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Abstract

Whether pro-renewable political parties win or lose at the ballot box when wind

turbines are built near voters’ homes is still not well understood, particularly with

regard to voter motivation and channels of influence. We contribute by using new

fine-grained data on the location of wind turbines in Germany to determine the

visual exposure of residential areas to wind turbines. This allows us to estimate

the change in the vote share for the German Green Party after voters see a wind

turbine from their neighborhood for the first time. In most election periods, we

find no significant effect of visible wind turbines on the Green Party vote share,

suggesting that voters did not change their support for pro-renewable policies. Yet,

for municipalities first visually exposed in the 2017 and 2021 election period, we find

a negative effect. In these municipalities, a growing number of citizens’ initiatives

have emerged prior to construction, indicating that wind energy expansion is

expanding to less supportive areas where strong opposition has formed. With the

exception of two legislative periods from 1998 to 2005, the party had little influence

on fundamental expansion strategies and hardly any on local site decisions, implying

a shift in the general attitude towards the expansion of renewable energies, rather

than a punishment effect. The negative effect of visual exposure decreases with

increasing proximity, but does not increase with the number of visible turbines.
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1 Introduction

The expansion of renewable energy is a vital measure of environmental policy for

countries around the world in order to achieve climate neutrality and to comply with

the goals of the Paris Climate Change Agreement (Intergovernmental Panel on Climate

Change, 2022). Along with solar and hydro power, wind energy is one of the main

sources of renewable energy generation. Yet, while many people support wind energy

generation in general, there are arguably some disamenities for those living in the

vicinity of wind turbines. Understanding voters’ concerns and reactions is important for

policymakers that decide on the construction of new wind turbines.

A backdrop to this situation is formed by the increasing political polarization as

well as regional inequality that many industrialized countries have experienced in recent

years. It is well documented that people in urban centers tend to vote differently from

rural areas (see e.g. Kenny and Luca, 2020, Scala and Johnson, 2017, MacLeod and

Jones, 2018, Rodŕıguez-Pose, 2018). This phenomenon increases the relevance of the

local effects of environmental policy. Douenne and Fabre (2022) argue that in several

instances, people outside of big urban centers have to bear the brunt of the transition

in energy and mobility, as evidenced by the Gilets Jaunes protests against a carbon

tax in France in 2018/19. In a similar way, wind turbines are typically built in rural areas.

This paper deals with voters’ reaction to the construction of a visible wind turbine

in their proximity. In particular, we study whether a change in the general support for

renewables is reflected in the pro-renewable Green party at the federal election after

voters being visually exposed. In theory, wind turbines in people’s vicinity might affect

them through various negative or positive channels that include noise pollution, bird

endangerment, visual intrusion of the landscape, but also active contribution towards a

cleaner energy supply with potentially cheaper prices and/or jobs for locals (Wolsink,

2000, Liebe and Dobers, 2019, Diermann, 2023). It is thus an empirical questions,

whether pro-renewable parties will lose local votes after the construction of a wind

turbine. Previous papers from various settings around the world have yielded ambiguous

results (see for example Urpelainen and Zhang, 2022, Stokes, 2016, Germeshausen et al.,

2021, Otteni and Weisskircher, 2021).

Here, we provide new insight on this topic by estimating the effects of visible wind

turbine construction on Green party voting behavior from 1998 to 2021. The new

contribution of this paper is threefold:

(i) Combining municipal-level data on voting behavior over two decades with the precise

location of each wind turbine, we have much more fine-grained data at our disposal than
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previous studies.

(ii) We employ robust econometric methods. We address concerns that plague fixed

effects estimations by working with difference-in-difference methods with different

combinations of treatment and control groups, also accounting for the anticipation effect.

(iii) Crucially, we focus on visibility of a wind turbine from a settlement area rather than

its mere presence. We are the first study to do so and can thus empirically elucidate an

important channel through which wind turbines might affect residents’ attitudes.

We work with German data for a number of reasons: Germany is the most populous

country in Europe and an industrial powerhouse with coal and gas as traditional

energy sources, but the Energiewende (energy transition) has driven the expansion of

renewables. In 2021 - even before the invasion of Ukraine by Russia -, 42.4% of electricity

in Germany came from renewable sources, half of which was generated by wind energy

(Destatis, 2022). This expansion of wind energy across Germany occurred gradually

over the last decades, with sizeable variation across both time and space. With the

geo-locations of wind turbines and their building date at our disposal, we can exploit

this variation in our econometric analysis.

Yet, Germany brings another advantage in terms of analyzing the local political

effects of building wind turbines: It has a Green party that has run on a strongly

pro-environmental platform since its foundations in the 1980s, arguing against nuclear

energy and in favor of renewable energy sources (Bukow, 2016). The party is thus

strongly associated with the climate topic in public opinion (Wagner and Meyer, 2014),

arguably much more so than other, more comprehensive progressive parties, such as

the Democrats in the U.S. This mitigates concerns that the voting behavior might be

dominated by other issues.

In our analysis, the preliminary results suggest no sizable local blacklash against

pro-renewable at the ballot box most of the time. Constructing a wind turbine that is

visible from a nearby settlement is not followed by a decrease in the Green party’s local

vote share in most of the last decades from 1998 to 2021. However, our preliminary

findings also point to a change in that overall pattern at the 2021 election period,

where the Green party loses in those municipalities that were treated by wind turbine

construction at that time. We discuss these developments and point to various factors,

including a more polarized political debate and the expansion of wind turbines to less

supportive areas.

The remainder of this paper is organized as follows: In Section 2, we anchor our

contribution in the literature. Section 3 gives an overview of the German wind power
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expansion and its geographical and temporal distribution. Section 4 discusses the visual

perception of turbines, which is crucial in our data analysis. Section 5 gives more insights

on the data we use. Section 6 contains a discussion of the econometric methods employed.

In Section 7, we present and interpret our main results, whose implications we discuss in

Section 9. Section 10 concludes.

2 Relation to the existing literature

Just as climate change and its mitigation measures have become increasingly important

topics of the political debate in countries around the world, the environmental economics

literature on people’s support and attitudes has expanded. Understanding who supports

and who opposes renewable energy projects under which circumstances is vital for

policymakers designing such measures.

Recent research has examined the impact of climate-change mitigation measures

in light of the broader background of political polarization and regional inequality in

many industrialized countries. It is well-documented that people in big cities tend to

vote differently from those in rural areas and that this so-call ’urban-rural political

divide’ has deepened in recent years, in particular since the Great Recession of 2008. In

the U.S., the political divide between Democrat-leaning urban centers and Republican

strongholds in the countryside has been analyzed extensively (e.g. McKee, 2008, Scala

and Johnson, 2017). Strong geographical differences in voting behavior have also been

studied in many European countries, including Britain (e.g. Jennings and Stoker, 2016,

MacLeod and Jones, 2018), France (e.g. Ivaldi and Gombin, 2015, Agnew and Shin,

2020) and the meta-study by Kenny and Luca (2020). This matters for climate-change

mitigation measures: In what McKann (2020) calls ’the geography of discontent’, the

right-wing populist voting share tends to be particularly high in formerly industrialized

regions that are losing out to globalization, structural change and as well as the shift

towards greener energy (Rodŕıguez-Pose, 2018).

