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Abstract

This paper considers an economy where agents mobility is driven by differential utilities

over space, production and consumption show spatial spillovers, and there exist exogenous

and endogenous amenities. The spatial dynamics of population is derived as the mean-

field limit of a system of interacting agents as the number of agents becomes infinite.

Numerical experiments show that the model can reproduce several stylized effects, as the

emergence of cities with different size and shape; the importance of history, with small

perturbations in the initial population distribution leading to substantial differences in the

long-run dynamics; the phenomenon of metastability, where a long period of stability in

the spatial distribution is followed by a sharp transition to a new (meta) stable equilibrium;

and, finally, a non-linear out-of-equilibrium dynamics, with regions with a first phase of

increasing, followed by a phase of decreasing, population.

JEL Classification Numbers: C23, R12, R15

Keywords: spatial agglomeration, spatial spillovers, Aggregation-Diffusion Equations, metasta-
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1 Introduction

This paper proposed a microfoundation of the spatial dynamics of population based on the idea

that individual mobility is driven by differential utilities over space, there exists spatial spillovers

in production and consumption, and the space is not uniform but characterized by exogenous

and endogenous amenities, i.e. potential markets/economic potentials, infrastructures, facilities

mainly determined by population density.

The model is defined in the continuous space, that is the full plane where points are identified

by longitude and latitude, and in continuous time. The partial differential equation driving the

spatial dynamics of population is derived as the mean-field limit of a system of discrete interact-

ing agents as the number of agents becomes large, belongs to the class of Aggregation-Diffusion

Equations (ADEs), which over the past 20 years have been employed in several biological appli-

cations and stimulated many mathematical works (see Carrillo et al., 2019 for a review). The

competing effect of aggregation and diffusion leads to several interesting properties, such as

metastability, symmetrization, or, in certain cases, non-uniqueness in the equilibrium solutions

(Carrillo et al., 2019).

We conduct numerical experiments for investigating the properties of the model. In partic-

ular, we focus on: i) the emergence of cities with different size and shape, i.e. the Zipf’s law;

ii) the importance of history, i.e. when small perturbations in the initial distribution result in

strong difference in the long.run dynamics; iii) the phenomenon of metastability, i.e. long peri-

ods of stability in the spatial distribution, followed by sharp a transition to a new (meta) stable

equilibrium; and, finally, iv) the nonlinear out-of-equilibrium dynamics, i.e. the spatial income

distribution show regions with a first phase of increasing, followed by a phase of decreasing,

population.

Krugman (1994) represents one of the pioneering contribution to the study of the observed

complex landscapes in the spatial distribution of population and economic activities. Durlauf

(1997) contains several key contributions in this respect, among which the one by Steven Durlauf

on the social spatial interactions and by Paul Krugman on the self-organization of economies

in the space. Durlauf (1994) investigates the importance of local spillovers for the emergence of

spatial inequality, while Durlauf et al. (2005) reviews the efforts to introduce complex systems

methods into economics and the understanding of empirical phenomena.
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Another important strand of literature is related to cities formation (spatial agglomeration),

which points out to the spatial externalities in production, in particular on the labor productiv-

ity (Glaeser and Mare, 2001) and on the spatial externalities deriving by urban density which “

spreads knowledge, which either makes workers more skilled or entrepreneurs more productive”

(Glaeser and Resseger, 2010). Davis and Weinstein (2002) test three alternative theories on the

determinants of density of economic activity, while Duranton and Puga (2020) discuss benefits

and costs of urban density. A general equilibrium spatial model with no dynamics, but very

rich for the presence of spatial externalities, trade and labor mobility is presented by Allen and

Arkolakis (2014) Arbia (2001) models the geography of economic activities on a continuous

space.

Sznitman (1991) is the pioneering contribution on the microfoundations of aggregation-

diffusion model, while Morale et al. (2005) contains a microfoundation of the model of aggre-

gation. Anton Bovier (2015) deeply discuss the concept of metastability and its application.

Carrillo et al. (2019) contains a review of aggregation-diffusion models. Finally, Mocenni et al.

(2010) present a model in spirit very similar to ours, which displays Touring patterns over

space.

The contributions of the paper are several. First, it provides a sound microfoundation to

some observed geographical patterns of interest, which include the agglomeration of population

over time, i.e. the emergence of cities, and their distribution over space (Zipf’s law); the evo-

lution over space and time of wage inequality, i.e. the geographical pattern of wage inequality.

Second, it individuates as a possible source of spatial agglomeration the non-market interac-

tions derived by spatial externalities in production, i.e. stock of local knowledge, local good and

labour markets, in a framework where agents can freely move across locations. It also points out

to potential sources of spatial agglomeration related to the evolution of endogenous amenities,

i.e. local specific factors changing over time as responding to the evolution of local population

density, i.e. infrastructures, schools, universities, facilities. Finally, it introduces in the analysis

non-homogeneous spaces for the presence of mountains, rivers, coasts, roads, etc., which deeply

affect the observed spatial distribution of population. The analysis also highlights the impor-

tance of considering the presence of metastable equilibria in the spatial general equilibrium

literature, travelling wave equilibria (KPP) and out-of-equilibrium dynamics as opposed to the
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search for a balanced path equilibrium and/or steady state equilibrium.

The paper is organized as follows. Section 2 reports the spatial pattern of population in

some European countries; Section 3 includes the description of the model; Section 4 contains

the numerical explorations of the model; and Section 5 concludes. Appendix gathers technical

details and proofs of analysis.

2 Spatial pattern of population in European countries

To make explicit the aim of our analysis consider the evidence reported in Figure 1, which

reports the spatial distribution of the intensity of nightlights for three of the main European

countries.1

Figures/mapFR-eps-converted-to.pdfFigures/mapDE-eps-converted-to.pdfFigures/mapIT-eps-converted-to.pdf

Figure 1: The maps of nightlights in 2021 for France, Germany and Italy (from left to the
right) based on cells of about 500m x 500m. Source: VIIRS 2.1 database.

Taken the intensity of nightlights as proxy for the local population (Michalopoulos and

Papaioannou, 2018), there exists a clear pattern of spatial aggregation of population, which

reflects the localization of the main cities of countries. However, the patterns are very het-

erogeneous across the three countries: France, with a substantial homogeneity of its territory,

presents an extreme degree of spatial aggregation around Paris and only few other clusters.

On the contrary, Germany, also with a territory not presenting particular geographical barri-

ers, displays a less concentrated distribution, with the presence of several agglomerations of

medium size uniformly distributed over the country. Finally, Italy, with a very heterogeneous

territory, show a concentration of population in the costasl areas and in the Pianura Padana. In

the latter, we observe that some cities of medium size are located along the ancient Roman Via
1Nightlights are taken from VIIRS 2.1 database (https://eogdata.mines.edu/products/vnl/), which pro-

vides the average intensity of nightlight for cells of 500 x 500 meters.
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Emilia, a strait road that, starting from Rimini, runs along the Appennini mountains to arrive

at Piacenza. Several cities along this road were founded by Romans more than two millenni-

ums ago (e.g. Rimini, Boulogne, Modena, Reggio Emilia, Parma, Piacenza). Several medium

Italian cities have experimented in the last 30 years a strong reduction in their population size

in favour of some bigger cities also in presence of increasing total population.

