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Abstract

Demand for agricultural products is a major driver of deforestation in the Brazil-
ian Amazon. However, the extent of their deforestation impact is contested, as
deforested land is relatively unproductive, and many products are barred from
agriculture supply chains. In this paper, we quantify the deforestation impacts
of expanding agricultural production, differentiating it from other channels with
different implications for economic and environmental policy. We use a shift-share
design, exploiting international changes in beef consumption to causally identify
the deforestation impact of agricultural demand. We find that pasture and cattle
herd expansions are major direct drivers of deforestation. Their direct impacts
diminished during the recent deforestation boom, suggesting that land speculation
motives have become more important. Our findings indicate that intensification and
improved land tenure security could help decrease land pressure, but also highlight
that deforestation interventions need to target the dominant role of agricultural
production.
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1 Introduction

Deforestation in the Brazilian Amazon is on the rise again. After successfully reigning
in deforestation rates in the years 2003–2011 and a stagnation until roughly 2018, they
have increased sharply in the years thereafter. Similarly, other endangered biomes such as
the Cerrado, the world’s most biodiverse savanna, have come under pressure. Effectively
tackling biodiversity loss, climate change and the destruction of livelihoods requires
swift and decisive actions, involving policies that target the main drivers of deforestation
accurately. There are multiple dimensions to which this over-exploitation can be attributed:
weakening of environmental legislation (Garrett et al., 2021), declines in the enforcement
capacities of environmental policy agencies (Kuschnig et al., 2023), and the generally
anti-environmental rhetoric of some of the more recent government administrations (Oliveira
et al., 2023). While these institutional factors play an important role, one of the key
aspects is the clearing of forest and other vegetation for agricultural uses.

In Brazil, large swaths of areas in the Amazon and other endangered biomes are
deforested to be used as cattle pasture or soybean plantations (c.f. Figure 1). The
expansion of cattle pasture has been identified to be the proximate cause of around 70%
of total deforestation in the Brazilian Amazon in recent years (MapBiomas, 2023), much
of which occurs illegally (Rajão et al., 2020). It has also been a major driver of vegetation
loss in the Cerrado biome, in which more than half of the area is now used for agricultural
purposes, with cattle pasture being the dominant land use type by now (MapBiomas,
2023). In recent years however, the centre of the Brazilian beef industry has continuously
moved northwards and shifted into the Amazon (Vale et al., 2022). The conversion of
pristine forest to pasture and subsequent beef production, or other agricultural purposes,
has disastrous environmental consequences. Besides dramatic impacts on local biodiversity
(Gibson et al., 2011), changes in regional climatic conditions (Leite-Filho et al., 2021), and
the adverse effects on the livelihoods of indigenous people (Villén-Pérez et al., 2022), these
land use changes are a major source of greenhouse gas emissions (Houghton et al., 2012),
adding a global dimension to the problem. The Brazilian beef industry alone causes up to
a fifth of all commodity-driven emissions from the tropics worldwide (Pendrill et al., 2019),
at a scale comparable to total emissions of major polluters such as South Africa. With
most of Brazil’s commitments for reducing greenhouse gas emissions relying on curbing
deforestation (Rochedo et al., 2018), the agricultural sector and related land use changes
play an immense role in achieving these goals.

There are multiple motives behind the agricultural expansion and accompanying
deforestation in tropical rainforests. Rising demand for agricultural products, both
domestically and in emerging countries, is a crucial factor for the expansion of agricultural
production (Cusack et al., 2021). Changes towards a more meat-oriented diet, especially
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Figure 1: Land cover in the Legal Amazon in 2000 and 2020, with pristine forest formation
in dark green, savanna formation in light green, pasture in yellow, and croplands in purple.
Source: MapBiomas (2023)

beef products, in emerging countries such as China have been fuelling land use pressure in
tropic forests and is thought of as a primary driver of deforestation in sensitive ecosystems
such as the Amazon (zu Ermgassen et al., 2020). At the same time, illegal appropriation
of public land for speculative reasons has been highlighted as another major driver of
deforestation and has surged in recent years (e.g. Carrero et al., 2022), with weak land
governance, as is often the case in emerging economies in the tropics, paving the way
for it (Reydon et al., 2020). Land grabbing is often achieved by first illegally deforesting
areas and then putting them to (apparent) agricultural use in order to claim ownership
rights. In the context of the Brazilian Amazon cattle acts as the predominant vehicle for
appropriation (Fearnside, 2017) and thus serves two purposes: (1) allowing for the illegal
appropriation of lands, while (2) also increasing the value of the appropriated land with
some form of agricultural use. As such, it remains unclear whether and to what extent the
agricultural expansion in Brazil, and here especially the conversion to cattle pasture, is
due to purely demand-driven considerations or serves as a vehicle for land appropriation.1

