regions, and each region has two industries. 

The total output always equals to the total outlay; the column-wise interpretation indicates the backward 

linkage, and the forward linkage can be understood in a row-wise manner. 

This paper hypothesizes that flood events interrupt the production activity, and decrease in 

intermediate input flow has a negative impact on downstream industries (Shibusawa et al., 2018). The 
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previous papers bring the concept of bottleneck effects to understand the production activity 

interruption by a flood. However, Shibusawa et al. (2018) expand the concept of bottleneck effects 

considering (i) production interruption and (ii) transport disruption by using IRIO. Moreover, the 

economic recovery path from the initial flood damage can be simulated in terms of regional recovery 

capacity. 

 

{Table 1. A Non-Competitive Inter-Regional Input-Output Table around here} 

 

The equation (9) shows the production interruption with survival rate (λ). The survival rate, {1 – 

(flood damage in value-added / total value-added)}, indicates decrease in production capacity due to 

damage on labor or capital. However, the input goods can be secured when the production activity 

stopped; this paper measures the survival rates only using value-added. Here, k (=r, s) is region, and j 

(= 1, 2) is industry, and t is a time period which 0 indicates normal time with no flood events. The Xj
k 

is the total outlay in region k in industry j. Vj
k is the value-added in region k in industry j. vj

k is the 

value-added coefficient, Vj
k / Xj

k. 

 

𝑋𝑗
𝑘(t) = 𝜆𝑗

𝑘(𝑡)𝑋𝑗
𝑘(0) =

𝜆𝑗
𝑘(𝑡)𝑉𝑗

𝑘(0)

𝑣𝑗
𝑘                     (9) 

Where, 0 ≤ λ𝑗
𝑘(𝑡) ≤ 1 

 

The other bottleneck effect is the transport network disruption, which can be defined by the change 

in output coefficient in the forward linkage model. The below equation (10) shows the output coefficient 

matrix at a normal time (t=0). The output coefficient matrix (Bd) for regional input goods (zd), 𝐵𝑑 = 

(�̂�)
−1

𝑧𝑑, is an inter-industry relationship between regional input goods and total output. Here, the hat 

(^) sign represents a diagonal matrix. 
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𝐵𝑑(0) =

[
 
 
 
𝑏11

𝑟𝑟(0) 𝑏12
𝑟𝑟(0) 𝑏11

𝑟𝑠(0) 𝑏12
𝑟𝑠(0)

𝑏21
𝑟𝑟(0) 𝑏22

𝑟𝑟(0) 𝑏21
𝑟𝑠(0) 𝑏22

𝑟𝑠(0)

𝑏11
𝑠𝑟(0)

𝑏21
𝑠𝑟(0)

𝑏12
𝑠𝑟(0)

𝑏22
𝑠𝑟(0)

𝑏11
𝑠𝑠(0)

𝑏21
𝑠𝑠(0)

𝑏12
𝑠𝑠(0)

𝑏22
𝑠𝑠(0)]

 
 
 

                (10) 

 

However, if the transportation system came to a halt, the intermediate input cannot meet intermediate 

demand in relation to a decrease in output coefficient. Here, 𝛽𝑖𝑗
𝑜𝑑 is the proportion of transport network 

disruption implying the rate of decline in output coefficient. 

 

𝐵𝑑(𝑡) =

[
 
 
 

𝑏11
𝑟𝑟(0) 𝑏12

𝑟𝑟(0) 𝛽11
𝑟𝑠(𝑡)𝑏11

𝑟𝑠(0) 𝛽12
𝑟𝑠(𝑡)𝑏12

𝑟𝑠(0)

𝑏21
𝑟𝑟(0) 𝑏22

𝑟𝑟(0) 𝛽21
𝑟𝑠(𝑡)𝑏21

𝑟𝑠(0) 𝛽22
𝑟𝑠(𝑡)𝑏22

𝑟𝑠(0)

𝛽11
𝑠𝑟(𝑡)𝑏11

𝑠𝑟(0)

𝛽21
𝑠𝑟(𝑡)𝑏21

𝑠𝑟(0)

𝛽12
𝑠𝑟(𝑡)𝑏12

𝑠𝑟(0)