3 The model

This section is organized as follows. Section 3.1 illustrates the microfoundations of agents’

movement driven by spatial differential utilities; Section 3.2 explains how to allow for an in-

creases in the number of agents over time; Section 3.3 specifies as the local wage is determined;

Section provides a detailed explanation of how local exogenous and endogenous amenities are

modelled; finally, Section 3.5 reports the main theoretical result of the paper, i.e. the proof that

the spatial dynamics of population can be expressed by a partial differential equation belonging

to the class of Aggregation-Diffusion Equations.

3.1 The microfoundations of agents’ movements

We assume that space and time are continuous variable, with z ∈ Ω ⊆ R2, and Ω is assumed

to be open and with boundary of class C1. Moreover, there exists also an initial non trivial

distribution of technology, labour and of other exogenous variables across different locations (e.g.

physical capital). At aggregate level no stochastic behaviour is present but microfoundation is

crucially based on the presence of a stochastic component.

We focus on the case where the place of residence is also the place of work of agents, i.e.

set aside the issue of commuting and agents are participating in local labour markets. We also

neglect the accumulation and the spatial reallocation of physical capital, which would require

to consider local good markets and trade costs.

Assume that at time t = 0 the number of agent is N and that the aggregate stock of labour

in the economy is equal to one, i.e. each agent has an endowment of labour of 1/N . Let X i,N
t

be the agent i’s position in the domain Ω at each time t; agent i is moving over space driven
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by its local utility, i.e. its movements can be described by:

dX i,N
t = γ∇xu

i
(
XN
t , t
) (
X i,N
t

)
dt, (1)

where XN
t is the vector of positions of all agents, γ > 0 is a parameter measuring the inverse

moving costs agent i faces in moving toward positions where its utility ui
(
XN
t , t
)
is higher.

Agent i’s utility is a function of its position, X i,N
t , of the positions of all N agents XN

t ,

and of time t, i.e. agents’ utility can be affected by time varying exogenous factors, as, e.g.,

technological progress. ∇xu
i is the gradient operator, i.e., being in a two-dimensional space,

∇xu
i ≡ (∂x1ui, ∂x2u

i) (x1 and x2 are the two directions). It indicates the direction of movement

which agent i should follow for increasing its utility, given its position X i,N
t and the position of

all N agents XN
t , if in the neighbouring locations of X i,N

t agent i could get a higher utility.

Figure 2 reports an example of the dynamics over space of agent i, when the different circles

represent some iso-utility loci (indifference curves) given the spatial distribution of agentsXN
t ,

the black arrow the gradient ∇xu
i
(
XN
t

) (
t,X i,N

t

)
(according to the direction of gradient in

X i,N
t the agent’s utility in X i,N

t is slightly above 1 and below 2), and the blue arrow the agent

i’s movement in period [t, t+dt], i.e. γ∇xu
i
(
XN
t

) (
t,X i,N

t

)
. In the panel on the right of Figure

2 the trajectory of agent i is calculated assuming that all the other agents are not moving, i.e.

the field of utility is not evolving over time.

Figures/movementAgent-eps-converted-to.pdfFigures/movementAgent_II-eps-converted-to.pdf

Figure 2: The dynamics of space (x1,x2) of the position of agent i according to Eq. (1) with
reported also the position of other agents in the plane.
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Eq. (1) represents the minimal setup for agents which are pursuing a higher utility moving

over space but subject to movement costs (frictions) and are not coordinating their movement

choices taking XN
t as given. Howitt (2006), LeBaron and Tesfatsion (2008), Colander et al.

(2008) and Aoki and Yoshikawa (2011) provide a deep discussion of the implications of this

approach in macroeconomics, which is labelled agent-based model and it is a complement/alter-

native approach to the framework with optimizing forward-looking (in the sense of space and

time) agents, as in Allen and Arkolakis (2014) and Rossi-Hansberg (2019).

Panel on the right of Figure 2 highlights the local perspective of our agents, in the sense that

they are choosing the local optimal direction and not the most efficient one to reach the bliss

point in the field of utility. In Appendix A we show that this can be approximatively optimal

when the field of utility depends on the agents’ position, which is evolving over time and the

time that elapses between two consecutive decisions is approximately zero; while in Appendix

B we discuss as Eq. 1 can be also view as a Nash equilibrium of agents maximizing step by

step in discrete time. In both case γ is the inverse of the costs of movement.

According to Eq. (1) at time t agent i is not moving when its utility in the neighbour of

its position X i,N is equal to its actual position, i.e. ∇xu
i
(
XN
t

) (
t,X i,N

t

)
= 0. The equilib-

rium is therefore defined as the condition when ∇xu
i
(
XN
t

) (
t,X i,N

t

)
= 0 ∀i, which admits

the possibility of i) Pareto dominated equilibria because of the lack of agents’ coordination

(Howitt, 2006) and ii) equilibria characterized by complex geographical landscape (Krugman,

1994). Also important, this framework can produce non-linear out-of-equilibrium dynamics as

shown in Krugman (1994). All these features find empirical support and represent one of the

most important value added of this approach. We will show below that another advantage

is the flexibility in taking into account in the analysis of some key features of the geography

of population, as the presence of positive spatial spillovers in production (spatial increasing

returns) and consumption (endogenous amenities), together with (exogenous amenities) and a

non-uniform space (natural barriers).
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3.1.1 Local utility function

In an economy without accumulation of physical capital, i.e. no savings, the level of consump-

tion is by definition equal to the level of agents’ income; hence:

c
(
XN
t , t
) (
X i,N
t

)
=
wN
(
XN
t , t
) (
X i,N
t

)
P (XN

t , t)
(
X i,N
t

) = wR
(
XN
t , t
) (
X i,N
t

)
, (2)

where c
(
XN
t , t
) (
X i,N
t

)
is the agent i’s consumption, w

(
XN
t , t
) (
X i,N
t

)
its nominal wage and

P
(
XN
t , t
) (
X i,N
t

)
the level of prices of the position of residence of agent i. All variables are

defined with respect the whole distribution of agents in the space, i.e. XN
t , and evaluated in

the position of agent i, X i,N
t , at time t. In our simplified setting both nominal wages and prices

depends on the local conditions of production, which will be specified below. In an economy

where place of residence and place of work are different agent’s wage would depend on the

place of work, while price on the place of residence (typically the price of land/houses or the

level of rents). Moreover, agents’ utility also depends on the amenities specific to the position

of residence; in particular, these amenities can be exogenous, such as weather conditions, or

endogenous, such as the presence of facilities, schools, hospitals, pollution, traffic congestion

etc. , which are dependent of local production and population density.

The utility follows the Random Utility Model framework (Train (2009)), i.e.

ui
(
XN
t , t
)

(x) := wN
(
XN
t , t
)

(x) + AEN
(
XN
t , t
)

(x) + AES (t, x) + σx · dB
i
t

dt
, (3)

where utility is linear in consumption, includes two additional terms for endogenous and exoge-

nous amenities, AEN
(
XN
t , t
) (
X i,N
t

)
and AES

(
t,X i,N

t

)
respectively. The random component

σx · dBi
t/dt reflects the idiosyncratic preferences of agent i for the position x. It is the scalar

product between the position x and dBi
t/dt, which represents the instantaneous variation of a

stochastic process with Gaussian independent increments over disjoint time intervals (Brownian

motion). The position x is inserted as a multiplicative factor to make the random component of

the utility have a variance that depends on the distance between two locations. The parameter

σ is a scale factor for the standard deviation of the random component.
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From Eqq. (1) and (3) we get:

dX i,N
t = γ

[
∇xw

R
(
XN
t , t
) (
X i,N
t

)
+∇xAEN

(
XN
t , t
) (
X i,N
t

)
+∇xAES

(
t,X i,N

t

)]
dt+ γσdBi

t,

(4)

where (Bi
t)i=1,...,N are independent Brownian motions. Eq. (4) shows that agent i is moving

toward nearby positions where wages and amenities are higher, plus a random component with

not systematic preference for specific positions.

