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1. Introduction

Economic theory frequently suggests connections between individual units of obser-
vation. Connectivity and the resulting spillover effects between units lie at the heart
of pressing research questions in microeconomics (Ambrus et al., 2014; Chyn and
Katz, 2021; Ioannides and Datcher Loury, 2004; Weidmann and Deming, 2021) and
macroeconomics (Acemoglu et al., 2016; Crespo Cuaresma et al., 2019; Gofman, 2017;
Rose, 2004). Good answers to these questions and deeper insights can be important
for education policy (Board and Meyer-ter Vehn, 2021; Lin, 2010; Mele, 2020), labor
market outcomes (Beaman, 2012; Hensvik and Skans, 2016; Munshi, 2003), supply
chain management (Acemoglu et al., 2012; Atalay et al., 2014, 2011; Kranton and
Minehart, 2001), innovation (Bloom et al., 2013; Ductor et al., 2014; König et al., 2019;
Newman, 2001). However, empirical studies of spillover effects abstract from the nature
of connections and modelling approaches are limited. Current econometric methods for
analyzing spillover effects generally rely on holding the structure of connectivity fixed,
thus obscuring uncertainties and potentially distorting results.

This paper introduces an integrated model to jointly analyze both the structure and
consequences of connectivity between units. I propose a Bayesian hierarchical approach
to comprehensively address both issues. Suitable shrinkage priors allow for more
nuanced assumptions; prior information is flexibly imposed where available and needed,
while important aspects of the model are freed up and learned from the data. The
resulting model facilitates the explicit treatment of connectivity structures and spillovers
in a layered framework. As I demonstrate with an application to deforestation spillovers
from croplands in the Brazilian Amazon, this model avoids bias from misspecified
connectivities, better reflecting reality and the surrounding uncertainties.

The main contribution of this paper is a framework for jointly estimating spillover/peer
effects and connectivity structures, i.e., spatial weight or adjacency matrices. A number
of earlier studies pursue similar goals in the spatial econometric (Debarsy and LeSage,
2020; Lam and Souza, 2020; Qu and Lee, 2015; Zhang and Yu, 2018) and the network
econometric (Goldsmith-Pinkham and Imbens, 2013; Hsieh and Lee, 2016; Johnsson
and Moon, 2021) literature. These studies generally adopt model averaging approaches,
and are limited to few discrete candidates for the connectivity structure. The hierarchical
setup that I propose in this paper eliminates this constraint. It provides a flexible and
nuanced way of modelling and estimating more general forms of connectivity, conveying
a more comprehensive picture of spillover effects. For this approach to work in practice,

2



Shrinkage in Space

there are three main obstacles to overcome.
The first challenge lies in the forms of the connectivity structure themselves. Here, I

provide a unified framework for common forms of connectivity used in both the spatial
and network econometric literatures. I characterize connectivity as a weighted digraph,
and develop a functional approximation that nests many common connectivity structures.
This approximation places individual units in a metric space, augmented with a notion
of potential, and highlights the strong simplifying assumptions made in the literature.
Lastly, I derive conclusive bounds for the autoregressive parameter of overall connectivity
strength, ensuring non-singularity and stationarity of the model. This allows for more
flexible models that don’t impose a row-stochastic form a priori, and, as I demonstrate,
avoid bias from this potential misspecification of connectivity.

The second challenge is related to the curse of dimensionality. I address these using
suitable prior distributions that can induce regularization. With few exceptions (e.g. Lam
and Souza, 2020), the notion of regularization is arguably neglected in the literature,
and Uniform priors are most commonly used (e.g. Debarsy and LeSage, 2020). I show
how established priors are limited in their flexibility, impose strong information in unsus-
pected dimensions, and often cannot accommodate the nuanced prior information that
is available. I introduce priors that can reflect this prior information, e.g., location-based
priors for the structural parameters in the connectivity function. For the autoregressive
parameter of overall connectivity strength, I propose a Beta-Gamma mixture prior that
can accommodate flexible shapes and provides sensible regularization without distorting
estimates. These priors facilitate the efficient estimation of connectivity parameters that
have previously been fixed.

The third challenge is of a technical nature and concerns estimation of the model,
and the computations involved. Posterior inference relies on Markov chain Monte Carlo
(MCMC) sampling or variational methods, and the interdependence that results from
connectivity can make even simple models computationally prohibitive. Models with an
autoregressive term, in particular, rely on the evaluation of a costly Jacobian determi-
nant. In this paper, I focus on full posterior inference, and develop efficient sampling
schemes for the hierarchical and structural parameters, which facilitate the straight-
forward estimation of extensible models. For such models, the Jacobian determinant
features at least one additional dimension, making established procedures obsolete. In
order to still allow for rapid and accurate estimation, I develop an adaptive Gaussian
process approximation. These optimizations allow for full Bayesian inference in spatial
econometric models that can be extended with little overhead.
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I apply this modelling approach by revisiting the impacts of agriculture on deforesta-
tion in Mato Grosso, Brazil (following Kuschnig et al., 2021). Mato Grosso lies at the
intersection of the Amazon rainforest, the Cerrado savannah, and the Pantanal wetlands,
and is a historical deforestation hotspot and a modern agricultural powerhouse (Macedo
et al., 2012). The dynamics of deforestation in this region are particularly insightful
due to the presence of these biomes. Different deforestation interventions1 across them
induce leakage, where deforestation in the Amazon is displaced to other biomes (Vil-
loria et al., 2022), and spillover effects, where, for instance, pastures are replaced by
croplands and displaced into formerly forested areas (Kuschnig et al., 2021). In this
setting, connectivity between observations plays a crucial role, and geographical and
theoretical information help inform its structures. As I will demonstrate, considerable
uncertainty remains, and the proposed hierarchical approach yields deeper and more
robust insights.