𝛽22
𝑠𝑟(𝑡)𝑏22

𝑠𝑟(0)

𝑏11
𝑠𝑠(0)

𝑏21
𝑠𝑠(0)

𝑏12
𝑠𝑠(0)

𝑏22
𝑠𝑠(0) ]

 
 
 

     (11) 

Where, 0 ≤ 𝛽𝑖𝑗
𝑜𝑑(𝑡) ≤ 1 

 

Being consistent with above logit, total outlay after flood disaster in industry j in region r is 

summarized in equation (12). First term is the flow of input good within the region r; the survival rate 

at t period is applied, however output coefficient does not change since there is no transport disruption 

within region. Second term is a flow of the input goods between region r and region s; the transport 

network disruption is assumed as well as the survival rate. Third term is imported goods, and the import 

coefficient (𝑏𝑖𝑗
𝑚𝑟) can be decreased by the other transportation network disruption parameter (𝛽𝑖𝑗

𝑚𝑟). 

Last one is the amount of value added considering survival rate. 

 

𝑋𝑗
𝑟(𝑡 + 1) = ∑ [𝜆𝑖

𝑟(𝑡)𝑋𝑖
𝑟(0)]𝑏𝑖𝑗

𝑟𝑟(0)2
𝑖=1  + ∑ [𝜆𝑖

𝑠(𝑡)𝑋𝑖
𝑠(0)][𝛽𝑖𝑗

𝑠𝑟(𝑡)𝑏𝑖𝑗
𝑠𝑟(0)]2

𝑖=1  

       + ∑ 𝐼𝑀𝑖(0)[𝛽𝑖𝑗
𝑚𝑟(𝑡)𝑏𝑖𝑗

𝑚𝑟(0)]2
𝑖=1  + 𝜆𝑗

𝑟(𝑡)𝑉𝑗
𝑟(0)                 (12) 

 

On the other hand, the community has the resilience to recover flood damage by fortifying 

revitalization of production activity and transportation system. In equation (13), we assume that labor 
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and physical stock accumulates with the time given that the regional adaptive measure has been 

implemented in the flooded regions. The recovery rate, 𝛼, is assumed to be given exogenously; the 

survival rate tends to increase linearly with the lapse of time. 

 

𝜆𝑗
𝑘(𝑡 + 1) = 𝜆𝑗

𝑘(1) + 𝛼 ∙ 𝑡                       (13) 

 

In addition, the flooded region can expect supply support from the surrounding regions. Import in t 

period rise by increasing the trade volume. The parameter θ indicates an amount of the additional 

supply from the gap between the imported amount in normal time and t period. If we assume the 

parameter θ equals to one, then the flood damage is fully recovered. 

 

𝐼𝑀𝑗
𝑘(𝑡) = 𝐼𝑀𝑗

𝑘(0) + 𝜃 (𝑋𝑗
𝑘(0) − 𝑋𝑗

𝑘(𝑡))                  (14) 

Where, 0 ≤ 𝜃 ≤ 1 

 

Lastly, the restoration process in the transport network disruption can be specified in equation (15). 

The other recovery rate, 𝛾, is exogenously assumed, and the output coefficient increases linearly with 

the lapse of time. 

 

𝛽𝑖𝑗
𝑜𝑑(𝑡 + 1) = 𝛽𝑖𝑗

𝑜𝑑(1) + 𝛾 ∙ 𝑡                       (15) 

 

The below equation (16) is derived after applying recovery scenario in equations (13-15). The subtle 

change was made from equation (12); the increase in survival rates and output coefficient is found as 

well as the shortage of total production value is partially fulfilled with additional imports. 
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𝑋𝑗
𝑟(𝑡 + 1) = ∑ [(𝜆𝑖

𝑟(1) + 𝛼 ∙ (𝑡 − 1))𝑋𝑖
𝑟(0)]𝑏𝑖𝑗

𝑟𝑟(0)2
𝑖=1   

+ ∑ [(𝜆𝑖
𝑠(1) + 𝛼 ∙ (𝑡 − 1))𝑋𝑖

𝑠(0)][(𝛽𝑖𝑗
𝑠𝑟(1) + 𝛾 ∙ (𝑡 − 1))𝑏𝑖𝑗

𝑠𝑟(0)]2
𝑖=1  

+ ∑ 𝐼𝑀𝑖(0)[(𝛽𝑖𝑗
𝑚𝑟(1) + 𝛾 ∙ (𝑡 − 1))𝑏𝑖𝑗

𝑚𝑟(0)]2
𝑖=1  + 𝜃 (𝑋𝑗

𝑟(0) − 𝑋𝑗
𝑟(𝑡)) 