3.2 The increase in the number of agents

Let NN
t be the number of agents that are present at time t, with NN

0 = N , that is at time t = 0

N agents are present. We allow that the aggregate stock of labour is increasing over time with

the total number of agents NN
t , i.e. at period t the aggregate stock of labour is NN

t /N ≥ 1.

Assume that in each position there exists a birth rate n (t, x) ≥ 0 specific of position x at time

t; a possible death rate has a similar characteristic and it is omitted in the analysis. New

agents are introduced by means of a Poisson process with a time-space non-homogeneous birth

rate n
(
t,X i,N

t

)
for agent i at period t, where the first jump of the process corresponds to the

duplication of agent i. The offspring is created in the same position of its "mother", but with

an independent noise.

Figures/movementAgent_III-eps-converted-to.pdf

Figure 3: The path of duplication for agent i and its offspring in the space Ω.
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Figure 3 reports an example of two duplications for the offspring of agent i. The time span

between two duplications are denoted by τ i for the first duplication of agent i, by τ i,2 for the

second duplication of agent i, and so on. In Figure 3 three new agents are generated in a period

of length max{τ i + τ i,2, τ i + τN+1}. The length in space that separates two consecutive dupli-

cations cannot be easily mapped into the time that between the two duplications, depending

on the speed of motion of agent i and the local birth rate of the positions visited by agent i.

For the sake of simplicity we don’t consider the presence of an exogenous death rate, which

however can be treated within the same framework; hence, in presence of a local mortality rate,

n (t, x) should be meant as the local population growth rate.

3.3 The determination of local wage

Production at position x at period t in an economy with N agents, yN(t, x), is defined by:

yN(t, x) = ANl (t, x)lN(t, x)β (5)

with β ∈ (0, 1), where ANl (t, z) is a local-specific technological progress affecting the marginal

productivity of labour, and lN(t, x) is the stock of labour available at position x at period t.

Therefore, wage is given by:

wN(t, x) = ANl (t, x)lN(t, x)β−1. (6)

A technical difficulty arising in our framework, where space is continuous and the number of

agents is finite, is that the participation of each agent to local labour markets, i.e. the stock of

labour available at position x at period t, is modelled as the sum of differential contributions

of all the agents. In particular, the individual contributions are decided by the (geographical)

distance of agents from the locations, and they are conveniently modelled by the kernel function

θN (·). Hence, the stock of labour at position x at time t is defined by:

lN(t, x) =

NN
t∑

i=1

1

N
· θN(x−X i,N

t ), (7)
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where:

θN(z) :=

(
1

hN

)2

· θ
(
z

hN

)
, ∀z ∈ Ω;

hN := N−λ; and

λ ∈ (0, λ) for some λ < 1/4.

Function θ is assumed to be of compact support with radius one, integrates to one, symmetric

and non increasing with respect to the distance from the origin. The bandwidth hN is reflecting

the influence of the distance on the participation of agents to the labour market at position

x, i.e. a higher hN means that each agent is participating in the labour market of farther

locations from its position. Since the kernel function θN must integrate to one, Equation (7) is

a weighted sum of individual endowment of labour of each agent, where weights are decided by

the distance of each agent from the location x. The assumption λ ∈ (0, λ) for some λ < 1/4 is

crucial to derive the aggregate dynamics as a Partial Differential Equation (PDE), as discussed

in Appendix D. Therefore, if we consider an economy with a larger number of agents, the labour

market in each position x is on average participated by agents that are closer to location x.

As regarding the local specific technological progressANl (t, x) in presence of spatial spillovers,

following Glaeser and Resseger (2010); Glaeser and Mare (2001) we assume that:

ANl (t, x) = G(x)

NN
t∑

i=1

1

N
W P
h (x−X i,N

t ), (8)

where W P
h (z) := (1/h2)W P (z/h) is a kernel function assumed to be of compact support with

radius (bandwith) h > 0, integrates to one, symmetric with respect to the origin, and non

increasing with respect to the distance from the origin, and G(x) is a non-negative function

defined on the space Ω.

Al(t, x) is the product of the two terms; the first, G(x), represents the potential use of

location x for production. This potential can be traced out to the possibility to use that

specific location for productive purposes. For example, G(x) should be at a minimum value of

zero in those positions where a stable production is not possible (or extremely difficult), such

as in the centre of rivers, in the sea, etc.. The second term,
∑NN

t
i=1

1
N
W P
h (x−X i,N

t ), is a measure

of local density of population, where each agents is considered for its endowment of labour
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1/N , and its neighbourless to location x is modelled by the kernel function W P
h . Bandwidth h

reflects the extension of spatial spillovers, i.e. higher h means wider spatial spillovers. At the

individual level
∑NN

t
i=1

1
N
W P
h (x − X i,N

t ) is a measure of the positive spatial externalities in the

production of having neighbouring locations with large amount of agents, i.e. agents density

positively affects labour productivity (Ciccone and Hall, 1996), therefore

yN(t, x) = G(x)

NN
t∑

i=1

1

N
W P
h (x−X i,N

t )

 lN(t, x)β, (9)

wN(t, x) = G(x)

NN
t∑

i=1

1

N
W P
h (x−X i,N

t )

 lN(t, x)β−1. (10)

3.4 The determination of local amenities

Local amenities can be both exogenous and endogenous. The exogenous amenities are related

to specific characteristics of location x independently of the distribution of agents over space.

Typical examples are climate, weather, natural landscape, etc.. All these characteristics can be

considered exogenous to the overall population distribution dynamics, and can be modelled as a

function AES(t, x). The shape of AES reflects differentials over space of individual utility caused

by spacial specific characteristics of each location. The extreme case is sea, rivers, and/or high

mountains, where function AES should signal an extremely low utility for people resident in

those places.

The endogenous amenities need a more sophisticated modelling, because they are affected

by the local population and income. Typical examples include local services, e.g. schools,

hospitals, and theatres, local goods such as malls, and any other infrastructures and facilities

which are locally supplied and consumed. Endogenous amenities are also subject to congestion,

i.e., given their stock, the individual utility decreases with the number of individuals which are

access to them.

To fix the idea suppose that individuals devotes a constant share τ ∈ (0, 1) of their income

to finance the consumption of endogenous amenities; the total amount of expenditure is given

by τ · yN(t, x). The production of amenities is subject to decreasing marginal productivity;
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hence the total amount of supplied amenities at location x at time t is:

PA(t, x) =
[
τ · yN(t, x)

]ϕ
, (11)

where ϕ ∈ (0, 1). An alternative/complementary explanation for PA(t, x) is that local endoge-

nous amenities are financed by a flat tax rate τ ∈ (0, 1) on income; in this case, τ · yN(t, x)

would represent the collected revenues to finance the provision of amenities.