The remainder of this paper is structured as follows.

2. Methods

In this section, I (i) introduce the framework, (ii) describe a hierarchical modelling
approach for the structure of connectivity, (iii) and derive conclusive results for the nor-
malization of the connectivity that allow for the identification of the overall connectivity
strength.

2.1. Framework

Consider a set of agents 𝒜 = {1,… ,𝑁}; for each agent, we observe some response 𝑌 ∈ ℝ
and a vector of characteristics 𝑋 ∈ ℝ𝑃 a total of 𝑇 times.2 We want to learn about the
relationship between the response and the characteristics, but have reason to suspect
that agents are not independent of each other — they are connected in a network.

We can formalize this network using the graph 𝒢 = {𝒜,ℰ} , where ℰ is a set of
connections (or edges) between agents. Specifically, we represent the network using a
weighted digraph. This means that edges are directed from one agent to another, that

1Examples include the Brazilian Forest Code, which requires (inter alia) the maintenance of a certain
percentage of natural vegetation that differs across biomes (Garrett et al., 2021), and the Soy
Moratorium, which bans soy from previously deforested areas in the Amazon from the supply chains
of participants (Gibbs et al., 2015), and different land tenure regimes (Carrero et al., 2022).

2For simplicity, we will generally assume that 𝑇 = 1.
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is, connections need not be reciprocal. Moreover, the graph is equipped with a weight
function that measures the strength of all possible connections. That is

𝑤 ∶ 𝒜 × 𝒜 ↦ ℝ+,

which satisfies 𝑤(𝑖, 𝑖) = 0, meaning that there are no self-links, and 𝑤(𝑖, 𝑗) ⩾ 0 for all
𝑖, 𝑗 ∈ 𝒜, where equality holds if and only if the edge {𝑖, 𝑗} ∉ ℰ.

i j

k

0.5

1.0

1.0 0.5

We can represent the graph 𝒢 with its 𝑁 × 𝑁 adjacency matrix 𝐆. Its
entries correspond to the weight function, meaning that 𝑔𝑖𝑗 = 𝑤(𝑖, 𝑗) and
consequently 𝑔𝑖𝑖 = 0 for all 𝑖, 𝑗 ∈ 𝒜. An agent 𝑖 has the neighbor 𝑗 if 𝑔𝑖𝑗 > 0
and is a neighbor to 𝑗 if 𝑔𝑗𝑖 > 0. For the purpose of identification, it is useful
to work with a normalized adjacency matrix. For this purpose, we introduce
the matrix 𝐖, which is normalized such that its spectral radius is unity.

In this framework, we are interested in learning about

𝑌 = 𝑓 (𝒢, 𝑋) + 𝜀.

Departing from any economist’s favorite, linear model, an agent’s response may
additionally depend on the network in terms of the responses and the characteristics of
their neighbors. An extension that allows us to account for these network effects is

𝐲 = 𝜆𝐖𝐲 + 𝐗𝜷 +𝐖𝐗𝜽 + 𝐞, (1)

where we introduce network lags of the responses and characteristics, i.e., weighted
averages of the neighbors’ values, on the right-hand side.

This specification resembles the standardmodels in the network- and spatial-econometric
literatures,3 and captures network effects in a parsimonious manner. The autoregressive
term is of particular note, as it gives rise to a network filter. This becomes apparent
when expressing Equation 1 as

𝐳 = 𝐗𝜷 +𝐖𝐗𝜽 + 𝐞,

𝐲 = (𝐈 − 𝜆𝐖)−1𝐳,

3Specifically, it resembles the linear-in-means and the spatial Durbin models. These models generally
normalize 𝐖 to be row-stochastic, meaning that the network lags yield the unweighted average
of connected agents. In these literatures, the network itself is assumed to be known up to a few
candidates.
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where 𝐳 is a latent variable, and 𝐒 = (𝐈 − 𝜆𝐖) can be understood as a link function.

2.2. A hierarchical model for 𝒢

For a comprehensive treatment of the model expressed in Equation 1, we want to
model the normalized adjacency matrix and the network 𝒢 that gives rise to it. A
straightforward approach would be to consider single connections, i.e., off-diagonal
entries of the adjacency matrix. However, at 𝒪(𝑁2) unknown entries, this approach
suffers from the curse of dimensionality in most settings. There is little information that
can be learned from the data, unless the network is static over time and we can observe
the agents repeatedly. We can address this issue by directly imposing shrinkage on the
unknown connections, or by imposing structure on the model of our network.

𝐴

𝐵

i
j

k

Assume that we can locate our agents in some metric space (𝒫, 𝑑). Then, a
natural way to think of connectivity is in terms of the distance. Let 𝐩𝑖 denote
the (latent) coordinates of agent 𝑖, then we could model 𝒢 using, for instance,

𝑔𝑖𝑗 = exp{−𝑑(𝐩𝑖, 𝐩𝑗)} .

This setup may be an appealing approximation for some networks, but it
suffers from two major drawbacks — a lack of sparsity and the imposition of symmetry.
Standard distances are symmetric and don’t tend to diverge to infinity, constraining
their utility for modelling sparse, directed networks. We can alleviate these concerns
with slight adaptations.

𝑑

𝑔
In the first step, we introduce a parameter that controls the speed of decay,

𝑔𝑖𝑗 = exp{−𝛿𝑖 × 𝑑(𝐩𝑖, 𝐩𝑗)} .