At the same time, Douenne and Fabre (2022) suggest that people outside of big

urban centers may have to bear the brunt of the transition in energy and mobility.

They point to the Gilets Jaunes protests that erupted in France in 2018/19 and were

sparked by a carbon tax that threatened the purchasing power of people in rural areas,

who are dependent on cars as means of transport. This concern for purchasing power

went in line with an anti-elite sentiment, and Douenne and Fabre (2022) show that the

protests shifted the public perception of the carbon tax as regressive and environmentally

ineffective.
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Wind energy generation also constitutes a vital feature of the transition to a

carbon-free economy, but, just like carbon taxes, the construction of wind turbines does

not affect every citizen equally. It is concentrated in rural areas. While it is important

for politicians to obtain public support, the literature has so far yielded ambiguous and

contradictory results about the impact of new wind turbines on election outcomes.

Theoretically, the reaction to the construction of wind turbines is not clear-cut and

residents tend to be aware of advantages and disadvantages. Among the opponents,

two groups are typically distinguished: NYMBYists (’Not in my backyard’) see the

necessity of wind energy as a public good but want to free-ride by not having turbines

in their own vicinity. By contrast, while NIABYists (’Not in any backyard’) oppose

that kind of energy generation in general (Wolsink, 2000, van der Horst, 2007). Despite

the overall large public support of wind energy projects (Aldy et al., 2012), both

groups are empirically relevant (Liebe and Dobers, 2019, Wolsink, 2000). Often-cited

negative effects include noise pollution and interference with natural areas (such as

bird endangerment). Yet survey respondents’ attitudes towards wind projects are most

strongly shaped by their ”perceived impact on scenery, visual intrusion of the landscape”

(Wolsink, 2000, p.51). In line with these arguments, visibility of a wind turbine from

urban settlements plays a key role in our analysis. On the positive side, wind turbines

actively contribute towards a cleaner and more sustainable energy supply, potentially

going in line with cheaper electricity and new jobs. To what extent these benefits accrue

not only at the global, but also at the local level, might depend on the circumstances.

Diermann (2023) analyzes cheaper electricity prices offered by suppliers to local residents

of German wind parks. Participation opportunities for citizens have also been found

to matter for acceptance (Langer et al., 2017). Whenever longer time horizons are

considered, self-selection as well as habituation may play a role: Hoen et al. (2019) find

that Americans that live closer to wind turbines have more positive attitudes towards

them, in contrast to the negative impacts of noise and visual dominance that increase

with proximity.

Which effect dominates empirically and whether or not voters close to wind turbines

change people’s attitudes toward wind energy reflected in pro-climate parties vote share,

is far from clear. The literature has found very heterogenous results so far.

On the positive end of results, Urpelainen and Zhang (2022) finds that one more

megawatt of wind power capacity within U.S. Congressional districts in 2003 to 2012

has lead to a 0.03 percentage point increase in vote shares for the Democratic party.

They suggest that policies might endogenously create their political support. Yet, U.S.

Congressional districts are comparatively large and it is also conceivable that overall

economic benefits at the aggregate might mask discontent of those living closest to the
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turbine. In fact, Stokes (2016) finds that proximity to turbines plays a crucial role

in determining voting outcomes. She works with municipal-level data from Ontario,

Canada, between 2006 and 2013, to show that voters tend to punish incumbents after

the construction of a wind turbine with a decrease in vote share by 4-10%. A negative

effect of incumbents’ vote share at the local level is also found for Denmark from 2000

to 2019 by Larsen et al. (2021). The vote share decreases by 3.5% on average after a

construction of a wind turbine, with the effects on local incumbents much larger than on

national incumbents.

For Germany, Germeshausen et al. (2021) look at the federal elections of 2009 and 2013 to

find a sizable 17% decrease in vote share of the Green party resulting from a wind turbine

in a municipality. On the other hand, Otteni and Weisskircher (2021) analyze German

federal and regional elections between 2013 and 2019. They find a small positive rather

than negative effect of wind turbine construction on the vote shares of both the Greens

and the far-right, anti-renewable AfD party, suggesting an increase in voters’ polarization.

This wide heterogeneity of estimated effects might be due a number of factors,

including different countries with different political systems and parties (that might be

single-issue or broad parties), different time horizons (when climate change was a more

or less dominant topic compared to other issues), different units of observations (at

which the presence of a wind turbine might yield different effects), as well as the precise

data and measurement. It is conceivable that the first wind turbine in a municipality

has a different impact from adding one more to a large exiting wind park. Another

contributing factor to the widely varying results might be different econometric methods.

Two-way fixed effects is the typical panel data estimator (Otteni and Weisskircher,

2021); however, some studies employ instrumental variable techniques to contour the

potential endogeneity of turbine location. These instruments can be wind speeds (Stokes,

2016) or expected revenues (Germeshausen et al., 2021).

In this paper, we seek to advance the literature in various respects. With a

comprehensive approach, we aim to gain new insights as well as to reconcile previous

results.

Focusing on Germany and its pro-renewable Green party, we work with fine-grained

municipal-level data for local effects, but use a larger time span of elections reaching back

several decades. Moreover, we avoid the issues associated with the two-way fixed effects

estimator in settings with multiple periods and treatment timings (Abraham and Sun,

2018) by estimating the effect for each group of municipalities treated at the same time

separately. We also account for anticipation and inherent differences in municipalities

by using as controls those units that get treated later on. Finally, we exploit the precise

location of wind turbines as well as settlements. Rather than taking the mere presence of a
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wind turbine in a municipality, we build on the survey literature that has highlighted both

the proximity and the visibility of a turbine from the settlement as vital characteristics

for shaping attitudes (Wolsink, 2000). As we will explain in more detail in the following,

we compute the viewshed of each wind turbine to see if visibility leads to a decrease in the

vote-share of the Green party. An analysis of the visibility feature on election outcome

is, to the best of our knowledge, novel to the empirical literature.

3 The German wind turbine expansion

Whereas the expansion of wind energy in Germany already began in the late 1980s, it

accelerated rapidly during the time the Green Party was part of the government from

1998 to 2005 (Figure 1). In 2000, the Renewable Energy Sources Act (EEG) was passed,

introducing feed-in tariffs (i.e., a fixed price per unit of energy generated) and a feed-

in priority for wind energy. Although between 2008 and 2011 the expansion was low, a

second surge began in 2012, commonly explained by reforms to the EEG and a refocus on

renewable energy generation following the Fukushima accident in 2011 and the subsequent

phase-out of nuclear power (Fuchs, 2021).

Figure 1 – Number of turbines installed over the years. The time frame marked by the
green lines indicates the period during which the Green Party was involved in government

The map in Figure 2 visualizes in which election period the first wind turbine in

each municipality was built. While many municipalities in the north had their first

turbine in the earlier expansion periods, many in the south had their first turbine in more

recent election periods or had no turbine until 2021. In addition to worse topographical

characteristics (Blankenhorn and Resch, 2014), protests by local residents, particularly
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in Southern parts of the country are often used as an explanation of these differences.