Congestion is assumed to be proportional to the number of individuals; hence, the individual

utility for the endogenous amenities is assumed to be given by:

AEN(t, x) = A0

{[
τ · yN(t, x)

]ϕ − µAlN(t, x)
}

= A0

{[
τ · ANl (t, x)lN(t, x)β

]ϕ − µAlN(t, x)
}
,

(12)

where A0 is a scale parameter and µA > 0 a parameter measuring the intensity of congestion.

Equation (12) shows that endogenous amenities are a source of agglomeration until the

stock of labour is under lN(t, x)TR =
[
ϕβτϕ

(
ANl (t, x)

)ϕ
/γA
]1/(1−ϕβ); after this threshold en-

dogenous amenities works against agglomeration. lN(t, x)TR is increasing in ANl (t, x), τ and β

and decreasing in γA as expected.

3.5 The spatial dynamics of population in an economy with infinite

agents

The main result of the paper is represented by Theorem 3.1, which states that from the move-

ments of agents we can represent the dynamics at aggregate level by a partial differential

equation taking the limit to infinity in the number of agents N , as discussed, among others, by

Morale et al. (2005) and Flandoli (2016).

Teorema 3.1. Assume that Eq. (4) descrives the agent’ movement, Eq. (7) the stock of labour

in each location, Eq. (8) the local technological progress, Eq. (9) the local income, Eq. (10) the

local wage, Eq. 12 the endogenous amenities, and n (t, x) the net population rate of the position

x at time t, then the stock of population in position x at time t, lN(t, x) converges in probability

14



as N tends to infinity, in the suitable topology, to the unique solution of

∂tl(t, x) = n(t, x)l(t, x) +
γ2σ2

2
∆xl (t, x) +

− γ divx (l(t, x)∇xw (t, x))

− γ divx (l(t, x)∇xAEN(t, x)) +

− γ divx (l(t, x)∇xAES(t, x)) , (13)

where

Al(t, x) = G(x)
(
W P
h ∗ l

)
(t, x);

y(t, x) = G(x)(W P
h ∗ l)(t, x)l(t, x)β;

w(t, x) = G(x)(W P
h ∗ l)(t, x)l(t, x)β−1; and

AEN(t, x) = [τAl(t, x)y(t, x)]ϕ − µAl(t, x)

are the value in the limit of local technological progress, income, wages and endogenous amenities

respectively, where W P
h (z) := (1/h2)W P (z/h) with h > 0 and W P ∈ C1

b (Ω).

Proof. For a sketch of the proof see Appendix D.

The first term of Eq. 13 is due to the materialization of new agents at location x. The

second term represents the usual diffusion component due to randomic component of agents’

movement. A specific mention instead deserves the third term of Eq. 13, which represents the

effect of labor reallocation across positions, assuming that labour is moving across positions

according to differentials in the level of wages w(t, z), γ are two coefficients measuring the

speed of reallocation, divx is the divergence operator, i.e. divxf ≡ ∂x1fx1 + ∂x2fx2 , while ∇xf

is the gradient operator, i.e. ∇xf ≡ (∂x1f, ∂x2f). Eq. (13) is inspired to Xepapadeas and

Yannacopoulos (2016) and contrasts with the pure diffusion proposed by Boucekkine et al.

(2009). The fourth and fifth terms Eq. 13 represents the effect of labor reallocation across

positions due to differential endogenous and exogenous amenities respectively.
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4 Numerical explorations

The baseline specification of our numerical explorations of Eq. (13) is in Table 1, while Figure 4

reports the dynamics of spatial distribution of population for different periods, from the initial

period (t=0) and for five next periods (t=0.5,...,20).

The initial spatial distribution of population is uniform over the space Ω = [0, 4]× [0, 4]. At

period 1 four agglomerations (cities) emerge; such a pattern becomes more distinct at period

5 with four distinct cities; however at period 10, they tend to group together, and, finally,

at period 20 they merge in one big city, which will remain also for the next periods (not

reported in the figure). In a large part of the plane is not present population at period 20,

included in regions that experimented in the first periods an increase in population, providing

an example of extreme local nonlinear dynamics. Not reported numerical simulations show

that the localization of the big city can depend on a small local perturbation in the initial

distribution of population, i.e. history matters for the location of big city.

Parameters Value Description
n(t, x) 0 Local population growth rate
G(x) 1 Uniform potential use for production of each location

AES(t, x) 0 No difference in endogenous amenities across different locations
σ 0.05 Variance of random component in the agents’ movement
β 0.6 Coefficient of the local production function
γ 0.01 Inverse of movement costs
h 0.4 Extention of spatial spillovers
A0 6 Scale parameter for the endogenous amenities
τ 0.2 Flat tax rate on local income to finance local amenities
ϕ 0.5 Coefficient of the local production function of amenities
µA 0.2 Measure of congestion in local amenities

W P (x) (1− ||x||)1||x||≤1 Kernel function used in the simulation

Table 1: The baseline values of model’s parameter used in the numerical exploration of
Aggregate-Diffusion partial differential equation (13)

Figure 5 instead reports the dynamics of spatial distribution of population when the exten-

sion of spatial spillover h is reduced from 4 to 3. While the final equilibrium at period 185 is

always a big city, there exists a wide interval from t = 5 to t = 180 where the spatial pattern

with four medium cities appeared as stable. However, in just two periods (from 181 to 182), the

spatial pattern radically changes its aspect with the emergence of a big city doomed to persist

also in the next periods (not reported in the figure). This phenomenon is called metastability
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(a) t = 0

Figures/simulazioni/t=0.5h=0.4-eps-converted-to.pdf

(b) t = 0.5

Figures/simulazioni/t=1h=0.4-eps-converted-to.pdf

(c) t = 1

Figures/simulazioni/t=5h=0.4-eps-converted-to.pdf

(d) t = 5

Figures/simulazioni/t=10h=0.4-eps-converted-to.pdf

(e) t = 10

Figures/simulazioni/t=20h=0.4-eps-converted-to.pdf

(f) t = 20

Figure 4: The distribution dynamics of population l(t, z) over space and time for the baseline
case with, h = 0.4, Ω = [0, 4]× [0, 4].
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and poses serious doubts on the possibility to use standard econometric techniques for the study

of the dynamics of city size distribution.

5 Conclusions

We have shown as our model can generate a dynamics of the spatial distribution of population

which reproduce some stylized facts regarding the emergence of cities with different size, shape

and spatial organization; the importance of history for the location of cities; the phenomenon of

metastability, i.e. cities emerging as the outcome of a long and apparently stable process, can

abruptedly disappear; and, finally, the nonlinear out-of-equilibrium dynamics of population,

i.e. cities which an increasing population in the past can experiment a continuos drop in the

future. Our findings cast several doubts on the actual techniques used in the empirical analysis.