This setup allows us to account for asymmetries, and facilitates the spar-
sification of connections. An agent with strong and far-reaching influence
on others may, in addition to a central location, experience less distance-decay. This is
captured by smaller parameter values, such as 𝛿𝑖 = 0.5. Meanwhile, most agents may
only have local influence on others, as expressed by a higher degree of distance-decay.
Larger parameter values, such as 𝛿𝑖 = 2, restrain spillovers to be localized, and can
effectively allow for sparsification. For instance, we may want to limit connections to a
ball around agents by including a minimum threshold for positive connectivity.

In the second step, we address the number of connections by modelling them in the
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Figure 1: Illustration of a three-agent network from three angles. Agents are located in a 2D
space with the coordinates 𝐴, 𝐵, and their connectivity is mediated by the potential, 𝑍.

style of a 𝑘-nearest neighbors algorithm. Let 𝐝𝑖 be a vector of distances from 𝑖, and d𝑖𝑗

be a short-hand for the distance from agent 𝑖 to 𝑗. Then we extend the model using an
indicator function, 𝟏, as

𝑔𝑖𝑗 = exp{−𝛿𝑖 × d𝑖𝑗}× 𝟏[d𝑖𝑗 ⩽ 𝜅 (𝑘𝑖 ∣ 𝐝𝑖)] ,

where the function 𝜅(𝑘𝑖) yields the 𝑘𝑖’th lowest distance from 𝑖. The parameter 𝑘𝑖
controls the number of connections of an agent, and can be intuitively understood as a
follower count.

Models of 𝒢 that follow this pattern can be expressed as

𝑔𝑖𝑗 = 𝑓(𝑘𝑖, 𝛿𝑖, 𝐩𝑖, 𝐩𝑗 ∣ (𝒫, 𝑑)) , (2)

and can serve as flexible approximations. The central assumption places the agents
in a metric space; the constraints of this representation are alleviated by introducing
the measures of popularity, 𝛿𝑖 and 𝑘𝑖. The effects of this popularity, or potential, are
illustrated in Figure 1. Further flexibility can be gained by considering generalized
notions of metric spaces that suit the hypothesized underlying network.4

Networks constructed from Equation 2 generalize a number of commonly used network
specifications, which can be obtained by restraining the 𝒪(𝑁) unknown parameters.
A standard example in a spatial setting would, for instance, use spherical distances
between physical locations and a distance-decay specification. In a social network
setting, coordinates may refer to homophilic characteristics, with distances induced by
an intrinsic metric on their divergence. The implied metric space may be pruned via a
𝑘-nearest specification and could be augmented with popularity measures to capture

4We can interpret our graph 𝒢 as a generalized metric space on the set of agents, with a quasimetric
that is induced by the smallest weight of any directed path (with distance ∞ if no such path exists).
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the structures of familiar social networks.

2.3. Identification, and normalization

To identify the strength of network effects, as captured by 𝜆 and 𝜽, we need to nor-
malize the adjacency matrix in some way. In addition, we require the link function,
𝐒(𝜆, 𝑘𝑖, 𝛿𝑖, 𝐩𝑖, 𝐩𝑗), to be invertible and stationary. As I will show below, normaliza-
tion with the inverse spectral radius of the adjacency matrix, 𝜌 (𝐆)−1, addresses these
concerns.

Theorem 1. Let 𝐈 denote the identity matrix, and 𝛼 be a real scalar. Then (𝐈 − 𝛼𝐆) is
non-singular for 𝛼 ∈ (𝜔

−1
min, 𝜔

−1
max), where𝜔min and𝜔max are the minimum and maximum

real eigenvalues of 𝐆.

Proof. This statement is true if 𝛼 × 𝜔𝑖 ≠ 1 for all 𝑖, which we will show directly. For
𝜔𝑖 = 0, this is trivially the case; we need to show it for all 𝜔𝑖 ≠ 0. Notice that
trace(𝐆) = 0, which (combined with 𝜔𝑖 ≠ 0) implies that 𝜔min < 0 and 𝜔max > 0. In
order to show our result, we have two requirements. For positive eigenvalues we need
to show that 𝛼 < 𝜔−1

𝑖 , and for negative ones that 𝛼 > 𝜔−1
𝑖 . The result follows from

knowing that 𝜔−1
min < 𝛼 < 𝜔−1

max.

Non-singularity ensures the existence of the filter, and the continuity of its determinant.
Next, we are concerned with its stationarity.5 We can guarantee stationarity of the filter
if its Neumann series is convergent, or equivalently, if the spectral radius of 𝐒 is less
than unity. The Perron-Frobenius theorem gives us the following result.

Corollary 1. The spectral radius of (𝐈 − 𝛼𝐆) is less than unity for 𝛼 ∈ (−𝜔
−1
max, 𝜔

−1
max).

Proof. This statement is true if 𝜌 (𝐆) = 𝜔max, which we will show directly. If 𝐆 is
irreducible (or, equivalently, if 𝒢 is strongly connected) the result follows directly from
the Perron-Frobenius theorem. Otherwise, the result follows from knowing that 𝐆 is
either the null matrix, or is, up to an isomorphism, composed of null and irreducible
submatrices.

As can be seen, conclusive bounds for 𝜆 are determined by the spectral radius of 𝐆,
which coincides with its maximum real eigenvalue. This result is good news for the
5In the network context, stationarity can be understood as the notion that the (absolute) connectivity
should be decreasing with the order of neighbors, i.e., units are more connected to their direct
neighbors than to their neighbors’ neighbors.
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literature, where the standard domain, 𝜆 ∈ (−1, 1), is supported by the standard choice
of row-stochastic normalization for 𝐖. At the same time, the spectral radius, 𝜌 (𝐆),
emerges as an attractive, structure-preserving, alternative normalization factor.6

3. Priors and estimation

Effective estimation of models in the form of Equation 1 and Equation 2 is aided by
a degree of regularization. In the Bayesian framework, this is readily achieved via
priors, which provide a suitable framework for introducing external information. Below,
I present suitable priors for unknown parameters in the models considered. Afterwards,
I discuss their estimation using Markov chain Monte Carlo (MCMC) methods.