Figure 2 – Spatio-temporal distribution of municipalities where a turbine is installed for
the first time. The dark blue areas are municipalities without turbines until the 2021
election period. The lighter the color, the later the first turbine was installed (yellow is the
most recent 2021 election period).

Furthermore, expansion has occurred almost exclusively in rural areas due to

inexpensive and available land, but support for the Green Party is significantly lower

there than in more urbanized areas (Figure 3). Even if there is no direct relationship,

this suggests that where the renewable energy is generated, support for renewable energy

is relatively low.

4 Visual Perception

Qualitative work such as Wolsink (2000) suggests that support for renewables is based on

subjective perception influenced by physical sensory impressions, particularly visibility

and audibility. Some voters might perceive the presence of wind turbines as annoyance

or disruptive to the landscape. In addition, there is a risk of shadow flicker, which can

be caused by the shadows cast by rotating rotor blades, although this effect is very small
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(a)

(b)

Figure 3 – Number of turbines constructed (a) and the vote share for the Green Party (b)
in areas with different types of urbanization

with modern generations of turbines (Freiberg et al., 2019). Others may have concerns

about noise generated by wind turbines, which is strongly correlated with visibility, as

physical obstructions block both light rays and (in part) sound waves and the exposure

decreases with increasing distance. Actual noise exposure also depends on various factors

such as aerodynamic processes, and the audible radius is much smaller than the visible

one (Bakker et al., 2012). While there is no visibility regulation, a plant can only be

built in Germany with a noise protection permit, which is granted if the surrounding
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area is not affected by sound to a certain degree (4th BImSchV), so arguably, most of

the sensory perception of turbines that is relevant in this natural experiment is visual.

As far as we know, this is the first attempt to isolate the effect of visual exposure from

the overall effect of a wind turbine on election outcomes. Obviously, election data is

only published at an aggregated level, so there is no clear treatment boundary where

a proportion of a municipality’s visible area is sufficiently exposed to have an effect on

the support of renewable through the vote share of the Green party. Moreover, multiple

turbines may be visible from one point and an even larger number at another point, so

different components shape each municipality’s treatment intensity. Thus, to estimate

voter response to visual exposure, it is necessary to identify when in which part of a

residential area how many turbines can be seen and from what distance. We explain the

construction of the treatment variable in section Section 6.1.

5 Data

For our spatial analysis, we use fine-grained data on the position of wind turbines

in Germany based on the federal network agencies data base adjusted by Eichhorn

et al. (2019). We combine the geo-coded turbine data including their hub heights

and construction dates with the digital surface model EU-DEM, a representation of the

elevation including the height of ground features such as trees and non-natural structures

in Europe (First-Surface Model) with a resolution of 25 m. To assess how many potential

voters can see how many turbines from a given distance in a given election period, we

calculate the viewshed of all installed turbines, i.e., the area around the turbine from

which a person with an eye height of 1.6 m can see the hub. To further analyze the

relationship between distance and voting responses, we also calculate the intervisibility

distances, i.e., the distance between each settlement and the visible turbines.1 Figure 4

visualizes the intervisibility network for turbines constructed within the 2013 election

period (2010-2013) in Hesse. Each cell of the resulting viewshed grid represents the

sum of visible turbines within a certain distance. Second, we superimpose the EU’s

Global Human Settlement Layer (GHSL), which represents the global settlement area

based on satellite imagery, and the viewshed grid to calculate which settlement area is

visually exposed to what extent in each election period. We merge this with the municipal

boundary map as of 2021. Socioeconomic data from the INKAR data base were provided

by on a municipal level by The Federal Office for Building and Regional Planning (BBSR,

2020) and the federal election data by The German Federal Returning Officer which we

also adjusted on the 2021 administrative boundaries.

1The visible distance was calculated from the centroid of the settlement‘s visible part to the turbine.
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Figure 4 – Intervisibility network of turbines constructed in 2013 (yellow points) and
residential areas (blue polygons) in the state of Hesse. The green area represents the
viewshed of the turbines and the red lines the distances between the settlements and all
visible turbines. The lighter the background, the higher the elevation

6 Econometric Methods

Our empirical model is based on Difference-in-Difference, as it internally controls for

nationwide trends in the support for the Green party as well as time invariant differences

between groups. As wind turbines are constructed gradually over time, municipalities

are visually exposed at different points in time. Previous research (e.g. Otteni and

Weisskircher, 2021) estimates the impact of this staggered treatment adaptation (i.e.,

the impact of building an additional turbine or the kW/hr generated by those turbines

within the administrative boundary) on election outcomes using a two-way fixed effects

(TWFE) model over multiple time periods and treatment timings. We use a similar

approach, but estimate the effect separately for each group of municipalities visually

exposed in the same election period, following a framework resembling the group-time

average treatment effect proposed by Callaway and Sant’Anna (2021). From now on, we

are referring to all municipalities first visually exposed in the same election period as a
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timing group g.2 Since the data covers eight election periods in which all turbines were

built, we have eight timing groups, for each of which we estimate the immediate effect

on the results of the subsequent election.3

Analysing each timing group individually can reveal how voting responses might

change over time. Furthermore, Goodman-Bacon (2021), Callaway and Sant’Anna

(2021) and Abraham and Sun (2018) show that any TWFE model with multiple

treatment timings can be decomposed into a weighted average of all possible 2x2

Difference-in-Difference (DiD) estimators in the panel. This implies that municipalities

visually exposed in earlier election periods also serve as control groups for municipalities

treated at a later time, while the weights of each 2x2 DiD estimator depend not only

on the relative size of the timing groups, but also on the variation in the treatment

variables. If the effects of wind turbines on election outcomes vary over time or are

heterogeneous between municipalities treated at different points in time (i.e., between

timing groups), these comparisons will bias the results. Given the long observation

period (23 years), it is highly plausible that impacts change over time or between groups,

since, for example, the first visible wind turbine in a municipality built in the early

2000s might be perceived differently than it was in late the 2010s due to changing policy

debates about renewable energy and climate change mitigation. In addition, turbines

have evolved over the years, e.g., they have become larger, but also quieter.

While Goodman-Bacon (2021), Callaway and Sant’Anna (2021) and Abraham and

Sun (2018) consider the case of a binary treatment, these problems with staggered

adoptions of the TWFE models also arise with a treatment with finite number of

ordered values (De Chaisemartin and d’Haultfoeuille, 2020) or continuous treatment

(Callaway et al., 2021). By comparing only the change in election outcomes between

one pre-visible election period and one post-visible election period for each timing group

separately, we avoid these potential problems of TWFE models, since each estimate is

a simple 2x2 DiD setup with equal treatment time windows (one election period prior

the intstallation versus one election period after) and a comparison only between treated

and untreated units (or treated municipalities with a similar treatment intensity in the

response estimation).

2For example, municipality m is first visually exposed in 2007, which falls in the 2009 election period
(the year the next federal election is held), so m belongs to the timing group g = 2009.