The proposed model can be extended along three main lines of research. The first is focused

on the commuting, i.e. the possibility that agents are living in a place different from their place

of work. This extension is particularly important for the study of the inner structure of cities,

with the related phenomena of segregation and unequal spatial distribution of wages. Another

line of research is to to study the spatial pattern by the concept of recurrence (Mocenni et al.,

2010; Facchini and Mocenni, 2013). Finally, to study the economy in the small sample case,

i.e. not in the limit of N →∞ (Evers and Kolokolnikov, 2016).
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(a) t = 0

Figures/simulazioni/t=0.5h=0.3-eps-converted-to.pdf

(b) t = 0.5

Figures/simulazioni/t=1h=0.3-eps-converted-to.pdf

(c) t = 1

Figures/simulazioni/t=5h=0.3-eps-converted-to.pdf

(d) t = 5

Figures/simulazioni/t=10h=0.3-eps-converted-to.pdf

(e) t = 10

Figures/simulazioni/t=20h=0.3-eps-converted-to.pdf

(f) t = 20

Figures/simulazioni/t=160h=0.3-eps-converted-to.pdf

(g) t = 160

Figures/simulazioni/t=175h=0.3-eps-converted-to.pdf

(h) t = 175

Figures/simulazioni/t=180h=0.3-eps-converted-to.pdf

(i) t = 180

Figures/simulazioni/t=181h=0.3-eps-converted-to.pdf

(j) t = 181

Figures/simulazioni/t=182h=0.3-eps-converted-to.pdf

(k) t = 182

Figures/simulazioni/t=185h=0.3-eps-converted-to.pdf

(l) t = 185

Figure 5: The distribution dynamics of l(t, z) over space and time for the case h = 0.3, Ω =
[0, 4]× [0, 4].
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Appendix

A The microfoundations of Eq. (1) with myopic agents

In this appendix we derive Eq. (1) in a static optimizing framework in continuos time. Assume

agent i is optimizing its instantenous utility. At each time t denote the spatial position of agent

i by X i,N
t , and the position of all other agents (including himself) Xt. For the sake of simplicity,

below we assume that the space dimension is one, i.e. X i,N
t ∈ R. All the arguments made below

can be repeated in the same manner, but with a more cumbersone notation, in any dimension

d ≥ 1.

Consider the utility function of agent i that depends on his position in space, and also on

the position of all other agents

ui
(
XN
t , t
)

(X i,N
t ), (14)

where the first component of u represents the overall shape of utility determined by the spatial

distribution of agents, the second is the overall change of utility due to possible time varying

factors (e.g. technological progress, climate change, etc.), while the third component assigns to

agent i the utility level corresponding to its position X i,N
t .

We now introduce the notation for the partial derivativative of the function ui. We denote

∂ui

∂Xk

(X, t)(x), X = (X1, . . . ,XN) (15)

the partial derivative with respect to the k-th component of the vector X. Moreover, we denote

∂ui

∂t
(X, t)(x),

∂ui

∂x
(X, t)(x) (16)

the partial derivatives with respect to the variable t and x respectively.

The partial derivative of u with respect to the variableX i,N
t in the first component, evaluated

in
(
XN
t , t
)

(X i,N
t ) is assumed to be equal to zero; this reflects the fact the change in position of

agent i cannot change the spatial shape of utility in X i,N
t , i.e.

∂ui

∂Xi

(
XN
t , t
)

(X i,N
t ) = 0. (17)
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The dynamic over space of agent i is the result of a maximization of utility (14) over space,

subject to moving costs. In particular, consider the instantenous variation of utility of agent i

duit as the result of moving from position X i,N
t to X i,N

t + dt dX i,N
t (with dt very small), i.e:

dui,Nt =
∂ui

∂x

(
XN
t , t
)

(X i,N
t )dX i,N

t +
N∑
j=1

∂ui

∂Xj

(
XN
t , t
)

(X i,N
t )dXj,N

t . (18)

Assume quadratic adjustment cost for moving, at each time t, agent i solves the following static

optimization problem:

max
{dXi,N

t ∈R2}

∂ui

∂x

(
XN
t , t
)

(X i,N
t )dX i,N

t +
N∑
j=1

∂ui

∂Xj

(
XN
t , t
)

(X i,N
t )dXj,N

t − cM
2

∣∣∣∣∣∣dX i,N
t

∣∣∣∣∣∣2 , (19)

where cM is a parameter measuring the intensity of the moving cost.2 In Problem (19) we are

assuming that agent i has perfect information about the optimal choice of all the other agents,

i.e. dXj,N
t is known. However, at the time of the decision this information is not available to

the agent, and this means that we have to replace the term dXj,N
t for j 6= i with the expected

behavior of agent j’s movement dXj,N,ei
t formulated by agent i (by definition dX i,N,ei

t = dX i,N
t ).

Therefore, agent i solves at each time t the following problem:

max
{dXi,N

t ∈R2}

∂ui

∂x

(
XN
t , t
)

(X i,N
t )dX i,N

t +
N∑
j=1

∂ui

∂Xj

(
XN
t , t
)

(X i,N
t )dXj,N,ei

t − cM
2

∣∣∣∣∣∣dX i,N
t

∣∣∣∣∣∣2 . (20)

The first order condition of Problem 20 is given by (see Eq. (17)):

dX i,N
t =

1

cM

[
∂ui

∂x

(
XN
t , t
)

(X i,N
t ) +

∂ui

∂Xi

(
XN
t , t
)

(X i,N
t )dX i,N

t

]
=

1

cM

∂ui

∂x

(
XN
t , t
)

(X i,N
t ). (21)

Eq. (21) represents the optimal movement of agent i in the limit when its time horizon in

the optimization is going to zero, i.e. static optimization. In this regard, agent i is extremely

myopic, and this is even more important given the presence of sunk mobility costs. However,

it is not myopic with respect to the spatial distribution of agents, since the latter are included

in ui. For γ = 1/cM Eq. (21) is equal to Eq. (1).

2In a more general setting where cost of moving are not homogenous over space cM = cM

(
Xi,N

t , dXi,N
t

)
,

i.e. the cost of moving should be a function of the position of agent and of the direction of movement.
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B The microfoundations of Eq. (1) as a Nash equilibrium

In this appendix we explicitly derive, in a simplified setting, the optimal movement of agent

i in discrete time when it takes also into account the movement of other agents. Differently

from Appendix A, therefore, we explicitly consider the optimizing behaviour of other agents,

which will lead to search for solution to the contemporaneous agents’ optimization as a Nash

equilbrium. For the sake of simplicity, below we assume that the space dimension is one, i.e.

X i,N
t ∈ R. All the arguments made below can be repeated in the same manner, with a more

cumbersome notation, in any dimension d > 1.

Assume that at time t we have N agents, whose position is labeled by X i,N
t . Denote by XN

t

the vector of all the positions of all the agents, i.e XN
t := (X1,N

t , . . . , XN,N
t ). Assume also that

the utility function is:

U : RN × R+ →
(
R→ R

)
(X, t) 7→

(
x 7→ U(X, t)(x)

)
, (22)

that is for any X := (X1, . . . ,XN) ∈ RN , representing the position of all the agents, and t ∈ R,

we are given a field of utility U(X, t) : R → R which an any given point x in space associate

the utility in that point. Hence, the personal utility of each individual depends on its position,

but also on the positions of all other agents.

Assume now that in order to maximize its personal utility in the new position at each time

t agent i makes a step dt V i,N
t over a time interval of duration dt. It is subject to quadratic

movement costs. However, since its utility also depends on the positions of the other agents, in

this maximization procedure it has to keep into account the expected behavior of all the other

agents. Therefore, agent i at every time t = 0, dt, 2dt, . . . solves the following optimization

problem:

max
{V i,N

t ∈R}
U(XN

t + dtVN,ei
t , t+ dt)(X i,N

t + dt V i,N
t )− dtcM

2

∣∣∣V i,N
t

∣∣∣2 , (23)

where VN,ei
t := (V 1,N,ei

t , . . . , V N,N,ei
t ) and V i,N,ei

t := V i,N
t . Roughly speaking, at each time t

agent i has a certain belief of where other agents will go after dt, represented by the vector

VN,ei
t . Therefore, it acts accordingly to that belief, maximizing its own personal utility taking

into account its moving costs. cM transforms the movement cost in utility and it is defined in
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terms of time interval dt.