+ (𝜆𝑗
𝑟(1) + 𝛼 ∙ (𝑡 − 1))𝑉𝑗

𝑟(0)                               (16) 

 

2.3 Data for Empirical Analysis 

In this paper, we utilized several data sets to include the effects of flood disaster under climate 

change and its indirect effects on the entire economic system. First, we collected daily precipitation data 

from synoptic weather observation operated by KMA (Korea Meteorological Administration) for flood 

impact variable estimation. We match the centroid of each region (Sigun-gu) with the nearest synoptic 

weather observation; it gives every region a corresponding precipitation data even if some of the regions 

do not have synoptic weather observation system. Second, flood damage data is obtained from WAMIS 

(Water Resources Management Information System)１. Flood damage data is collected by regional level  

in a yearly unit, and more than 48% of the samples are censored at zero given that flood has low 

occurrence rate and some damage category have not been recorded even though flood outbreak. Third, 

we use region-related sensitivity and capacity variables from KOSIS (Korean Statistical Information 

Service). Fourth, an inter-regional input-output table of the year 2013 (the bank of Korea) is 

used. The Original version of the IRIO contains 161 sub-industries, however, for the 

convenience of interpretation and the linkage between estimated results of damage function 

and IRIO data, 161 sub-industries are aggregated with three industries as a simple economic 

model. Lastly, RCP 8.5 scenario data is utilized from KMA to simulate the expected flood 

damage in each industry and region. The data for flood damage function estimation is summarized 

in Table 2. 

                                           

１ http://www.wamis.go.kr 
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{Table 2. List of Variables for Flood Damage Function Estimation around here} 

 

3 The Flood Damage Function Estimation as a Direct Effects 

3.1 MVTOBIT Flood Damage Function 

In this paper, MVTOBIT is utilized to estimate flood damage on agriculture and 

manufacturing sector allowing the contemporaneous correlation across equations. The 

estimate results are described in Table 3. The hazard variables or flood impact variables are 

strongly significant with 1% p-value. According to IPCC (2007), the disaster is defined as two 

10% extremes of the distribution of weather variables. This paper approximates the 

precipitation (accumulated rain during consecutive two days) distribution as a log-normal 

distribution, and upper 10% starts with 30mm. However, the results indicate that economic 

damage tends to dramatically increase after 110mm. 

The non-linearity effects of flood showing extreme damage are demonstrated in 

manufacturing damage function. The gap among Flood-related variables are non-linearly 

increasing; the difference in coefficient between Flood_150 and Flood_110_150 is 13 times 

higher than the difference between Flood_30_70 and Flood_70_110. 

This paper uses two sensitivity variables for urbanization index. As we expect, the signs of 

the coefficient are all positive and statistically significant at 1% significance level except 

GRDP variable. Here, the GRDP is the only variable to distinguish two damage functions, 

since the estimate results of the MVTOBIT with identical regressors equal to the equation by 

equation estimation. We assume GRDP only affects damage in manufacturing industry given 

that the economic value of facilities increases in the manufacturing sector as GRDP increases. 

Lastly, the capacity variable shows strong negative sign to reduce the effects of the flood, 

implying the flood damage strictly depends on the regional capacity. However, in this paper, 

the focus is not on the adaptive capacity. The adaptation-related issues such as economic 

feasibility of adaptation policy or optimal adaptation level should be discussed in the further 
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studies. 

 

{Table 3. The Estimation Results of Flood Damage Function around here} 

 

Furthermore, this paper estimates the marginal effects given that the coefficients in Table 3 

indicate the linear increase of the latent variable for each unit increase in independent variable. 

The results show that one more flood day in Flood_30_70 causes economic damage to 

manufacturing as much as roughly 1 hundred million won. Its effect increase to 5.6 hundred 

million won when accumulated rain is greater than 150mm.   