3For the first timing group ( g = 1998), we cannot estimate the effect as we do not have a pre-
treatment period in the panel.
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6.1 Treatment groups

The treatment group in each election period (i.e., timing group) consists of municipalities

visual exposed for the first time to turbines up to four kilometer, an estimated threshold

distance for dominant visual impact (Breuner, 2001, CPRW, 1999). As most of the

installed turbines are only partially visible from residential areas, we limit the treatment

group to municipalities where at least one turbine is visible for the first time in more

than ten percent of residential areas. The distance at which a wind turbine is perceived

as intrusive is subjective, so that a cut-off value cannot be clearly defined. To ensure

that there is not already an effect of turbines at a distance greater than 4 km in the pre-

treatment period (g−1), we restrict the treatment group to municipalities with no visual

exposure in their pre-treatment period up to a distance of 8 km, due to the ambiguity of

the extent to which turbines have an effect in the buffer zone located located between 4

and 8 km to residential areas.

There are systematic differences between the timing groups. First, the proportion of

municipalities visually exposed for the first time in the 1990s is larger in eastern and

western/northern Germany than in the south, while the share of southern municipalities

is higher from the 2000s onward ((a) Figure A-1). Furthermore, the share of municipalities

classified as smaller towns and suburbs rather than rural according to the DEGURBA

classification (Eurostat, 2020) is considerably larger in the latest timing group than in

municipalities of earlier timing groups, revealing that the later expansion is spreading

within sight of more densely populated areas ((b) Figure A-1). Correspondingly, the

average population density is lower than the national average in municipalities of the

1998 to 2017 groups while municipalities in the 2021 timing group have an above-average

density ((c) Figure A-1). Last, the number of municipalities in each group decreases over

time ((d) Figure A-1).

6.2 Control groups

Similar municipalities that are geographically close to the treated ones, but have no

turbines in sight, are used as a control group, up to a buffer distance of 8 km, again to

avoid treatment spillover to turbines further away than the treatment threshold of 4 km.

If the change in vote share of the control group is equal to the counterfactual change

in vote share of the treated group, we estimate the average effect of turbine visibility

on support for renewable energy policies. Thus, it is essential for a comparison with

untreated units to find municipalities that are similar to those of the treated group

with the exception of turbine visibility. To do this, we exploit the geographic and

administrative hierarchy within the unique ID assigned to each municipality. The ID

is a eight digit number, which starts with a state identifier (first two digits), followed by

the government district index (third digit), an identifier for the county (fourth digit and
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the fifth digit) as well as the municipality (last three digits). Thus, municipalities with a

similar numeric ID value are approximately geographically close to each other and might

share administrative and socioeconomic characteristics (Tobler’s first law of geography,

Tobler (1970)). For each municipality in timing group g, a municipality that is not or

not yet visually exposed to wind turbines is matched based on the smallest Euclidean

distance of their ID values.4 We restrict the matching process to pairs within the same

part of Germany (South, North/West or East) and with the same urbanization status

according to the DEGURBA classification, as voters in urban and rural areas might

have systematically different voting behaviours regardless of their geographic proximity.

Hence, municipalities j without visual exposure in both periods within the same area,

having the same degree of urbanization and the smallest differences in ID value of the

treated municipality m are used as comparisons (minj||IDm − IDj||).

6.3 Level effect: Seen versus unseen

In the first specification, we define the treatment variable as binary, since the potential

impact of visibility is arguably driven by the first turbine, while it diminishes with each

additional one. The treatment variable takes the value of one if turbines are seen for the

first time in election period t = g in more than ten percent of the residential areas of

municipality m within a radius of 4 km:

Dmt =

{
1 ifsharevisiblemt > 0.1

0 otherwise

Hence, we compare the change in vote share before and after the visual exposure with

the change of similar municipalities not visually exposed at time t = g, defined by eq. (1),

with Gg indicating if the municipality belongs to timing group g and Dg an indicator if

a municipality is already treated at t = g.

ATT (g) = E[Yg − Yg−1, Gg = 1]− E[Yg − Yg−1, Dg = 0] (1)

Assuming parallel trends and no anticipation, eq. (1) targets the average effect of visual

exposure for municipalities seeing a turbine for the first time. While common pre-

treatment outcomes are not necessary nor sufficient to provide evidence for post parallel

trends (Kahn-Lang and Lang, 2019), it supports the assumption’s plausibility. Figure A-2

plots the vote share for each timing group and it’s corresponding control group over time,

supporting the assumption. Moreover, we shift the treatment timing for each timing

group to all possible t < g pre-treatment election periods and aggregate the results in

4We allow up to three matches for each treated municipality, which gives us the most variation in
the control group while keeping the geogrpahic distribution similar to the treatment group.
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event time, given by eq. (2), with e referring to the event time and P to the relative

group size of g. The results are small and insignificant (Figure A-3) for all pre-treatment

election periods, further providing evidence for an unbiased estimation. The assumption

of no anticipation is discussed and addressed in Section 6.6.

θ(e) =
T∑

g=2

1{g + e ≤ T}ATT (g, g + e)P (Gg = 1|g + e ≤ T ) (2)

6.4 Slope effect: Average number of visible turbines

We further investigate if the effect is actually driven by the fact a municipality is visually

exposed to any number of turbine and is not linearly increasing with the number of

turbines. To do so, we also estimate the average response of a marginal change in

the average number of visible turbines within the visible part of residential areas for

municipalities of timing group g visually exposed for the first time (t = g) at a particular

intensity. We split each timing group in municipalities with a visual exposure to an

average number up to two (D ≤ 2) and municipalities with a visual exposure to an

average number above two (D > 2). The continuous treatment variable for both intensity

groups is constructed by calculating the average number of turbines visible within 4 km

from the residential areas, weighted by the share of the residential area from where the

turbines are visible:5

Dmt =
n∑

i=1

wtit ∗ sharevisibleimt

Most of the municipalities in the treatment group are on average visually exposed by

less than or equal to one turbine (Figure 5) and only 86 are on average visually exposed

to over ten turbines.

With the additional assumption of homogeneous responses across different exposure

intensities,6 the Average Causal Response (ACR) for a particular intensity d is given by

eq. (3).

ACR(g, d) =
∂[Yg − Yg−1|Gg = 1, Dg = d]

∂d
(3)

5For example, if 25 percent of the visible part of the residential area of municipality m is visually
exposed to one turbine and 75 percent is visually exposed to two turbines, the value of the treatment
variable in the post-treatment period t = g is equal to: Dmt = 0.25 · 1 + 0.75 · 2 = 1.75

6This assumption implies that proportional changes in vote share in response to certain visual
exposure would have been the same for all municipalities independent of their actual visual exposure
intensity. Thus, changes in the vote share for municipalities with a low visual exposure are a good
counterfactual for municipalities with a high visual exposure had they had the same treatment intensity
(Callaway et al., 2021).
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Figure 5 – Distribution of the treatment variable up to an average number of ten visible
turbines. The red dashed line visualizes the split between low and high intensity subgroups.

6.5 Estimation

Both the ATT and ACR are estimated via eq. (4) given by the slope parameter of

the treatment variable Dmgt for each timing group g = 2002, ..., 2021. ηmg and ψt

are municipal and election period fixed effects. In order to make the parallel trend

assumption more plausible, we also estimate the model with an inclusion of potential

relevant socioeconomic covariates Xmgt, controlling for the municipal population density,

the share of workers with an university degree, the unemployment rare and the per person

income tax revenue.