The first order condition for Problem (23) is:

0 =
N∑

j=1,j 6=i

∂U

∂Xj

(XN
t + dtVN,ei

t , t+ dt)(X i,N
t + dt V i,N

t )
dV j,N,ei

dV i,N
t

dt+

+
∂U

∂Xi

(XN
t + dtVN,ei

t , t+ dt)(X i,N
t + dt V i,N

t )dt+

+
∂U

∂x
(XN

t + dtVN,ei
t , t+ dt)(X i,N

t + dt V i,N
t )dt− dtcMV i,N

t . (24)

If we assume that the expected behavior of agent j, V j,N,ei
t , does not depend on the optimal

behavior of agent i, V i,N
t , then all terms in the first summation vanish. Moreover, if Condition

(17) holds, any change in the position of agent i has no direct effect on the filed of utility

evaluated in its position since the only thing that matters is its relative position with respect

to others. Therefore, Eq. (24) reduces to:

∂U

∂x
(XN

t + dtVN,ei
t , t+ dt)(X i,N

t + dt V i,N
t )− cMV i,N

t = 0. (25)

We now solve Eq. (25) explicitly by assuming a specific shape of utility function as it follows:

U(X, t)(x) =
1

N

N∑
j=1

W (x−Xj), (26)

where the kernel function W is defined as

W (x) = −1

2
x21|x|≤1 − 1|x|>1, (27)

which is reported in Figure 6 (1|x|≤1 means that the value is equal to 1 when |x| ≤ 1 and 0

otherwise). In particular, W ′(0) = 0 in agreement with the Condition (17), while the partial

derivative of U with respect to Xi is always zero when evaluated in Xi. The utility function

(26) is higher when all the agents are close to each other; in particular, it reaches its maximum

value of 0 when all agents are in the same position, i.e. when the level of agglomeration is

maximum (see Figure 2).
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Figure 6: The shape of kernel function W (x), the base of individual utility in Eq. (26).

We can now rewrite Eq. (25):

V i,N
t = − 1

cM

1

N

N∑
j=1

[
(X i,N

t + dtV i,N
t )− (Xj,N

t + dtV j,N,ei
t )

]
1{∣∣∣(Xi,N

t +dtV i,N
t )−(Xj,N

t +dtV
j,N,ei
t )

∣∣∣≤1}.
(28)

Assume now that agents at time t are all within distance one from each other, and that the

same holds at time t + dt, so that all the indicator functions in the previous sum are equal to

one. This is not restrictive if one assume dt to be very small, so that the movement that each

agent will perform is very small. Therefore, from Eq. (28) we have

V i,N
t = − 1

cM

[
X i,N
t − 1

N

N∑
j=1

Xj,N
t

]
− dt

cM

[
V i,N
t − 1

N

N∑
j=1

V j,N,ei
t

]
, (29)

from which

V i,N
t = − 1

cM + dt− dt/N

[
X i,N
t − 1

N

N∑
j=1

Xj,N
t − dt

N

N∑
j=1,j 6=i

V j,N,ei
t

]
. (30)

From Eq. (30) we can conclude that:

1. the larger cM the smaller the optimal movement of agent i V i,N
t , which reflects the

quadratic moving costs in Eq. (23).

2. By considering a continuous time process, instead of a discrete one, i.e. we let dt going

to zero, the expected choices of other agents don’t matter in the optimal choice of agent

i (as seen from agent i). The intuition is the following: in continuous time the choice of

agent i is repeated infinitely many times, and each of this choice, taken singularly (and

not as a continuous choice process) has no effect on the dynamic. The same effect holds
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for the choice of all other agents.

3. Either if we let dt going to zero, or we assume that agent i has zero-movement expectation

on other agents, i.e. V j,N,ei = 0 for j 6= i, the optimal strategy to maximize utility (26)

is to move towards the barycenter of spatial distribution of agents, which is the mean

position of agents. This is coherent with the intuition that the particular shape of utility

(26) should tend to aggregate agents over space. Moreover, the barycenter of the position

of the agents remains unchanged after each forward step, i.e. the barycenter is an invariant

for the dynamic.

4. In the continuous time case, i.e. when dt is going to zero, we find that the optimal

movement reduces to follow the gradient of the utility function U , that is precisely Eq.

(1).

So far, we have assumed that agent i has a generic expectation on the movement of other

agents. One possible choice is to search for an equilibrium in each time where agent i, for

i = 1, . . . , N , solves Problem (23) and expectation are realized, i.e. V j,N,ei
t = V j,N

t . This

amount to consider a Nash equilibrium of a non-cooperative game where agent i solve Problem

(23), for i = 1, . . . , N . This implies that we have to solve a system of N linear equations derived

by Eq. (29), i.e.:

V i,N
t = − 1

cM

[
X i,N
t − 1

N

N∑
j=1

Xj,N
t

]
− dt

cM

[
V i,N
t − 1

N

N∑
j=1

V j,N
t

]
, i = 1, . . . , N, (31)

and finally

V i,N
t (1 + (N − 1)b)− b

N∑
j=1,j 6=i

V j,N
t = − 1

cM

[
X i,N
t − 1

N

N∑
j=1

Xj,N
t

]
b =

dt

cMN
, i = 1, . . . , N.

(32)
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This system can be rewritten in matrix-vector form as AVN
t = X̃N

t , where:

A :=



1 + (N − 1)b −b · · · −b

−b 1 + (N − 1)b −b · · · −b
... . . . ...
... . . . −b

−b · · · · · · −b 1 + (N − 1)b


, VN

t :=



V 1,N
t

V 2,N
t

...

...

V N,N
t


, (33)

X̃N
t =



− 1
cM

(
X1,N
t − 1

N

∑N
j=1X

j,N
t

)
− 1
cM

(
X2,N
t − 1

N

∑N
j=1X

j,N
t

)
...
...

− 1
cM

(
XN,N
t − 1

N

∑N
j=1X

j,N
t

)


. (34)

One can verify that the inverse of the matrix A is given by

A−1 =
1

Nb+ 1



b+ 1 b · · · b

b b+ 1 b · · · b

... . . . ...

... . . . b

b · · · · · · b b+ 1


, (35)

so that the solution of System of Eqq. (32) is given by:

V i,N
t = − 1

cM + dt

[
X i,N
t − 1

N

N∑
j=1

Xj,N
t

]
. (36)

Therefore, the Mash equilibrium is the analogous to the case where agent i has zero-movement

belief on the other agents’ movement (compare Eq. (36) with Eq. (30)).
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C Dynamic spatial aggregation in the sequence of Nash

equilibria

In this appendix we will show that in the sequence of Nash equilibria in discrete time described

in Appendix B (or analogously in the continuous time limit) increases the spatial agglomeration

of agents, when as measure of spatial inequality is used the spatial Gini Index defined as

G(X) :=
1

2X

(
1

N

N∑
i=1

N∑
j=1

|Xi −Xj|

)
, (37)

where

X :=
1

N

N∑
i=1

Xi (38)

is the empirical mean of the position of the agents. The spatial Gini Index has the remarkable

property to be bounded between 0 and 1, where 0 is the maximum level of agglomeration while

1 is the maximum level of dispersion.