3.1. Hierarchical shrinkage priors

In the wider econometric literature, the overall connectivity strength 𝜆 is the only pa-
rameter considered to be unknown, and plays a central role when analyzing connectivity.
With a standardized connectivity matrix, the domain (−1, 1) guarantees an invertible
and stationary network filter. Bayesian approaches generally assign the parameter a
Uniform prior; a useful generalization (first proposed by LeSage and Parent, 2007) is
the Beta prior

𝑝(�̄�) ∼ Be(1 + 𝜏, 1 + 𝜏),

where 𝜏 ≥ 0, and we use �̄� = (𝜆 + 1) /2, scaled to live on (0, 1), for simplicity. Here,
Be(𝑎, 𝑏) denotes the density of a Beta distribution with shapes 𝑎 and 𝑏, i.e.

Be(𝑥 ∣ 𝑎, 𝑏) =
𝑥𝑎−1(1 − 𝑥)𝑏−1

Beta(𝑎, 𝑏)
.

For 𝜏 = 0, the prior is uniform over all values. With this in mind, the prior parame-
ter 𝜏 can be understood as excess support for the origin — but, as we will see, this

6For large connectivity matrices, the prospect of computing its spectral radius may appear daunting,
especially when that matrix is mutable. While direct methods for determining eigenvalues can be
computationally prohibitive at a complexity of 𝒪(𝑁3), iterative methods, such as the Lanczos method
or Arnoldi iteration, can provide a remedy. These methods allow us to only compute the required
largest eigenvalue, converge to an exact result at a general complexity of 𝒪(𝑁2), and particularly
benefit from sparsity, which is a common feature of larger networks and a desirable property of
approximations.
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interpretation is misleadingly narrow.
Beyond the Uniform prior, we sometimes encounter 𝜏 = 0.01 in the literature, which

results in a fairly flat prior that places slightly higher weight at the origin. On one
hand, this reflects a clear orientation on flat priors that are uninformative with respect
to certain values. On the other hand, however, this is driven by necessity due to the
Beta distribution’s undesirable properties. These undesirable properties are moderate
peaks in density, and excessive drop-offs towards the tails, as illustrated in Figure 2.
There, we can see three Beta densities, placing increasing mass at the origin. Even for
𝜏 = 100, the peak remains moderate, while the density at the tails (e.g. at 0.9) becomes
miniscule, and the credible support of the prior incredibly narrow.

99% 80% 50%

τ = 100

τ = 10
τ = 1

-1.26

11.3
-1.0 f ln f 0.9 1.0

-15.3
3.70

↓-164

1.50

Figure 2: Density (left), log-density (right), and 99%, 80%, and 50% credible intervals (bottom)
for 𝜆 with a Beta prior, i.e. 𝑝(�̄�) ∼ Be(1 + 𝜏, 1 + 𝜏), with 𝜏 ∈ {1, 10, 100}. More informative
priors (with increasing 𝜏) lead to narrow credible intervals, with values in the tail (e.g. 0.9,
compare the right panel) receiving infinitesimal prior support.

With any prior distribution, we want to express the prior information that is available
to us without distorting insights that we can obtain from the data. For our prior
for 𝜆, we thus want to incorporate information and avoid potential distortions. First,
consider the often implicit, and sometimes explicit preference for parsimony, i.e. 𝜆 = 0.
Without decent support for non-zero values, it appears reasonable to skip the superfluous
complexity of connectivity. This potentially special role of zero highlights the distorting
information induced by the Uniform prior. While this flat prior indicates no preference
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for any values, it implicitly prefers large values, essentially imposing connectivity on the
model. For instance, we have 𝑝(|𝜆| > 0.1) = 9 ⋅ 𝑝(|𝜆| ≤ 0.1), i.e., .

This motivates our departing point, which is the the following mixture prior

𝑝(�̄�) ∼
{

Be(1 + 𝜏0, 1 + 𝜏0), if 𝛾 = 1,

Be(1 + 𝜏1, 1 + 𝜏1), if 𝛾 = 0,

where 𝜏0 ll 𝜏1 are shape parameters, and 𝛾 is an indicator. This prior essentially
represents a variable selection procedure for 𝜆. For 𝛾 = 0, the sharp spike at zero that is
induced by 𝜏1 leads to a collapse to the linear model. For 𝛾 = 1, we have a comparatively
flat prior for 𝜆, mirroring standard setups. This small adaptation to a spike-and-slab
prior takes us in the right direction conceptually, but arguably remains too rigid (except,
perhaps, for panels with time-specific connectivity). Next, we consider further sources
of prior information, and develop a practical prior that can accommodate our prior
convictions.

The second source of prior information we want to reflect concerns the model spec-
ification — in particular, the boundaries of 𝜆. Parameters that lie at their boundary
commonly cause issues for statistical models (Chernoff, 1954; Self and Liang, 1987;
Chen and Liang, 2010), and 𝜆 is no exception. Numerical instability from the filter
approaching singularity is an obvious example, but not the most damning. Instead,
a major issue are pathological solutions7 that arise, not from the phenomenon under
investigation, but the peculiar structure of the model (see, for example, Angrist, 2014;
Halleck Vega and Elhorst, 2015). In the face of these technical and theoretical caveats, it
is sensible to regularize 𝜆 and limit the support at the boundaries by imposing a suitable
prior.