Against this backdrop, it seems to pertinent to have a good understanding of the
effects that the various channels behind the agricultural expansion have. Yet, disentangling
them remains a conundrum yet to be solved in the literature. In this paper, we propose

1This issue is also at the forefront in the academic debate. For example, De Oliveira Silva et al. (2021)
state that in recent years “[...] grazing animals are used to facilitate conversion and signal ownership,
rather than being the primary driver [...]” in the Amazon. This claim is contested by França et al. (2021),
analyzing the extensive and intensive margins of the livestock industry in the Brazilian Amazon, and
concluding that livestock intensification for the satisfaction of beef demand so far has not prevented
pasture area extension in the Amazon.
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an empirical specification to identify the causal effect of the demand-driven agricultural
expansion on deforestation in the Brazilian Amazon. We use a shift-share design where
we interact information about pre-existing production patterns, the share component of
our Bartik instrument, with exogenous changes in the demand for beef products, the shift.
For the construction of the share we rely on geo-referenced information of the location of
export-eligible slaughterhouses in Brazil in conjunction with initial pasture area or cattle
head shares. The shift part leverages changes in dietary habits in the largest importing
market for beef products from Brazil, China. Alternatively, we use municipality-specific
export statistics to incorporate information for all export destinations. The proposed
approach isolates plausibly exogenous shifts in the demand for beef products from other
factors behind the expansion of pasture and the livestock sector. This, in turn, allows us
to identify the causal effects of the agricultural expansion on deforestation in Brazil.

Our results show that demand-driven agricultural expansion is a major driver of forest
loss in the Brazilian Amazon and other endangered biomes in the period from 2003–2022.
Increases in the area of pasture and the headstock of cattle to satisfy the growing demand
for beef products displace forest and other vegetation at an alarming rate. In the Amazon,
one additional hectare of pasture due to the growing demand of beef products reduces
forest and forest-like vegetation cover by 0.75 and 0.81 hectare, respectively, whereas
an additional unit of cattle reduces them by 0.51 and 0.62 hectare. We further show
that some of these displacement effects extend also to other endangered biomes within
Brazil such as the Cerrado, albeit in smaller magnitude. However, the displacement effects
caused by the demand-driven agricultural expansion are weaker in more recent years. This
weakening is confirmed by an analysis using an alternative instrument utilizing detailed
municipality-level export statistics linking beef exports to destinations world-wide. We
conjecture that other motives behind the agricultural expansion, such as land appropriation,
have become more important in recent years. Moreover, additional results inform the debate
surrounding the reconciliation of increasing agricultural production without increasing
land pressure via the intensification of livestock.

We proceed as follows. The next section gives an overview deforestation and its drivers
in Brazil, the significance and expansion of the Brazilian agriculture sector, and the
Brazilian environmental policy landscape, and how it has been undermined. Against this
background, we formulate our empirical specification in the subsequent section, before
presenting our results based on it. We conclude with a brief discussion and an outlook for
future research.
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2 Background

The Amazon is the world’s largest rainforest with an area of 5.5 square kilometres, of which
around 60% are located within the borders of Brazil. It plays a crucial role in upholding
biodiversity, harboring almost 7,000 tree types (Cardoso et al., 2017), as well as in the
maintenance of a stable regional and global climate (Leite-Filho et al., 2021). Historically,
the Amazon has acted as a carbon sink, with its forests sequestering greenhouse gases
from the atmosphere. However, in the past decades roughly 17% of forests in the Amazon
have been lost (MapBiomas, 2023) and continued deforestation leave it at risk to become
a major carbon source (Gatti et al., 2021). More than 80% of cleared area was converted
into agricultural land, with nine tenths thereof being converted to pasture (MapBiomas,
2023). In this section, we given an overview of the potential drivers behind deforestation
more generally, the role of agriculture in the Brazilian Amazon more specifically as well as
the Brazilian environmental protection landscape.