Ymgt = ηmg + ψt + βDmgt +X ′
mgtγ + ϵmgt (4)

In the level specification, β corresponds to the average effect of visual exposure on

the election outcome, whereas in the continuous specification, the parameter targets a

weighted average of responses to different visual exposure intensities for both subgroups

(D ≤ 2 and D > 2) of each timing group g.

6.6 Accounting for anticipation

In Germany, the duration of the planning and approval of a wind turbine is on average 4.75

years (FA Wind, 2015). These procedures include location assessments such as sound and

shadow forecasts and public debates. Thus, voters might reveal their support or rejection

at the ballot box before the turbine is commissioned at an earlier election period and

therefore bias the estimates. To control for potential anticipation effects, we re-estimate

the model by shifting the base pre-treatment period from g − 1 to g − δ − 1 where δ
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represents the number of anticipation periods (eq. (5), eq. (6)). An anticipation of one

election period (δ = 1) increases the difference between the pre-treatment election and

the earliest date a turbine is constructed to four years which arguably should account for

most of the anticipation effect. Although this relaxes the assumption of no anticipation,

it also limits the number of timing groups for which we can estimate the response, since

it is not possible to estimate the effect for the second timing group (g = 2002) given that

voters in these municipalities already anticipate visual exposure or are already exposed

to the construction site in the first election period, implying that there is no untreated

period to compare to.

ATT (g, δ) = E[Yg − Yg−δ−1, Gg = 1]− E[Yg − Yg−δ−1, Dg+δ = 0] (5)

ACR(g, d, δ) =
∂[Yg − Yg−δ−1|Gg = 1, Dg = d]

∂d
(6)

7 Preliminary Results

Figure 6, Figure 7 and Figure 8 illustrate the ATT and ACR at a distance of 4 km for

the six timing groups (2002 to 2021). The results of both the estimated ATT and ACR

suggest that visual exposure from turbines has little impact for all timing groups except

the last one.

While the point estimates are small in magnitude and insignificant up to timing

group of 2013 for the ATT as well as the ACR (Table A), visibility is associated with a

significant decrease in Green party vote share for the municipalities first visually exposed

in the 2017 and 2021 election period (Table 7). For the 2017 timing group, visual exposure

is associated with a 0.26 to 0.27 percentage point decrease in Green Party vote share,

significant at the 5 percent level, and 0.29 to 0.3 percentage points when anticipation is

accounted for, suggesting that voters barley respond in the planning and construction

phases. The estimated effects of the 2021 timing group are almost ten times higher with

an effect of -2.4 to -2.6 percentage points, significant at the 1 percent level. While the

marginal effects are insignificant for the 2017 timing group, municipalities of the 2021

timing group with up to two turbines visible associates an additional turbine visible in the

settlement area with a 0.9 percentage point decrease in the Green vote share, significant

at the 5 percent level and up to -1 percentage point when anticipation is accounted for

(Figure 8). The ACR for municipalities where more than two turbines are visible is

not significant (Figure 7), suggesting that the effect is mainly driven by the first visible

turbines and diminishes with additional turbines.
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Table 1 – ATT results for 2017

Dependent Variable: Vote share Green Party (%)
No Anticipation Anticipation

Model: (1) (2) (3) (4)

Variables
log(population density) 7.7∗∗∗ (2.7) 1.6 (1.9)
Share university degree (%) 0.37∗ (0.19) 0.08 (0.10)
Unemployment rate (%) 0.25∗ (0.13) 0.19 (0.13)
Income tax revenue (PC) 0.04 (0.10) -0.10 (0.12)
post × treat.view.majority.4.did -0.27∗ (0.14) -0.26∗ (0.14) -0.30∗∗ (0.14) -0.29∗∗ (0.14)

Fixed-effects
Election Period Yes Yes Yes Yes
Municipality Yes Yes Yes Yes

Fit statistics
Observations 1,640 1,640 1,640 1,640
R2 0.92154 0.91644 0.92884 0.92778

Clustered (County) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 2 – ATT results for 2021

Dependent Variable: Vote share Green Party (%)
No Anticipation Anticipation

Model: (1) (2) (3) (4)

Variables
log(population density) 10.5 (12.7) 5.0 (8.2)
Share university degree (%) 0.83∗∗ (0.38) 1.1∗∗∗ (0.30)
Unemployment rate (%) -1.3 (0.78) -0.24 (0.54)
Income tax revenue (PC) 0.38 (0.70) 7.0 (8.0)
post × treat.view.majority.4.did -2.5∗∗ (0.92) -2.4∗∗ (0.92) -2.1∗∗ (0.81) -2.6∗∗ (0.99)

Fixed-effects
Election Period Yes Yes Yes Yes
Municipality Yes Yes Yes Yes

Fit statistics
Observations 264 264 264 264
R2 0.89520 0.88744 0.86389 0.83755

Clustered (County) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Figure 6 – Estimated ATT for each timing group

(a) With covariates (b) Without covariates

(c) With cov., accounting for anticipation (d) Without cov., accounting for anticipation

8 Robustness Tests

One of the major threats to the validity of the results is the small number of municipalities

in later timing groups, especially in the 2021 group. To increase the number of

observations per group, we extend the distance threshold to six kilometers. Figure A-

4 shows that with the extended threshold, the number of municipalities in each timing

group increases considerably. Since the perceived size of turbines decreases approximately

linearly at these distances, increasing the maximum distance also reveals whether

impacts actually decrease with increasing proximity. The results are very similar to

the baseline cut-off specification, but of a smaller magnitude and insignificant results

for the 2017 timing group (Figure A-5), confirming this relationship. While the number

of municipalities in the 2021 timing group is still relatively small, the lower but similar

estimation results are consistent with visual theory.

Next, we also test whether and to what extent the effects are affected by endogeneity.

For example, the estimate is biased if turbine construction is more likely within the

viewshed of areas where Green Party support is high. A potential negative effect of visual

exposure for early timing groups could be masked by an opposing positive effect of higher

support for these projects relative to the control group, resulting in small and insignificant

estimates. To reduce such potential problems, we exploit the staggered treatment roll-out
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Figure 7 – Estimated ACR (D ≥ 2) for each timing group

(a) With covariates (b) Without covariates

(c) With cov., accounting for anticipation (d) Without cov., accounting for anticipation

Figure 8 – Estimated ACR (D ≤ 2) for each timing group

(a) With covariates (b) Without covariates

(c) With cov., accounting for anticipation (d) Without cov., accounting for anticipation
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by restricting the control group to municipalities visually exposed one period later than

the treatment group, i.e., g + 1 and g + 2 when accounting for anticipation (eq. (7) and

eq. (8)).

ATT (g) = E[Yg − Yg−1, Gg = 1]− E[Yg − Yg−1|Dg = 0, Dg+1 = 1] (7)

ATT (g, δ) = E[Yg − Yg−δ−1, Gg = 1]− E[Yg − Yg−δ−1|Dg+δ = 0, Dg+δ+1 = 1] (8)

Assuming that support is similar for municipalities treated within two (or three)

election periods, effects induced by reverse causality should be cancelled out. Due to

the restriction that the control groups consist only of municipalities with future visual

exposure, there is no longer a control group for the last group (g = 7) to compare

to. Thus, we can recover the ATT only for the 2002 to 2017 elections. Accounting for

anticipation further limits the number of estimable ATT’s to timing group three, four

and five. Since we chose δ = 1, municipalities visually exposed in the last election period

(g = 7) already anticipate their treatment in the penultimate period (t = g − 1). Thus,

for municipalities exposed in the second to last election period (g = 6), there is no longer

a control group with untreated outcomes. Analogous to the baseline specification, it is

also not possible to estimate the effect for the second group (g = 2) because voters in

these municipalities already expect construction in the first election period (t = g − 1).