 

{Table 4. The Marginal Effects of the Flood Damage Function around here} 

 

3.2 Simulation Analysis of Climate Change Effects on Flood Damage 

The simulation of flood damage under RCP 8.5 scenario is performed with the estimated 

coefficients in the damage function. We assume that only flood impact variables affect on 

agriculture and manufacturing sectors; the sensitivity and capacity-related variables are not 

considered. It makes the simulation results under or over-estimated, which depends on the 

regional adaptive level; on the other hand, we can intuitively understand the simulated results 

in terms of the total effects of the flood. 

Since the damage function is investigated by ‘Sigun-gu’ unit; we aggregate ‘Sigun-gu’ 

results into ‘Si-do’ scale. Moreover, we summed the forecasted flood damage during 10 years 

(year 2020 - year 2030), given that the flood is a probabilistic, which is rarely happened. 

The simulated results are summarized in Table 5. The damage in manufacturing is always 

more significant than agricultural damage implying that more than half of the flood damage is 

located in the city or industrial area. We forecast the Gyeonggi-do is the most vulnerable place 

for flood, and the expected total damage reaches 3,390 one million won. The safest place is 
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Jeju-do, which is an island indicating the flood risk tends to expand in the inland area in the 

near future. The total damage in Jeju-do is under 313 one million won, which accounts for 

approximately 9% of damage in Gyeonggi-do. This paper utilizes the forecasted damage in 

Gyeonggi-do to figure out the economic recovery path under RCP 8.5 scenario. 

 

{Table 5. The Simulation Results of the Flood Disaster around here} 

 

4 An Analysis on Economic Recovery Path after Flood Disaster 

This paper investigates the indirect effects of the flood disaster, given that the economy of 

the flooded region strongly depends on the surrounding region through input-output 

relationships. The economic damage in a flooded region affects the neighboring regions since 

the production activity in the neighboring region needs input goods from the flooded region. 

It indicates that production activity interruption caused by a flood can decrease the production 

of the entire economic system. Furthermore, the transportation system is not fully capable of 

functioning, implying the total production also decrease due to the limitation of the transaction 

amount. 

We set three scenarios according to the level of regional resilience, and the results of the 

economic recovery path for each scenario is summarized in Figure 1. The base scenario shows 

that the economy in Gyeonggi-do is fully recovered after 16 periods when only production 

activity interruption is assumed. However, the recovery is completed after 17 periods when 

transportation network bottleneck is additionally assumed. Moreover, the agricultural sector 

is the most slowly recovered industry due to high flood damage rate. The manufacturing sector 

recovers relatively faster (12 periods) with no transportation bottleneck, given that flood 

damage is just the small portion of the total production of manufacturing. However, the 

recovery period of the manufacturing sector is severely expanded (17 periods) when the 

transportation network bottleneck is assumed. In particular, the transportation network 
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bottleneck also affects service sector even though no flood damage is found in the service 

sector. 

The effects of transportation bottleneck are sustained in other scenarios; however, 

according to the level of regional resilience, the recovery period can be shortened or further 

expanded. In the optimistic scenario, the economic recovery is completed after 6 periods under 

no transport bottleneck. However, in the pessimistic scenario, Gyeonggi-do is never recovered 

within 20 periods due to a decrease in recovery rate, supply support from surrounding regions, 

and more severe transport bottleneck effects. 

 

{Figure 1. The Economic Recovery Path across Recovery Scenarios around here} 

 

5 Summary and Concluding Remarks 

This paper tries to understand the impact of a flood disaster and investigate their economic 

effects with direct and indirect aspects. The comprehensive procedure to evaluate the 

mechanism of climate change effect on our economy in a standard form is well known to be 

essential to establish effective adaptive policy. Being consistent with the above statement, our 

effort to build a comprehensive evaluating procedure can be viewed as a contribution. 

In the estimation of damage function, the economic damage in the manufacturing sector is 

estimated with great importance, and the non-linearity effects of a flood can be demonstrated. 

In this paper, accumulated rain, which is more than 110mm induce economic damage 

dramatically. 