Drivers of deforestation

Generally, drivers of forest loss can be summarized as (a) commodity-driven deforestation,
(b) shifting agriculture, (c) forestry, (d) wildfire, and (e) urbanization (Curtis et al., 2018).
These factors are distributed unevenly over the globe, with commodity-driven deforestation
being predominant in Latin America and the Brazilian Amazon in particular. In the region,
shifting agriculture and wildfires have to be seen in the context of deforestation (Escobar,
2019; Mataveli et al., 2022), and forestry is rare (Curtis et al., 2018). Deforestation decisions
themselves are impacted and driven by a variety of factors (Busch and Ferretti-Gallon,
2017) that one can summarize into ones that (a) affect the potential value of cleared land
(e.g. agricultural suitability and mineral deposits), and (b) determine whether and to which
extent this value can be realized and extracted (e.g. land tenure security, infrastructure).

In the context of the Brazilian Amazon, the value of land largely stems from resource
extraction or potential for it. At present, the most prominent resources are two agricultural
commodities — beef and soy (zu Ermgassen et al., 2020; Lima et al., 2019; Rajão et al., 2020).
Both require large swaths of land and their expansion is facilitated by and concentrated
along infrastructure such as roads or slaughterhouses in the case of beef. This is also
visible in Figure 1, where, for example, in the state of Parà the expansion of new pasture
area is mainly concentrated along the BR-163 and BR-230 highways. Both soy and and
beef products have been specifically targeted with (voluntary) private-sector deforestation
interventions, such as the Soy Moratorium and Cattle Agreements (Gibbs et al., 2015;
Alix-Garcia and Gibbs, 2017), which seek to decouple the commodities from Amazon
deforestation. However, their impacts are limited by complex monitoring requirements and
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limited applicability (Gollnow et al., 2018; Soterroni et al., 2019), which is especially in the
case of the beef industry due to leakage and indirect sourcing of cattle (Alix-Garcia and
Gibbs, 2017). Another considerably source of (potential) land value are mineral deposits.
Mineral extraction has been expanding into ecologically vulnerable regions (Luckeneder
et al., 2021), and has been linked to deforestation in the Amazon (Sonter et al., 2017),
though the direct land use footprint of industrial mining is comparatively limited (Giljum
et al., 2022). Nonetheless, indirect effects, including potential increases in land value from
prospects of future mineral extraction and associated infrastructure developments in the
vicinity, remain a large threat to the Amazon.

Fluctuations in prices of agricultural goods are important factors influencing deforesta-
tion decisions (Assunção et al., 2015), and the high and rising demands for agricultural
commodities are largely unshakable features of the times. Agricultural production in
Brazil plays an important role in securing global food supplies, especially for satisfying
growing demand for meat (and here mainly beef) products resulting from dietary changes
in emerging markets such as China or the Middle East (zu Ermgassen et al., 2020; Cusack
et al., 2021). Intensification of agricultural production might present an alternative to
expansion into (relatively unproductive) forested areas in the Amazon (Garrett et al., 2018;
Marin et al., 2022; Zalles et al., 2019). However, the effectiveness of agricultural intensifi-
cation in reducing pressures at the extensive margin is contested (França et al., 2021) and
there is evidence that deforestation adversely affects agricultural yields (Leite-Filho et al.,
2021), threatening the sector in the progress.

Two further salient (historical) features of deforestation in Brazil are low costs of
non-compliance with environmental legislation, and low value of forested public land (as
opposed to appropriated land) — both for most individual actors (Carrero et al., 2022;
Coelho-Junior et al., 2022; Souza-Rodrigues, 2019). These factors behind deforestation
can be understood as impacting the perceived value of cleared and forested land, as well
as the costs of deforestation. These values and costs are not only affected by the current
situation (i.e. the current state of driving factors), but also by potential future situations
and changes therein. This presents an additional alignment problem in addition to the
alignment of individual and common interests (Souza-Rodrigues, 2019). These features
give rise to lopsided deforestation-decisions, even if there is little agricultural value to gain
from (cleared) land. Illegal deforestation on private properties is rampant (Coelho-Junior
et al., 2022) and land grabbing unrelenting (and almost government-approved) (Carrero
et al., 2022; Yanai et al., 2022), especially along highways and other newly accessible land
(Ferrante et al., 2021; Pinheiro et al., 2016).
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Agriculture and the beef industry in Brazil