I propose the following continuous mixture of Beta distributions as a prior, which can
coalesce the above sources of prior information in a straightforward way.

𝑝(�̄�) ∼ Be(1 + 𝜏, 1 + 𝜏), 𝑝(𝜏) ∼ Ga(𝑎, 𝑏), (3)

where the mixing density is a Gamma distribution with shape 𝑎 and rate 𝑏, which has
proven to be useful for this purpose in similar settings (see Park and Casella, 2008;
Griffin and Brown, 2010). This mixture affords us considerable flexibility for prior
elicitation, allowing us to act upon the prior information discussed above.

The Beta-Gamma mixture can accommodate a wide range of shapes, as exemplified
7One example for a model considered here, is the perfect fit from 𝜆 → −1, 𝛿 → 0, and 𝛼 = ∑𝑛

𝑖=1 𝑦𝑖.
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τ ~ G(ɑ = 1, β)

-0.29 0.62-0.87 0.87

0.00

1.45

3.35

10.02
τ ~ G(a, β = 1)

-0.14 0.42-0.87 0.87

0.00
1.45

3.66

11.31

τ ~ G(ɑ = 10, β)

-0.05 0.15-0.42 0.42

0.00
3.66

11.17

35.24
τ ~ G(ɑ = 0.1, β)

-0.91 0.93
0.00

1.05
1.31

2.35

Figure 3: Density (left), log-density (right), and 99%, 80%, and 50% credible intervals (bottom)
with a Beta-Gamma prior.

in Figure 3. We can place considerable mass at the origin, while also accommodating
values in the tails. If we constrain the prior to the special case of an Exponential (𝑎 = 1,
top-left) and orient ourselves on Figure 2, we can clearly see that the mixture prior yields
more pronounced peaks with wider credible support and without excessive drop-offs.
By varying both parameters, we are able to flexibly induce fine-tuned priors, essentially
without overhead.

The proposed Beta-Gamma shrinkage prior changes the prior specification from an
issue of choosing specific values, to one concerned with parsimony and regularization.
Increased weight at the origin means that the prior does not induce spillover effects per
se, while the tail behavior allows us to provide regularization without limiting support
to narrow regions a priori. The result is a flexible prior that can better express many
prior convictions. Nonetheless, there may be reservations to even weakly informative
priors.8 While they may not always be a necessity, it is important to keep in mind that
we introduce this structure to free up the previously implicit and infinitely informative
priors that are fixed structural parameters.

The structure of the network is determined by unknown parameters concerning (1)
the locations, (2) the speed of distance-decay, and (3) the number of neighbors. For

8Ignore, for this example, that the standard flat priors are heavily informative in terms of size.
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Figure 4: Visualization of different prior setups for 𝑘, with 𝑛 = 100.

each, I present suitable prior distributions that allow for more flexible and credible
models.

The first candidate for more explicit treatment is the number of neighbors in a 𝑘-
nearest neighbor specification. Limited variations to the parameter are commonly
considered for robustness checks, and have previously been addressed within a model
averaging framework (see Lesage and Fischer, 2008; Debarsy and LeSage, 2020; Zhang
and Yu, 2018, for instance). While the discrete parameter lends itself to model averaging,
we will take it one step further and treat 𝑘 itself in a fully Bayesian way. For this, we can
consider it as the result of 𝑁 trials that determine whether any two units are neighbors
or not. Such a trial can be modelled with a Beta-binomial distribution, i.e.

𝑝(𝑘) ∼ BB(𝑁, 𝑎, 𝑏),

where𝑁 is the number of trials (i.e. potential neighbors), 𝑎 and 𝑏 describe the probability
of success, and BB(𝑁, 𝑎, 𝑏) denotes the density of a Beta-binomial distribution, i.e.

BB(𝑥|𝑁, 𝑎, 𝑏) =
(

𝑁
𝑥)

Beta(𝑎 + 𝑥, 𝑏 + 𝑁 − 𝑥)
Beta(𝑎, 𝑏)

.

With this prior, there is no need to constrain our model to a selection of values. We
can open the full model space by setting 𝑁 = 𝑛 − 1, retain sparsity in connections by
choosing 𝑎 < 𝑏 appropriately, and allow for efficient estimation using Markov chain
Monte Carlo methods.

In the literature, there is a strong preference for few neighbors, expressed in empirical
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Figure 5: Visualization of different prior setups for 𝛿. The left panel highlights behavior near
the focal value of 𝛿 = 1; the right panel shows the tail behavior.

work and motivated by practical and theoretical reasons. In Figure 4, we can see that the
Beta-Binomial prior allows for nuanced priors that reflect this preference. However, it
mirrors the underlying Beta distribution, in that it experiences excessive drop-off in the
tails. If this aspect is considered restrictive, a Beta-negative-Binomial prior (visualized)
can present an even less informative alternative.

Next, we consider the distance-decay parameter 𝛿. Earlier works that are limited to
local lags show that there is impactful uncertainty around this parameter (Halleck Vega
and Elhorst, 2015; Kuschnig, 2022). Standard model averaging approaches provide no
remedy due to the continuous nature of 𝛿. With our fully Bayesian approach, however,
we merely need a sensible prior for the parameter. A useful option is

𝛿 ∼ Ga−1(𝑎, 𝑏).