Figure A-6 shows that the results are comparable to those of the baseline specification,

suggesting that the estimated effects are not due to endogeneity. A limitation of the

test is that it cannot detect the temporal endogeneity of the different treatment timings

between each treatment and control group. It is possible that residents in municipalities

seeing a turbine in their settlement area in an earlier election period were less likely to

resist, which could also explain the switch to a negative effect of the last two timing

groups. We will discuss this in Section 9. On the other hand, the pre-treatment vote

share is less than or equal to that of the control group, indicating that support in these

areas is similar to that in the control group, an argument for treatment exogeneity.

9 Interpretation and Discussion

Our preliminary results suggest that building a wind turbine that is visible from a

settlement does not come with strong negative impact on the Green party’s local vote

share in most of the last decades. Nevertheless, there seems to be a recent trend in this

direction, as suggested by the jump in the only significant coefficients between the last

election periods in 2017 and 2021. Various factors might play a role in explaining this

development.

First of all, wind turbines have already been built for many years in those regions which

were geographically appropriate and where arguably local politicians as well as voters
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might have been more supportive. Once these low-hanging fruits have been grasped,

locations have been chosen that might have been less inclined. These inherent differences

between early wind turbine adopters and laggards that explain the varying effects over

time. Moreover, this might be mirrored in the finding of Allcott (2015) about energy

conservation programs in the U.S., namely that results from first adopters overstate the

overall efficiency because of their concentration in the most environmentalist-friendly

areas, which changes as the measure expands to the rest of the country. Similarly, wind

turbines can now be thought to be expanding to some less supportive areas.

Several studies have shown that while wind farms are generally supported by a

majority, political engagement by local citizens’ initiatives can in turn have a negative

impact on support for expansion (Hobman et al., 2012, Horbaty et al., 2012, Gardt

et al., 2021). Azau (2011) estimates that 30 percent of unfinished wind farm projects

in Europe are stopped due to litigation and public opposition. Similar to Gardt et al.

(2021), we use data from Germany’s largest anti-wind protest platform to identify the

location of each initiative and determine in which municipality a group was active.7 Up

to the 2009 timing group, the share of municipalities reporting a citizens’ initiative is

below ten percent, after which it increases with the largest jump from the penultimate

to the last timing group, where almost a quarter of all municipalities had an initiative

within their municipal borders (Figure 9).8 Thus, these initiatives may have delayed

the installation of turbines until the last election periods by swaying public opinion to a

rejectionist side, which could subsequently be reflected in the Green Party’s vote share

once the turbines were installed. Additionally, municipalities in the 2021 timing group

are on average more densely populated and consist of more suburbs, implying that

expansion in recent years has moved closer to the homes of more voters in the respective

municipalities, increasing the likelihood of affecting voters who change their attitudes

after exposure.

Besides the effect of early and late adopters of wind energy generation, the public

debate about climate action also plays a role. In the years up to the 2021 election, the

’Fridays for Future’ movement of young activists have put the issue on the political

agenda and raised awareness, but also polarization (Fabel et al., 2022). Against the

backdrop of this overall environmental agenda, the local effects of renewable energy

propagation, namely the construction of wind turbines close the certain settlements,

have been on more people’s minds.

7The data is taken from the platform ”windwahn.de” and includes the link to the website of the
initiative as well as the geo-coordinates, but the information cannot be validated externally.

8Since the data on initiatives is limited to online registrations, the increase in the early timing groups
may reflect the increase in internet usage, while the rise in the last timing group cannot be explained by
this, given similar internet use in 2017 as in 2021.
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Figure 9 – Share of municipalities with a citizens’ initiative per timing group

Figure 10 – Google trends search volumes for ’Windkraft’ (’Wind energy’) and ’Windrad’
(’Wind turbine’)

This is also illustrated by Google trends results of the German terms ”Windkraft”

(”Wind energy”) and ”Windrad” (”Wind turbine”) from January 2008 to April 2022.

Figure 10 shows that there is a notable jump in spring 2011 coinciding with the

Fukushima nuclear disaster and the German government’s decision to end the generation

of nuclear energy. In the following years, fewer and fewer searches were conducted with

the wind energy term as a concept, but more about wind turbines at the individual level.

It is conceivable that the strong media coverage and the polarized public climate debate

have intensified the reaction of some voters to the construction turbines in the vicinity.

There are obviously other aspects to consider, as well as some caveats. Crucially,

our study only measures the reaction of potential Green voters, hence people who might

consider voting for the Green party at all and whose voting decision would be affected

by a visible wind turbine. Voters who would never even consider voting for the Greens

might react to wind turbines in ways which we cannot consider in our study because

24



there would be too many other confounding factors. On the other hand, this focus on

the Green party brings with it the advantage of a clean identification. We might go

as far as to suggest that any strongly negative effect would capture NIMBY behavior:

These are potential Green voters, hence those who are purportedly in favor of renewable

energy, yet vote against the Greens once a visible wind turbine ’in their own backyard’

is built.

One caveat of our study is that we cannot measure the potential wind energy benefits

of local residents in the form of cheaper electricity. Depending on the wind turbine

operator, some local households are eligible to cheaper electricity, with the details

varying across Germany (Diermann, 2023). It would be interesting to see to what extent

these monetary benefits influence the acceptance of wind turbines despite their visibility.

10 Conclusion

We study the reactions of voters after the construction of a wind turbine in their visible

neighborhood. Exploiting fine-grained data from Germany from 1998 to 2021 and

robust econometric methods based on difference-in-difference with anticipation effects,

we are able to reconcile some of the ambiguous empirical results to date. Yet, the prime

contribution of this paper is based on our calculation of the wind turbines’ viewshed,

allowing us the determine to what extent each wind turbine in Germany is visible from

nearby settlement areas. The ’visible intrusion of the landscape’ (Wolsink, 2000, p.51) is

one of the most cited arguments by local opponents of this form of energy generation, yet

has never been analyzed in that way. Focusing on the visibility of turbines allows us also

to elucidate possible NIMBYism, because people who oppose wind energy in general (e.g.

because of bird endangerment) should do so whether or not the wind turbine is visible

to them. Our analysis therefore leads to new insights on what drives the acceptance of

wind turbines and whether the expansion of wind energy poses a risk to the vote share

of pro-renewable parties in rural areas, further deepening the urban-rural divide.