The agricultural sector plays an important role in Brazil, both in the context of securing
livelihoods of local landowners and regional development as well as a driver of forest loss and
degradation. Agriculture and connected industries contribute roughly one quarter of overall
economic output in Brazil in recent years (CEPEA, 2023) and provided employment for
more than 18 million individuals in 2017 (Castro et al., 2020). The Brazilian beef industry
in particular has been growing strongly in the past decades (zu Ermgassen et al., 2020) and
contributed around 8% of total GDP in Brazil (CEPEA, 2023). While the contribution
of the overall agribusiness sector to Brazil’s economic output has decreased by roughly a
sixth, the contribution of livestock farming alone has more than doubled to around 2.6% of
GDP in 2023 (CEPEA, 2023). While large, consolidated farms are responsible for the bulk
of production of agricultural products in general and beef products in particular, small
farms (up to 100 hectare) constitute almost 90% of all farms, highlighting the importance
of the sector also for individual landowners (Rada et al., 2019).

Seen as a way for the development of remote areas and increasing prosperity among rural
farmers and landowners, the Brazilian government actively encouraged the agricultural
expansion in hitherto unexploited natural landscapes (Brancalion et al., 2016; Garrett
et al., 2021). In this context, beef cattle was the predominant vehicle to lay claim on
new areas on the agricultural frontier, whereas croplands were often converted from areas
previously used as pasture (Molossi et al., 2023). Historically, the beef industry, including
breeding and pasture areas as well as downstream industries for the processing of cattle (e.g.
slaughterhouses), was concentrated in the biomes of the Cerrado and Atlantic Forest in the
South of Brazil (Vale et al., 2022). Since the 1990s, a shift of production expansion towards
the North, into the Amazon biome, has been particularly pronounced. By now, the centre
of the beef industry infringes on the Amazon biome. Despite increases in the productivity
of existing pasture, i.e. intensification of livestock, up until recently this expansion mainly
took place at the extensive margin, i.e. by replacing pristine forest with additional pasture
(Molossi et al., 2023). The Brazilian Amazon has been disproportionately affected by these
trends in recent years. Whereas cattle herds and pasture areas have stagnated or slightly
decreased in other biomes in Brazil, they have continuously expanded in the Amazon
(França et al., 2021). Furthermore, for areas where intensification of livestock has occurred,
adverse effects on sensitive ecosystems such as the Amazon have been documented (Vale
et al., 2019).

The unparalleled expansion of the beef industry in recent years led to Brazil becoming
the world’s second-largest producer, trailing only the United States, and the largest exporter
globally for beef products (zu Ermgassen et al., 2020). Both the production and export of
beef products grew steadily over the past decades with the exception of exports reducing
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during the 2014–2016 recession caused by a devaluation of the Brazilian Real. Within
the portfolio of export markets, especially exports to emerging markets have skyrocketed
and China with its dependencies has become the largest export market for Brazilian beef
products, accounting for roughly two thirds of total exports nowadays (UN Comtrade,
2022). The Brazilian beef processing sector is the world’s largest and dominated by three
large meatpacking companies—JBS, Marfig, and Minerva—that account for roughly 50% of
the country’s market (Vale et al., 2022). These meatpackers are central for the coordination
of overall beef production and have signed voluntary zero-deforestation commitments—the
so-called Cattle Agreements—that aim to ban deforestation-implicated cattle from their
supply chains. These agreements could play an important role in curbing Amazonian
deforestation (Levy et al., 2023) but are prone to evasion through the indirect supply of
cattle raised on illegally deforested land (Alix-Garcia and Gibbs, 2017).

Deforestation interventions and their undermining in Brazil

The expansion of pasture areas and cattle placed upon them play a dual role in the
Brazilian Amazon, namely to satisfy the growing demand for beef products and as a
vehicle for land appropriation (Fearnside, 2017). Especially the latter channel has been
facilitated by changes in Brazil’s legal framework for sustaining natural vegetation and
curbing deforestation in the past decades. Originally established already in the 1930s,
the Native Vegetation Protection Law, colloquially referred to as the Forest Code (FC),
regulates forest clearings on private land and is the cornerstone of Brazilian environmental
legislation. It regulates, inter alia, the proportions of natural vegetation that have to be
preserved on private properties (e.g. 80% in the Amazon biome) and has been strengthened
and clarified in several rounds revisions (Brancalion et al., 2016).