We first consider the level of aggregation at time t, G(XN
t ) and show that each term of the

sum in Eq. (37) gets smaller after a time step. Since the value of the mean position remains

unchanged with each time step, the term X
N

t is irrelevant for the calculation. Considering (36)

we have:

∣∣∣X i,N
t+dt −X

j,N
t+dt

∣∣∣ =
∣∣∣(X i,N

t + dtV i,N
t

)
−
(
Xj,N
t + dtV j,N

t

)∣∣∣ =

=
∣∣∣(X i,N

t −Xj,N
t

)
+ dt

(
V i,N
t − V j,N

t

)∣∣∣ =

∣∣∣∣(X i,N
t −Xj,N

t

)
− dt

cM + dt

(
X i,N
t −Xj,N

t

)∣∣∣∣ =

=

∣∣∣∣(1− dt

cM + dt

)(
X i,N
t −Xj,N

t

)∣∣∣∣ =

(
1− dt

cM + dt

) ∣∣∣(X i,N
t −Xj,N

t

)∣∣∣ ≤ ∣∣∣(X i,N
t −Xj,N

t

)∣∣∣
(39)

since the term
(

1− dt
cM+dt

)
is always positive and smaller than one. This shows that the

aggregation level after one step is higher, in the sense that the spatial Gini Index is smaller

than that at the initial time.
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D A sketch of the proof of Theorem 3.1

For the sake of simplicity, we will analyze only the case where n(t, x) = 0, i.e. there is no

change in the total number of agents. The case n(t, x) 6= 0 can be treated by introducing some

technicalities related to Poisson processes, but the proof just becomes more involuted without

without posing any additional significant conceptual difficulty, see for example Catellier et al.

(2021). Moreover, again for the sake of simplicity, in the sketch of the proof we will also assume

that endogenous amenities are not present. The technique used below can be also applied, by

adding some additional calculations for endogenous amenities, in the general case. Finally, we

will also assume the domain Ω is the two dimensional thorus T2 = R2/Z2. This simplifies the

proof allowing to neglect the boundary effects, but is not restrictive since the same technique

of proof can be applied in any domain Ω ⊆ R2 with boundary of class C1.

Assume that at the time t = 0 agents are independently distributed at random in the

domain Ω, following a common probability density distribution on Ω called y0(z). For t > 0

each agents position evolves by obeying the following Stochastic Differential Equations (SDE):

dX i,N
t = γ

[
∇xw

R
(
XN
t , t
) (
X i,N
t

)
+∇xAES

(
t,X i,N

t

)]
dt+ γσdBi

t,

or by making each term more explicit

dX i,N
t = γG(X i,N

t )

[
N∑
j=1

1

N
W P
h (X i,N

t −Xj,N
t )

]
lN(t,X i,N

t )β−1

+ γ∇xAES

(
t,X i,N

t

)
dt

+ γσdBi
t. (40)

We now consider the empirical distribution of all the agent’s positions, that is

EN
t :=

1

N

N∑
i=1

δXi,N
t
, (41)

where δz is the random variable on T2 with unitary mass in the point z. Notice that EN
t is

a continuous set of random variables on T2 depending on time. For any given N ∈ N and

t > 0, this distribution is singular, in the sense that is a distribution over T2 which does not
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admit a probability density function, since it has a positive probability only on a finite set

(corresponding to the position of the N agents). However, when N tends to infinity the family

of random variable EN
t becomes diffuse and converges (in distribution) to a continuous family

of random variables over T2, labelled by Et for any t > 0. The distribution of Et is now regular

and admits a probability density function for every t, called l(t, z). An explicit expression for

l(t, z) for every t is not available. However we can prove that the probability density function

l(t, z) is the solution to Eq. (13). This is precisely the content of the following theorem, which

is equivalent to Theorem 3.1:

Teorema D.1. The stock of labour in position x at time t, lN(t, x) converges in probability as

N tends to infinity, in the suitable topology, to the unique solution of system of Eqq. (13).

Recall that the stock of population at position x at time t is defined by:

lN(t, x) =
N∑
i=1

1

N
· θN(x−X i,N

t ),

where θN(x) = N2λθ(Nλx), θ : T2 → R is a function that is non negative, C∞ and integrate to

one. We will sometimes refer to the function lN(t, x) as the mollified empirical measure.

Remark. The parameter λ can be taken in the intervall [0, 1]. However, some choices of λ are

not possible in our framework, either because they don’t make sense as modeling assumption,

or because they are currently out of reach for the present mathematical theory. In particular:

• λ = 0: this case correspond to the classical mean-field case, where the radius of interaction

is fixed. This choice leads to a non local macroscopic dynamics, not suitable for our

purposes;

• λ ∈ (0, 1): this corresponds to the theory of moderate interactions originally developed

in Oelschläger (1985) with some additional restriction on the range of λ. The theory has

been extensively generalized, e.g. in Méléard and Roelly-Coppoletta (1987) allowing the

parameter λ to be any number in (0, 1). Our result fall in this category, altough without

reaching the full generality of the case λ = 1, therefore we assume λ ∈ (0, λ) with λ < 1;

• λ = 1: this is the case of local interactions that is still not well understood, with very few

results in the literature: Uchiyama (2000); Varadhan (1991).
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D.1 Preliminaries

In this section we provide some preliminaries needed for the proof of the theorem.

Definition D.2 (Weak solutions of (13)). We say a function l of suitable regularity is a weak

solution of system of equations (13) if for every test function ϕ ∈ C∞(T2;R) it holds

〈l(t), ϕ〉 = 〈l(0), ϕ〉+
γ2σ2

2

∫ s

0

〈l(t),∆xϕ〉 ds

+ γ

∫ t

0

〈
l(s),∇xϕ · ∇x

(
G (W P

h ∗ l)(s) l(s)β−1
)〉
ds

+ γ

∫ t

0

〈l(s),∇xϕ · ∇xAES(s)〉 ds. (42)

Introduce the empirical measure of the agents position

SNt (dx) =
1

N

N∑
i=1

δXi,N
t

(dx),

that is random element of the space C([0, T ];P1(T2)) where

P1(T2) :=

{
µ probability measure on (T2,B(T2))

∣∣∣∣∣
∫
T2

|x| µ(dx) <∞

}

is the space of all probability measure on the Borel sets of T2, with finite first moment. We

endow this space with the Wasserstein−1 metric, that can be defined equivalently as

W1(µ, ν) := sup
[ϕ]Lip≤1

∣∣∣∣∫
T2

ϕdµ−
∫
T2

ϕdν

∣∣∣∣
where [ϕ]Lip is the usual Lipschitz seminorm. Endowed with this metric the space P1(T2)

becomes a complete separable metric space, whose convergence implies the weak convergence

of probability measures.