In addition, we found the regional resilience level, which is able to recover the regional 

economy to normal time. In the base scenario, the economy in Gyeonggi-do is fully recovered 

after 16 periods with no transportation bottleneck. However, the recovery time tends to be 

delayed when we additionally consider transportation bottleneck effects (17 periods). It 

implies that transportation capacity has a critical role in revitalizing the regional economy, 
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given that the enhancement of the inter-regional relationship is the key to survive. Furthermore, 

the variance of the recovery period tends to increase according to the regional resilience level, 

reflecting the effort to build regional resilience is compulsory in terms of adaptation. 

However, this paper does not consider the economic feasibility of adaptation measure such 

as the regional capacity variable, levee_rp, even though the indirect effects of the regional 

resilience is quantified. In particular, the estimation of the economic feasibility of adaptation 

measure could provide more useful information for policymakers, since economic resilience 

is more like a concept. We leave these research subjects as a further study. 
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Table 1. A Non-Competitive Inter-Regional Input-Output Table 

 

Intermediate Demand Final Demand 

Total 

Output 
Region r Region s Domestic Demand 

Export 

Sector 1 Sector 2 Sector 1 Sector 2 Region r Region s 

Region r 

1 𝑍11
𝑟𝑟  𝑍12

𝑟𝑟  𝑍11
𝑟𝑠 𝑍12

𝑟𝑠 𝐹1
𝑟𝑟 𝐹1

𝑟𝑠 𝐸𝑋1
𝑟 𝑋1

𝑟 

2 𝑍21
𝑟𝑟  𝑍22

𝑟𝑟  𝑍21
𝑟𝑠  𝑍22

𝑟𝑠  𝐹2
𝑟𝑟 𝐹2

𝑟𝑠 𝐸𝑋2
𝑟 𝑋2

𝑟 

Region s 

1 𝑍11
𝑠𝑟  𝑍12

𝑠𝑟  𝑍11
𝑠𝑠  𝑍12

𝑠𝑠  𝐹1
𝑠𝑟 𝐹1

𝑠𝑠 𝐸𝑋1
𝑠 𝑋1

𝑠 

2 𝑍21
𝑠𝑟  𝑍22

𝑠𝑟  𝑍21
𝑠𝑠  𝑍22

𝑠𝑠  𝐹2
𝑠𝑟 𝐹2

𝑠𝑠 𝐸𝑋2
𝑠 𝑋2

𝑠 

Import 

1 𝑍11
𝑚𝑟 𝑍12

𝑚𝑟 𝑍11
𝑚𝑠 𝑍12

𝑚𝑠 𝐹1
𝑚𝑟 𝐹1

𝑚𝑠    

2 𝑍21
𝑚𝑟 𝑍22

𝑚𝑟 𝑍21
𝑚𝑠 𝑍22

𝑚𝑠 𝐹2
𝑚𝑟 𝐹2

𝑚𝑠    

Value Added 𝑉1
𝑟 𝑉2

𝑟 𝑉1
𝑠 𝑉2

𝑠     

Total Outlay 𝑋1
𝑟 𝑋2

𝑟 𝑋1
𝑠 𝑋2

𝑠     

 

 

Table 2. List of Variables for Flood Damage Function 

Variable Content 
Sample 

Size 
Mean 

Standard 

Deviation 
Range 

Dep

ende
nt 

Vari

able 

AgriA) 
Flood damage in agriculture 

(one hundred million won) 
1,610 3.73 19.79 [0, 378] 

Bu_Inf A) 

Flood damage in 

manufacturing and 

construction (one hundred 
million won) 

1,610 13.55 49.06 [0, 617.33] 

Haz
ard 

Flood_30_70B) 

A consecutive days of flood 

weighted with frequency 

(30mm≤rain<70mm) 

1,610 5.3 3.64 [0.06, 22] 

Flood_70_110B) 

A consecutive days of flood 
weighted with frequency 

(70mm≤rain<110mm) 

1,610 1.68 2.02 [0, 12] 

Flood_110_150B) 

A consecutive days of flood 

weighted with frequency  

(110mm≤rain<150mm) 

1,610 0.61 0.98 [0, 6.4] 

Flood_150B) 

A consecutive days of flood 

weighted with frequency  

(150mm≤rain) 