Summarizing, our preliminary results suggest a cautious relief for pro-renewable

energy parties. Constructing a wind turbine that is visible from a nearby settlement

is not followed by a decrease in the Green party’s local vote share in most of the last

decades. However, our results also suggest that this general pattern changes from 2017

and intensifies in the 2021 election period, where a backlash is observed. The results echo

the widely cited growing tensions over where development should occur, with expansion in

more densely populated areas and those with lower levels of support, which is also reflected

in an increase in the formation of local citizens’ groups against these projects. While
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more research is needed on the channels to obtain public support, our study illustrates

the importance of careful consideration of the local effects of global environmental policy.
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A Appendix: Additional Results and Robustness

Checks

Figure A-1

(a) Geographic distribution timing groups (b) Urbanization distribution timing groups

(c) Population density per timing groups (d) Number of municipalities per timing group
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Figure A-2 – 2002

(a) Without covariates (b) 2005

(c) 2009 (d) 2013

(e) 2017 (f) 2021
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Figure A-3 – Aggregated event study

(a) With covariates (b) Without covariates

(c) With cov., accounting for anticipation (d) Without cov., accounting for anticipation

Figure A-4 – Number of turbines visible per timing group up to a 6km threshold
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Figure A-5 – Estimated ATT for each timing group 6km

(a) With covariates (b) Without covariates

(c) With cov., accounting for anticipation (d) Without cov., accounting for anticipation

Table A-1 – ATT results for 2002

Dependent Variable: Vote share Green Party (%)
No Anticipation

Model: (1) (2)

Variables
log(population density) 5.3∗∗∗ (1.1)
Share university degree (%) 0.89∗∗∗ (0.23)
Unemployment rate (%) -0.16∗∗∗ (0.03)
Income tax revenue (PC) 0.35 (0.25)
post × treat.view.majority.4.did -0.09 (0.09) -0.05 (0.11)

Fixed-effects
Election Period Yes Yes
Municipality Yes Yes

Fit statistics
Observations 6,910 6,910
R2 0.90218 0.89506

Clustered (County) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A-2 – ATT results for 2005

Dependent Variable: Vote share Green Party (%)
No Anticipation Anticipation

Model: (1) (2) (3) (4)

Variables
log(population density) -2.2 (2.2) 2.9∗∗∗ (0.97)
Share university degree (%) -0.65∗ (0.37) 0.21 (0.17)
Unemployment rate (%) 0.06 (0.07) 0.006 (0.08)
Income tax revenue (PC) -0.11 (0.29) -0.17 (0.24)
post × treat.view.majority.4.did -0.02 (0.16) -0.01 (0.16) -0.18 (0.14) -0.16 (0.14)

Fixed-effects
Election Period Yes Yes Yes Yes
Municipality Yes Yes Yes Yes

Fit statistics
Observations 1,464 1,464 1,464 1,464
R2 0.94273 0.94173 0.92283 0.92089

Clustered (County) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table A-3 – ATT results for 2009

Dependent Variable: Vote share Green Party (%)
No Anticipation Anticipation

Model: (1) (2) (3) (4)

Variables
log(population density) -1.2 (3.6) 3.5∗∗ (1.7)
Share university degree (%) 0.85∗ (0.50) 0.23 (0.39)
Unemployment rate (%) 0.32∗∗ (0.13) -0.006 (0.13)
Income tax revenue (PC) 0.58 (0.98) -0.17 (0.64)
post × treat.view.majority.4.did 0.34 (0.28) 0.31 (0.28) 0.44 (0.29) 0.48 (0.29)

Fixed-effects
Election Period Yes Yes Yes Yes
Municipality Yes Yes Yes Yes

Fit statistics
Observations 888 888 888 888
R2 0.88236 0.87503 0.86228 0.86026

Clustered (County) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A-4 – ATT results for 2013

Dependent Variable: Vote share Green Party (%)
No Anticipation Anticipation

Model: (1) (2) (3) (4)

Variables
log(population density) -2.3 (3.9) 1.7 (2.4)
Share university degree (%) -0.009 (0.32) 0.09 (0.13)
Unemployment rate (%) 0.03 (0.12) 0.05 (0.12)
Income tax revenue (PC) -0.35 (1.6) -0.63 (0.45)
post × treat.view.majority.4.did -0.15 (0.23) -0.16 (0.23) -0.06 (0.22) -0.06 (0.22)

Fixed-effects
Election Period Yes Yes Yes Yes
Municipality Yes Yes Yes Yes

Fit statistics
Observations 784 784 784 784
R2 0.93624 0.93614 0.91018 0.90810

Clustered (County) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table A-5 – ACR (D > 2) results for 2002

Dependent Variable: Vote share Green Party (%)
No Anticipation

Model: (1) (2)

Variables
log(population density) 9.0∗∗∗ (1.8)
Share university degree (%) 0.17 (0.45)
Unemployment rate (%) -0.11∗ (0.07)
Income tax revenue (PC) 0.33 (1.2)
Mean turbines visible (N) 0.02 (0.02) 0.006 (0.03)

Fixed-effects
Election Period Yes Yes
Municipality Yes Yes

Fit statistics
Observations 974 974
R2 0.89366 0.88185

Clustered (County) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A-6 – ACR (D > 2) results for 2005

Dependent Variable: Vote share Green Party (%)
No Anticipation Anticipation

Model: (1) (2) (3) (4)

Variables
log(population density) -2.1 (3.6) -2.1 (3.6)
Share university degree (%) -0.56 (0.69) -0.56 (0.69)
Unemployment rate (%) 0.36∗∗∗ (0.13) 0.36∗∗∗ (0.13)
Income tax revenue (PC) 0.98 (0.88) 0.98 (0.88)
Mean turbines visible (N) 0.03 (0.04) 0.03 (0.04) 0.03 (0.04) 0.03 (0.04)

Fixed-effects
Election Period Yes Yes Yes Yes
Municipality Yes Yes Yes Yes

Fit statistics
Observations 166 166 166 166
R2 0.96572 0.96265 0.96572 0.96265

Clustered (County) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table A-7 – ACR (D > 2) results for 2009

Dependent Variable: Vote share Green Party (%)
No Anticipation Anticipation

Model: (1) (2) (3) (4)

Variables
log(population density) -7.5 (8.3) 5.9 (6.3)
Share university degree (%) -1.8 (1.1) -0.04 (0.72)
Unemployment rate (%) 0.53∗∗∗ (0.14) 0.29 (0.20)
Income tax revenue (PC) -3.7∗∗ (1.7) 1.6 (2.4)
Mean turbines visible (N) -0.17 (0.13) -0.21∗∗ (0.09) -0.21∗∗ (0.10) -0.26∗∗ (0.11)

Fixed-effects
Election Period Yes Yes Yes Yes
Municipality Yes Yes Yes Yes

Fit statistics
Observations 102 102 102 102
R2 0.87414 0.85569 0.89263 0.88715

Clustered (County) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

vii



Table A-8 – ACR (D > 2) results for 2013

Dependent Variable: Vote share Green Party (%)
No Anticipation Anticipation

Model: (1) (2) (3) (4)

Variables
log(population density) 10.6∗ (6.0) -5.5 (3.8)
Share university degree (%) -0.39 (0.31) 0.10 (0.20)
Unemployment rate (%) -0.81 (0.63) 0.26 (0.20)
Income tax revenue (PC) 3.7∗ (2.0) -0.17 (1.2)
Mean turbines visible (N) 0.12 (0.09) 0.10 (0.08) 0.16∗∗∗ (0.05) 0.19∗∗∗ (0.04)