The inverse-Gamma distribution is flexible enough to accommodate general prior
conceptions. For our parameter, an important benefit is that it avoids placing weight at
and near zero values, where every unit is equally connected to every other unit. If these
small values at the left tail are a problem, a log-Normal prior can be a useful alternative.
When strong and explicit prior information is available, the Weibull distribution can be
another useful alternative. For a visualization of selected priors, see Figure 5.

Regarding specific values for 𝛿, the literature is not particularly informative. While
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suitable values depend on the distances involved, 𝛿 = 1 can serve as an anchor for
prior elicitation. Below it, i.e. for 𝛿 ll 1, connections between neighbors are weighted
more equally, with less regard to the distance. For 𝛿 ≫ 1, by contrast, only the closest
neighbors retain relevance as connectivity levels off faster than the distance.

3.2. Sampling-based estimation

We consider the model in Equations 1 and 2, where we constrain the connectivity to
𝑓(𝜆, 𝛿) to illustrate. In this section, we describe a Markov chain Monte Carlo (MCMC)
approach to obtain full posteriors of this setup.

First, note that we can readily obtain posterior draws of (𝜷, 𝜎
2
) conditional on

(𝜆, 𝛿, 𝜏) using the approach by Makalic and Schmidt (2015). Next, we draw from the
conditional posterior of 𝜆, and then 𝜏. Finally, we draw from the conditional posterior 𝛿,
and repeat — giving us the procedure in Figure 6.

0. Set starting values for 𝜆, 𝛿, 𝜏, 𝜎2.

1. Draw from the conditional posteriors of the nested linear model,

a) 𝑝(𝜷|𝐲, 𝜆, 𝛿, 𝜏, 𝜎
2
),

b) 𝑝(𝜎
2|𝐲, 𝜆, 𝛿, 𝜏, 𝜷).

2. a) Draw from 𝑝(𝜆|𝐲, 𝜷, 𝜎
2, 𝛿, 𝜏), and

b) 𝑝 (𝜏|𝐲, 𝜆, ⋅).

3. Draw from 𝑝(𝛿|𝐲, 𝜷, 𝜎
2, 𝛿).

4. Go to the first step until enough draws are obtained.

Figure 6: Stylized algorithm for sampling from the model.

For the first step, we can rely on standard techniques, such as Gibbs sampling, by con-
ditioning on the connectivity parameters. In the second and third steps, the conditional
posteriors of 𝜆, 𝜏, and 𝛿 have no well-known form, and we must use another approach.

For 𝜆, we can use a Metropolis-Hastings step to draw from its conditional posterior,

𝑝(𝜆|𝐲, 𝜏, ⋅) ∝ |𝐒(𝜆, 𝛿)| exp{−
1

2𝜎2 (𝐒(𝜆, 𝛿)𝐲 − 𝐗𝜷)′ (𝐒(𝜆, 𝛿)𝐲 − 𝐗𝜷)}𝑝(𝜆|𝜏).
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The conditional posterior of 𝜏 can be expressed as

𝑝(𝜏|𝐲, 𝜆, ⋅) ∝ 𝜆𝜏 (1 − 𝜆)𝜏 𝜏𝑎−1 exp−𝜏𝑏,

∝ 𝜏𝑎−1 exp−𝜏[𝑏−log(𝜆−𝜆2)],

which is the kernel of a Gamma density, which we can directly draw from using a Gibbs
step. This means that our hierarchical prior setup for 𝜆 imposes essentially no overhead
over conventional specifications.

Lastly, another Metropolis-Hastings step allows us to draw from

𝑝(𝛿|𝐲, ⋅) ∝ |𝐒(𝜆, 𝛿)| exp{−
1

2𝜎2 (𝐒(𝜆, 𝛿)𝐲 − 𝐗𝜷)′ (𝐒(𝜆, 𝛿)𝐲 − 𝐗𝜷)}𝑝(𝛿).

With the exception of 𝜏, these sampling steps are well-known, and all of them are
conceptually straightforward. However, they pose one major computational challenge
— that is, the determinant of the 𝑁 ×𝑁 Jacobian matrix 𝐒(𝜆, 𝛿).

3.3. Evaluating the Jacobian determinant

The likelihood, and hence the posterior, of our model involves a Jacobian determinant,
which poses a central computational constraint for estimation (Bivand et al., 2013). In
standard models, we can use a spectral decomposition of the fixed connectivity matrix
𝐖 to compute the determinant with the eigenvalue method, using

ln |𝐈 − 𝜆𝐖| =
𝑛

∑
𝑖=1

ln (1 − 𝜆𝜔𝑖) .

There are other approaches for large matrices, e.g. based on the lower-upper decom-
position, spline approximations, or algebraic results that make use of special connectivity
structures (see Bivand et al., 2013). However, all of these approaches rely on the connec-
tivity structure in 𝐖 being fixed, and would thus present a potentially insurmountable
computational challenge for more flexible models.

In order to still allow for rapid estimation using MCMC, we introduce the following
Gaussian process approximation

|𝐒(𝜆, 𝛿,… )| ≈ GP (𝜇(𝜆, 𝛿,… ), 𝚺(𝜆, 𝛿,… )) ,

This allows us to approximate the Jacobian determinant with high accuracy (cf. the
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Figure 7: Biomes and location of Mato Grosso (taken from Kuschnig et al., 2021, under CC-BY
4.0).

Supplementary Material). Essentially, we compute the eigenvalues for a grid of values
(of 𝛿, etc.), use those to determine |𝐒(𝜆, 𝛿,…)| using the eigenvalue method, and fit
these training samples using Gaussian process regression. This approach provides a
quantification of uncertainty, and allows for retraining if the sampler moves to values far
from the grid. For our approach, we rely on a constant mean, 𝜇, and a Gaussian kernel
for Σ, but other options are available. Notably, Gaussian processes are widespread in
the field of spatial statistics, and have a parallel in spline regression, which can be used
to approximate one-dimensional Jacobian determinants.