D.2 A candidate for the limit

We recall that for any test function ϕ it holds

〈
SNt , ϕ

〉
=

∫
T2

ϕ(x)SNt (dx) =
1

N

N∑
i=1

ϕ(X i,N
t ).
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Hence, by taking the family of function parametrized by x ϕ(·) = θN(x− ·) we have

〈
SNt , θN(x− ·)

〉
=

1

N

N∑
i=1

θN(x−X i,N
t ) = lN(t, x)

Lemma D.3 (Itô Formula). For any test function ϕ it holds

dϕ(X i,N
t ) =

γ2σ2

2
∆xϕ(X i,N

t ) dt

+ ∇ϕ(X i,N
t ) · ∇wN(t,X i,N

t ) dt

+ ∇ϕ(X i,N
t ) · ∇AES(t,X i,N

t ) dt

+ γσ∇ϕ(X i,N
t ) · dBi

t, (43)

and

d
〈
SNt , ϕ

〉
=

γ2σ2

2

〈
SNt ,∆xϕ

〉
dt

+
〈
SNt ,∇xϕ · ∇xw

N(t, ·)
〉
dt

+
〈
SNt ,∇xϕ · ∇xAES(t, ·)

〉
dt

+
γσ

N

N∑
i=1

∇xϕ(X i,N
t ) · dBi

t, (44)

and

dlN(t, x) =
γ2σ2

2
∆xl

N(t, x) dt

− γ
1

N

N∑
i=1

∇θN(x−X i,N
t ) · ∇wN(t,X i,N

t ) dt

− γ divx
(
lN(t, x)∇xAES(t, x)

)
dt

+
γσ

N

N∑
i=1

∇xθN(x−X i,N
t ) · dBi

t. (45)

Proof. The first part follows easily by applying Itô formula to the function ϕ(X i,N
t ) and using

Eq (40). The second part simply follows from the first part using the linearity of the sum,

while the last part is obtained by taking the family of functions parametrized by x θN(x − ·)

and applying Itô formula, then using again the linearity of the sum.

The expression for the drift in the second line on the right-hand side of equation (45) can
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be expressed as

− 1

N

N∑
i=1

∇xθN(x−X i,N
t ) · ∇xw

N(t,X i,N
t )

= −
∫
T2

∇xθN(x− x′) · ∇xw
N(t, x′)SNt (dx′)

= −divx
∫
T2

θN(x− x′)∇xw
N(t, x′)SNt (dx′).

This is not the right expression to obtaine the desired limit in Eq. (13). The proper one, in

order to obtain the correct expression when taking the limit in N , is

−divx
∫
T2

θN(x− x′)∇xw
N(t, x)SNt (dx′) = −divx(lN(t, x)∇xw

N(t, x)).

Hence, we rewrite Eq. (45) as the proper expression, plus a remainder that we will have to

show that vanishes in the limit

dlN(t, x) =
γ2σ2

2
∆xl

N(t) dt

− γ divx(lN(t, x)∇xw
N(t, x)) dt

− γ divx
(
lN(t)∇xAES(t, x)

)
dt

+ RN
t (x) dt+ dMN,θN

t (x) (46)

where

MN,θN
t (x) =

γσ

N

N∑
i=1

∇xθN(x−X i,N
t ) ·Bi

t

is a martingale, and

RN
t (x) = divx

∫
T2

θN(x− x′)
[
∇xw

N(x)−∇xw
N(x′)

]
SNt (dx′).

Eq. 46 provides us with a candidate for the limit behaviour of system of Eq. (40).

D.3 Steps for the proof

The rigorous proof of Theorem D.1 needs some intermediate lemmas that one has to prove first.

The general strategy is that of compactness, and is made of three main steps.
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(Compactness) Firstly one has to prove that the sequence (SNt )N∈N lies uniformly in some

compact subset of P1(T2)3 This yelds the existence of limits of every subsequence. In our case

this follows from an uniform estimate in L1(Ω) for each of the agents position. We remark

that the convergence is only in distribution since is the one induced by the metric used on

P1(T2). However, is a well known fact that convergence in ditribution of random variables to

a deterministic limit implies convergence in probabilty.

(Characterization) Secondly one has to provide a characterization of limit points as solutions

to Eq. (13). This usually follows from the convergence of each of the terms in Eq. (45) to the

corresponding one in the limit equation.

(Uniqueness) Finally one has to prove a uniqueness results for Eq. (13). This final steps

is necessary to pass from the convergence of every subsequence, as argued in the first step, to

the convergence of the full sequence. The rationale is the following: since every subsequence

is converging to solutions of Eq. (13), if the solution is unique then every subsequence is

converging to the same limt. One then has only to realize that in every metric space, if every

subsequence converges to the same limit, the same holds for the whole sequence.

In order to complete the three previous steps we highlight some key points of the procedure:

• One proves that there exists a constant CT that depends on T but not on N , such that

E
[∣∣∣∣∇xl

N(t)
∣∣∣∣
L2(T2)

]
≤ CT . (47)

Here we will also need to assume additional hypothesis on the production function. In

particular, we will assume that to be equal to lβ when l is greater than some small

threshold value l, and instead has the shape of a parabola for values of l between zero

and l. One possible expression is given by

f(l) =


lβ + (−1

2
β2 + 3

2
β − 1)lβ if l > l,

1
2
β(β − 1)lβ−2l2 + β(2− β)lβ−1l if 0 ≤ l ≤ l.

In this way we keep the usual assumption on the production function, that is positive

first derivative with negative second derivative, but the first derivative is now globally
3The notion of compactness here is simply the classical one of compacts sets in metric spaces.
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bounded for any values of l. This first step is necessary to complete the first step about

Compactness of the sequence (SNt )N∈N in P1(T2).

• Assume that SNt
N→∞→ µt in P1(T2), where µt is a probability measure with density l(t, x)

(or analogously for a subsequence SNk
t from the first step). Then we have to check that

the expression for wages converges to the analogous limit expression of wages

wN(t, x)

= G(x)
1

N

N∑
i=1

W P
h (x−X i,N

t )

(
1

N

N∑
i=1

θN(x−X i,N
t )

)β−1
N→∞−→ G(x)(W P

h ∗l)(t, x)l(t, x)β−1

= w(t, x).

This part is necessary to provide a characterization of limit points (Characterization).

We also need to show that the martingale term MN,θN
t (x) goes to zero in probability as

N goes to infinity. This however is readily done using that we have an explicit expression

for the quadratic variation

[
MN,θN

]
t

=
γ2σ2

N2

N∑
i=1

∣∣∣∇lθN(x−X i,N
t )
∣∣∣2

since the Brownian motions Bi
t are independent, and use classical martingale inequalities.

In this step we will need to assume λ < 1/4 in order to prove such inequality, as well as

use Eq. (47). Finally, we need to show that the remainder RN
t (x) goes to zero as well, as

N goes to infinity. This again follows from the estimate in Eq. (47), using the fact that

the difference
[
∇xw

N(x)−∇xw
N(x′)

]
is non zero only when x and x′ are close, since it

is multiplied by θN(x− x′), whose support is shrinking with N .

• To show uniqueness of solutions of Eq. (13) one follows the classical strategy of assuming

the existence of two different solutions l1(t, x) and l2(t, x) with the same initial condition

at time t = 0. Then we consider the difference of the two and study the evolution in the

L2-norm in T2 ∣∣∣∣l1(t)− l2(t)∣∣∣∣2
L2(T2)

=

∫
TT 2

∣∣l1(t, x)− l2(t, x)
∣∣2 dx
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and show that it satisfies

∣∣∣∣l1(t)− l2(t)∣∣∣∣2
L2(T2)

≤ CT

∫ t

0

∣∣∣∣l1(s)− l2(s)∣∣∣∣2
L2(T2)

ds

for some constant CT . Then, classical Gronwall Lemma implies that if ||l1(0)− l2(0)||L2(T2) =

0 then ||l1(t)− l2(t)||L2(T2) = 0 for all t > 0, so that solutions are unique. This provides

a proof of (Uniqueness).
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