1,610 0.5 0.88 [0, 5.6] 

Sens

itivit

y 

GrdpC) 
Gross Regional Domestic 

Product (million won) 
1,596 6,315,728 7,973,092 

[211,695, 
60,000,000] 

ImperviousC) 
A sum of impermeable area 

(m2) 
1,610 29,300,000 19,400,000 

[0, 
122,000,000] 

Cap
acity 

Levee_rpC) 
A percentage of levee area 

over the total area (%)  
1,610 0.27 0.29 [0, 2.11] 

Note: A) is flood damage data (WAMIS, Water Resources Management Information System), B) is daily weather data from synoptic weather observation 

(Korea Meteorological Administration), C) a region-related sensitivity and capacity data (KOSIS, Korean Statistical Information Service). 
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Table 3. The Estimation Results of Flood Damage Function 

Variable Agricultural Damage 
Manufacturing and 

Construction Damage 

Hazard 

Flood_30_70 1.4764244***(0.3038744) 3.1528233***(0.6192397) 

Flood_70_110 1.4070621***(0.4587791) 3.8444450***(1.4428574) 

Flood_110_150 5.9020248***(1.4391442) 9.3903191***(2.3493142) 

Flood_150 5.4136501***(1.8188002) 18.8338092***(2.7929135) 

Sensitivity 

Grdp - 0.0000004*(0.0000002) 

Impervious 0.0000005***(0.0000001) 0.0000006***(0.0000001) 

Capacity Levee_rp -10.5899042***(3.1121165) -19.7933425***(5.7585075) 

Trend -5.7393382***(1.9568824) -6.5679527(4.1930951) 

Trend Squared 0.5827653**(0.2418445) 0.6203089(0.5602066) 

Constant -33.0705743***(5.8097245) -60.4488858***(11.4433570) 

 

 

Table 4. The Marginal Effects of the Flood Damage Function 

Variable Agricultural Damage 
Manufacturing and 

Construction Damage 

Hazard 

Flood_30_70 0.3817064 0.9446867 

Flood_70_110 0.363774 1.151919 

Flood_110_150 1.525877 2.81364 

Flood_150 1.399615 5.643212 

Sensitivity 

Grdp - 0.000000124 

Impervious 0.000000118 0.000000166 

Capacity Levee_rp -2.737854 -5.930718 

Trend -1.483817 -1.967969 

Trend Squared 0.1506649 0.1858644 

Constant -8.549881 -18.11242 
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Table 5. The Simulation Results of the Flood Disaster 

Unit : one million won 

Region 
Agricultural 

Damage 

Manufacturing and 

Construction Damage 
Total Damage 

Gyeonggi-do 935 2,456 3,390 

Jeollanam-do 885 2,288 3,173 

Gyeongsangnam-do 830 2,145 2,975 

Seoul 705 1,872 2,577 

Gyeongsangbuk-do 675 1,749 2,423 

Gangwon-do 624 1,652 2,276 

Busan 559 1,448 2,008 

Jeollabuk-do 529 1,354 1,883 

Chungcheongnam-do 383 1,033 1,417 

Chungcheongbuk-do 365 946 1,311 

Incheon 239 632 870 

Gwangju 240 620 861 

Daegu 232 607 839 

Ulsan 198 506 704 

Daejeon 158 397 556 

Jeju-do 87 226 313 

Note: This paper rounds off the numbers to the first decimal place. 

 

Figure 1. The Economic Recovery Path across Recovery Scenarios 

Base Scenario 

𝛼1=0.004, 𝛼2=0.00015, θ=0.1, β=1, γ=0 𝛼1=0.004, 𝛼2=0.00015, θ=0.1, β=0.7, γ=0.02 
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Optimistic Scenario 

𝛼1=0.008, 𝛼2=0.00035, θ=0.3, β=1, γ=0 𝛼1=0.008, 𝛼2=0.00035, θ=0.3, β=0.7, γ=0.03 

  

Pessimistic Scenario 

𝛼1=0.002, 𝛼2=0.000075, θ=0.05, β=1, γ=0 𝛼1=0.002, 𝛼2=0.000075, θ=0.05, β=0.7, γ=0.01 

  

 

 

 

 

 

 