4. An application to Amazon deforestation

In this section, I apply the proposed modelling approach to investigate the impacts of
agriculture on deforestation in Mato Grosso, Brazil. First, I briefly introduce the model
and data used. Then, I present results on the impacts of croplands that are obtained
using increasingly flexible connectivity models. Finally, present and discuss the structure
of the underlying networks.
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4.1. Model & data

The analysis uses the original panel dataset of 141 municipalities in the state of Mato
Grosso from 2006–2017 (𝑁 = 1, 692). The model is a variant of Equation 1 that
suppresses local spillovers (𝜽 = 𝟎) and includes time- and municipality-fixed effects, i.e.

𝐲𝑡 = 𝜆𝐖(⋅)𝐲𝑡 + 𝐗𝑡−1𝜷 + 𝝁 +𝝍𝑡 + 𝜺𝑡.

The dependent variable 𝐲𝑡 is the yearly change of forest per area, and the regressors
are the (lagged) shares of forest, pasture, and cropland area, population density, cattle
density (per pasture), soy yields in Brazilian real per harvested area, and an indicator
for the incidence of particularly dry months. These potential confounders allow us to
isolate the impact of agriculture on deforestation, and were chosen based on theoretical
considerations and to be in-line with earlier studies (see Busch and Ferretti-Gallon,
2017). For a more detailed discussion, see Kuschnig et al. (2021).

For the result of interest, we will focus on the partial effect of croplands, which is
given by

𝜕𝐲
𝜕𝐱crops

= 𝐒(𝜆, ⋅)−1
(𝐈𝛽crops) ,

and depends on a connectivity-induced multiplier effect. For the structure of connec-
tivity, we consider an exponential distance-decay function based on the centroids of
municipalities. We start by fixing 𝐖 and gradually allow for more flexibility. First, we
free up 𝛿, which controls the speed of distance-decay, using weakly informative Gamma
prior. Next, we model the locations of observations using a Dirichlet prior, i.e.

𝐩𝑖 ∼ Dirichlet (𝜶𝑖) ,

where the prior parameters are set such that the prior mean places observations at their
centroids. The uncertainty around this prior location is allowed to be relatively large.

4.2. Results

In Figure 8, we can see the average partial effect of croplands (direct and indirect) of
our model of choice, where 𝛿, the speed of distance-decay, is modelled explicitly. We
can see that a naive specification that fixes 𝛿 = 2 underestimates both the impact of
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Figure 8: Visualization of the average partial effect of croplands on deforestation.

croplands, and the uncertainty surrounding it. For 𝛿 = 1, both the impact and the
uncertainty is overestimated instead. If the parameter is fixed close to its posterior
mean, i.e. 𝛿 = 1.5, as one might do when adopting an empirical Bayes approach, the
uncertainty is underestimated.

In Figure 9, we can see the connectivity of municipalities as measured by their
eigenvector centrality. On the left, we use municipality centroids with estimated 𝛿
as locations, while we additionally estimate the locations on the right. We can see
that centroids lead to strong connections in the center-most municipalities, where the
centroids tend to overlap due to irregular shapes. When estimating positions, we find
that tightly connected observations cluster together, featuring stronger connectivity, but
with very high degrees of distance-decay. These clusters of municipalities are much
more spread out, and can better reflect the patterns present in the data.

5. Conclusion

In this paper, I introduced a comprehensive framework for modelling connectivity
between units of observations, and the resulting spillover effects. I used a Bayesian
hierarchical approach that is readily extensible, allows for regularization that helps in
freeing up parameters, and natively conveys uncertainty. For this purpose, I developed
a graph-based framework to unify network and spatial econometric connectivities, and
derived suitable bounds to guarantee non-singularity and stationarity. I introduced the
flexible Beta-Gamma mixture prior for the parameter of overall connectivity strength
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Deterministic Estimated

Figure 9: Visualization of the centrality of municipalities with deterministic and estimated loca-
tions. A weakly informative prior on the (latent) positions allows tightly connected observations
to form small clusters.

in autoregressive models, and discussed suitable priors for parameters that determine
the connectivity structure. I presented an efficient sampling approach that is readily
extensible and allows for full posterior inference. To allow for efficient sampling with a
number of free connectivity parameters, I proposed a Gaussian process approximation
for the Jacobian determinant in autoregressive models. The result is a flexible and
extensible framework for connectivity models that works in general settings, and was
demonstrated in an application to Amazon deforestation.
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A. Supplementary information

Intuition and interpretation of spillover effects

The general spatial model gives rise to three spatial effects that are visualized in Figure A1.
There may be local spillover effects, affecting direct neighbors, which arise from the
lagged explanatories, 𝐖𝐗𝜽. The autoregressive term, 𝜆𝐖𝐲, allows the responses of all
units to be influenced by the response’s of their neighbors. The observed equilibrium
results from these global spillover effects, which spread across all connected units. Lastly,
the error term may exhibit spatial autocorrelation due to 𝜌𝐖𝐞.

𝑦𝑖

𝑦𝑗

𝑥𝑖

𝑥𝑗

𝑒𝑖

𝑒𝑗

𝛽

𝜃
𝜆

𝜌 Figure A1: Illustration of a unit 𝑖 receiving di-
rect effects from itself, and indirect effects from
other units 𝑗 ≠ 𝑖 in a general model.