Fixed-effects
Election Period Yes Yes Yes Yes
Municipality Yes Yes Yes Yes

Fit statistics
Observations 106 106 106 106
R2 0.95456 0.94661 0.95357 0.94758

Clustered (County) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table A-9 – ACR (D > 2) results for 2017

Dependent Variable: Vote share Green Party (%)
No Anticipation Anticipation

Model: (1) (2) (3) (4)

Variables
log(population density) 11.1∗∗∗ (3.8) 3.1 (3.0)
Share university degree (%) 0.19 (0.31) 0.04 (0.21)
Unemployment rate (%) 0.33 (0.44) -0.30 (0.21)
Income tax revenue (PC) -0.11 (0.13) 0.005 (0.14)
Mean turbines visible (N) -0.07 (0.13) -0.11 (0.12) 0.03 (0.14) 0.01 (0.14)

Fixed-effects
Election Period Yes Yes Yes Yes
Municipality Yes Yes Yes Yes

Fit statistics
Observations 242 242 242 242
R2 0.93324 0.92546 0.93460 0.93319

Clustered (County) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A-10 – ACR (D > 2) results for 2021

Dependent Variable: Vote share Green Party (%)
No Anticipation Anticipation

Model: (1) (2) (3) (4)

Variables
log(population density) 77.4 (84.5) 11.1 (23.8)
Share university degree (%) 2.8 (1.9) 0.82 (0.92)
Unemployment rate (%) -6.5 (3.7) -4.2∗∗ (1.8)
Income tax revenue (PC) 34.7 (24.0) 6.5 (10.9)
Mean turbines visible (N) 0.12 (1.4) -0.51 (1.1) -1.9 (1.2) -1.6 (1.2)

Fixed-effects
Election Period Yes Yes Yes Yes
Municipality Yes Yes Yes Yes

Fit statistics
Observations 34 34 34 34
R2 0.86347 0.81059 0.88991 0.81646

Clustered (County) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table A-11 – ACR (D < 2) results for 2002

Dependent Variable: Vote share Green Party (%)
No Anticipation

Model: (1) (2)

Variables
log(population density) 5.4∗∗∗ (1.1)
Share university degree (%) 0.87∗∗∗ (0.23)
Unemployment rate (%) -0.16∗∗∗ (0.03)
Income tax revenue (PC) 0.36 (0.25)
Mean turbines visible (N) 0.0007 (0.02) -0.007 (0.02)

Fixed-effects
Election Period Yes Yes
Municipality Yes Yes

Fit statistics
Observations 6,910 6,910
R2 0.90214 0.89506

Clustered (County) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A-12 – ACR (D < 2) results for 2005

Dependent Variable: Vote share Green Party (%)
No Anticipation Anticipation

Model: (1) (2) (3) (4)

Variables
log(population density) -2.2 (2.2) -2.2 (2.2)
Share university degree (%) -0.64∗ (0.37) -0.64∗ (0.37)
Unemployment rate (%) 0.06 (0.07) 0.06 (0.07)
Income tax revenue (PC) -0.11 (0.29) -0.11 (0.29)
Mean turbines visible (N) 0.02 (0.03) 0.02 (0.03) 0.02 (0.03) 0.02 (0.03)

Fixed-effects
Election Period Yes Yes Yes Yes
Municipality Yes Yes Yes Yes

Fit statistics
Observations 1,464 1,464 1,464 1,464
R2 0.94276 0.94178 0.94276 0.94178

Clustered (County) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table A-13 – ACR (D < 2) results for 2009

Dependent Variable: Vote share Green Party (%)
No Anticipation Anticipation

Model: (1) (2) (3) (4)

Variables
log(population density) -0.87 (3.5) 3.8∗∗ (1.8)
Share university degree (%) 0.86∗ (0.50) 0.24 (0.40)
Unemployment rate (%) 0.32∗∗ (0.13) -0.003 (0.13)
Income tax revenue (PC) 0.58 (0.98) -0.11 (0.63)
Mean turbines visible (N) 0.02 (0.06) -0.005 (0.06) 0.02 (0.06) 0.006 (0.06)

Fixed-effects
Election Period Yes Yes Yes Yes
Municipality Yes Yes Yes Yes

Fit statistics
Observations 888 888 888 888
R2 0.88192 0.87459 0.86149 0.85929

Clustered (County) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A-14 – ACR (D < 2) results for 2013

Dependent Variable: Vote share Green Party (%)
No Anticipation Anticipation

Model: (1) (2) (3) (4)

Variables
log(population density) -2.4 (3.8) 1.5 (2.3)
Share university degree (%) -0.004 (0.31) 0.11 (0.13)
Unemployment rate (%) 0.04 (0.12) 0.06 (0.12)
Income tax revenue (PC) -0.43 (1.6) -0.69 (0.45)
Mean turbines visible (N) 0.02 (0.04) 0.02 (0.04) 0.08∗∗ (0.04) 0.06 (0.04)

Fixed-effects
Election Period Yes Yes Yes Yes
Municipality Yes Yes Yes Yes

Fit statistics
Observations 784 784 784 784
R2 0.93620 0.93609 0.91080 0.90849

Clustered (County) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table A-15 – ACR (D < 2) results for 2017

Dependent Variable: Vote share Green Party (%)
No Anticipation Anticipation

Model: (1) (2) (3) (4)

Variables
log(population density) 7.6∗∗∗ (2.7) 1.5 (1.9)
Share university degree (%) 0.36∗ (0.20) 0.08 (0.10)
Unemployment rate (%) 0.24∗ (0.13) 0.19 (0.13)
Income tax revenue (PC) 0.04 (0.10) -0.09 (0.12)
Mean turbines visible (N) -0.06 (0.06) -0.08 (0.06) -0.05 (0.05) -0.05 (0.05)

Fixed-effects
Election Period Yes Yes Yes Yes
Municipality Yes Yes Yes Yes

Fit statistics
Observations 1,640 1,640 1,640 1,640
R2 0.92148 0.91653 0.92864 0.92763

Clustered (County) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Figure A-6 – Estimated ATT for each timing group ’not yet treated’ control group

(a) With covariates (b) Without covariates

(c) With cov., accounting for anticipation (d) Without cov., accounting for anticipation

Table A-16 – ACR (D < 2) results for 2021

Dependent Variable: Vote share Green Party (%)
No Anticipation Anticipation

Model: (1) (2) (3) (4)

Variables
log(population density) 7.8 (11.6) 4.4 (7.9)
Share university degree (%) 0.94∗∗ (0.36) 1.1∗∗∗ (0.31)
Unemployment rate (%) -1.4 (0.84) -0.16 (0.55)
Income tax revenue (PC) 0.27 (0.64) 7.1 (7.8)
Mean turbines visible (N) -0.92∗∗ (0.36) -0.89∗∗ (0.37) -0.83∗∗ (0.32) -1.0∗∗ (0.39)

Fixed-effects
Election Period Yes Yes Yes Yes
Municipality Yes Yes Yes Yes

Fit statistics
Observations 264 264 264 264
R2 0.89429 0.88597 0.86442 0.83697

Clustered (County) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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