To illustrate this further, consider a field experiment investigating the effects of
certain treatments on crop yields, as stylized in Figure A2. If we apply fertilizer to
field ‘C2’, we may find local spillover effects to neighboring fields. This effect may
occur directly (𝑥𝑖 → 𝑦𝑗), e.g., when roots surpass field boundaries, or via a third
mediator (𝑥𝑖 → 𝑧𝑗 → 𝑦𝑗) when the treatment is dispersed and affects the (unmeasured)
‘treatment’ of neighbors, e.g. when fertilizer is washed away by rain. Yields themselves
are behind global spillovers, which may occur, e.g., if wheat grows too large for its stalks
and knocks others over, or if there is a form of communication to prompt or dissuade
growth.9 We will encounter spatial autocorrelation if there are third factors that feature
a spatial pattern. This could be a hedge blocking sunlight and wind, the topography, or
a plethora of other factors.

Interpretation

The interpretation of spillover effects in the general spatial econometric model is not
entirely straightforward, and depends on the spatial lags involved. Firstly, the lag of the
error term does not directly convey the presence of spillovers, but implies correlation
9Such mechanisms can be beneficial for the fitness of a plant. Trees that grow too densely undermine
their overall fitness, while a crop that is flowering successfully can indicate favorable conditions to
others.
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shadow

1

2

3

4

A B C D

treated

Figure A2: Stylised illustration of a grid of fields
for analysing the effects of fertiliser on crop yield.
The field in ‘C2’ is treated (e.g. with fertiliser),
but spillover effects of the treatment (e.g. via
dissolution) impact neighbouring fields. Mean-
while, a hedge to the left of field ‘A4’ causes corre-
lation between it and its neighbours by throwing
shade.

across observations (see Barrios et al., 2012, for a comparison with clustering). Next,
the spatially lagged explanatory variables represent ‘local’ spillovers from the weighted
characteristics of direct neighbors (see Halleck Vega and Elhorst, 2015, for further dis-
cussion). Lastly, the endogenous lag of the response variable represents ‘global’ spillovers
across all neighbors. It is arguably the most widely used, but also the most controversial
term (see Angrist, 2014; Corrado and Fingleton, 2012), and is best understood as the
reflection of an equilibrium response.

In the standard spatial econometric model, the free parameters can only be interpreted
conditional on the connectivity structure. This circumstance is a common source of
errors and misconceptions (LeSage and Pace, 2014; Kuschnig, 2022), and holds similarly
for the more complex models considered in this paper. Most of these issues stem from a
misinterpretation of the partial effects. For the model in Equation 1, the partial effects
of a variable 𝑗 are given by

𝜕𝐲
𝜕𝐱𝑘

= 𝐒(𝜆 ∣ 𝐖)−1
⎛⎜⎜⎜⎜

⎝

𝛽𝑘 𝑤12𝜃𝑗 … 𝑤1𝑁𝜃𝑘

𝑤21𝜃𝑘 𝛽𝑘 … 𝑤2𝑁𝜃𝑘

⋮ ⋮ ⋱ ⋮
𝑤𝑁1𝜃𝑘 𝑤𝑁2𝜃𝑘 … 𝛽𝑘

⎞⎟⎟⎟⎟

⎠

. (4)

This matrix of partial effects is not straightforward to interpret, and summary measures
are used instead. An obvious example is the average partial effect, for which we divide
the sum of all elements in Equation 4 by 𝑛. LeSage and Pace (2009) consider two
summary measures that offer insights into the spatial structure — the average direct
effect (considering only diagonal elements), and the average indirect effect (considering
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only off-diagonal elements).

Horseshoe prior for the nested linear model

For the nested linear model, there is a variety of established priors to choose from,
including the standard Normal Inverse-Gamma prior or a number of shrinkage priors
(e.g. Bhattacharya et al., 2015; Griffin and Brown, 2010; Park and Casella, 2008, etc.).
We will consider the Horseshoe prior by Carvalho et al. (2010) for its proven performance
and efficient sampling (see Makalic and Schmidt, 2015), and an inverse Gamma prior
for the variance. That is

𝛽𝑖 ∣ 𝜄𝑖 ∼ N(0, 𝜄𝑖), 𝜄𝑖 ∣ 𝜁 ∼ C+(0, 𝜁 ), 𝜁 ∣ 𝑠 ∼ C+(0, 𝜍),

𝜎2 ∼ G−1(𝑎, 𝑏),

where 𝜄𝑖 are coefficient-specific hyperparameters with common scale 𝑡, and C+(0, 𝑎)
denotes the density of the half-Cauchy distribution with scale 𝑎, given by

C+(𝑥 ∣ 0, 𝑎) =
{

2
𝜋𝑎 (1 + 𝑥2

𝑎2)
−1

, if 𝑥 ≥ 0,

0, otherwise.

The Horseshoe prior offers flexible shrinkage, accommodating sparsity via sharp spikes
at the origin without distorting estimates, thanks to its heavy tails. The parameters
facilitate global regularization, but also allow for local shrinkage of individual coefficients.
As a result, the Horseshoe is a standard choice in the literature (also see Datta and
Ghosh, 2013; van der Pas et al., 2014, 2017), allowing us to focus on connectivity-related
parameters.

B. Supplementary Material
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Figure B3: One-dimensional Gaussian
process approximation to the Jacobian
determinant |𝐒(𝜆)| (on the vertical
axis) using 50 training samples.
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Figure B4: Absolute and log-absolute error of the Gaussian process approximation for the
(two-dimensional) Jacobian determinant |𝐒(𝜆, 𝛿)| using a 50 × 20 training grid. Distances are
between 𝑛 = 100 locations with coordinates sampled from a Uniform distribution. Gray dots
indicate training samples.
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