Together with the introduction of a system that formalized different categories of
protected area, the advent of advanced satellite-based monitoring systems, and sufficient
political support under the government of Luiz Inácio Lula da Silva (Lula) rampant
deforestation rates were reduced by over 80% in the 2000s (Garrett et al., 2021). Important
elements that were effectively reducing deforestation rates were the launch of the Action
Plan for the Prevention and Control of Deforestation in the Legal Amazon (PPCDAm)
(Assunção et al., 2015), private-sector initiatives such as the Soy Moratorium (Heilmayr
et al., 2020), as well as other integrated deforestation actions such as the establishment of
priority municipalities (Assunção and Rocha, 2019) and restraints for rural credit extension
tied to environmental performance (Assunção et al., 2020). The efficacy of law enforcement
as such has been shown for this earlier periods (Hargrave and Kis-Katos, 2013) but has
been diminishing in recent years (Kuschnig et al., 2023).
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Subsequent changes in the FC and other parts of the legislative framework brought
about both advances and setbacks for environmental conversation efforts (Garrett et al.,
2021). Importantly, the FC and its regulations are only applicable to private land. To
effectively allow monitoring deforestation on private properties, the Cadastro Ambiental
Rural (CAR), a registration system for rural properties, was established in 2012. It
is thought of as the primary barrier to land grabbing (Chiavari et al., 2020), but can
itself be misused for land appropriation without pending completion and validation of
the system due to its self-referenced nature (Carrero et al., 2022). 17% of the Brazilian
land are lacking a clear form of tenure and 54.6 million hectares of public land are
undesignated (6% of the total area), with a majority of it in the Amazon (Sparovek et al.,
2019). In these areas, land grabbing is prevalent, and forested lands are cleared, occupied
illegally, and subsequently appropriated (Carrero et al., 2022). During the presidencies
of Dilma Rousseff and Michel Temer, both heavily influenced by the agribusiness sector
(Garrett et al., 2021), several amendments were adopted that influenced perceptions of
the consequences for illegal deforestation and land grabbing. In 2012, amnesties for illegal
deforestation on private properties prior to 2008 saw landowners absolved from restoration
obligations, artificially reducing Brazil’s “environmental debt” by 58% (Soares-Filho et al.,
2014). Further amnesties for land appropriations in the Amazon biome between 2005–2011
together with increases of the maximum amount of claimable land to 2,500 hectares per
farm in 2017 facilitated and accelerated land grabbing of previously illegally deforested
areas (Rochedo et al., 2018; Brito et al., 2019).

The two most recent governments, under president Jair Bolsonaro in the years 2019–2022
and under Lula since 2023, are largely diametrical in their approach to environmental
conservation. The former was characterised by unparalleled attempts to dismantle envi-
ronmental protection agencies and legislation, including effectively paralysing institutions
responsible for forest protection through increased bureaucratic burdens, reduced budgets
and purposefully leaving key positions vacant (Ferrante and Fearnside, 2019; Kuschnig
et al., 2023), and aggressive rhetoric that has been linked to higher deforestation (Oliveira
et al., 2023). Lula has put environmental concerns and promises at the core of its po-
litical agenda again and, encouragingly, deforestation rates in the months following his
inauguration have reduced by roughly 20% (mon, 2023). Nonetheless, both past and
recent statements from as well as certain staffing decisions under Lula, which included
the minister of agriculture Carlos Fávaro, and political resistance from the agricultural
bloc of the Brazilian National Congress require (international) scrutiny with regards to
the achievement of the ambitious goals set by the government (Vilani et al., 2023).
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3 Disentangling the agricultural expansion

In this section we describe the empirical approach that we use to isolate the causal effect
of the demand-driven expansion of agriculture, detailing the empirical approach and our
identification assumptions, as well as describing the used data.

Empirical Specification

We are interested in computing the effect of the agricultural expansion on deforestation
and start from a simple panel regression setup at the municipality-year level:

yi,t = Xi,t−sγ + βci,t + ui,t, ui,t ∼ N (0, σ2
y) (1)

where yi,t is deforestation (forest loss) in municipality i (i = 1, . . . , N) in year t (t =

1, . . . , T ), Xi,t is a vector of (suitably lagged) covariates influencing deforestation within a
municipality (including municipality- and year-fixed effects as well as municipality-specific
time trends), ci,t is a measure for cattle/pasture expansion (e.g. change in pasture area or
cattle headcount) or intensification (e.g. cattle density), and ui,t is a Gaussian error with
zero mean and (homoskedastic) variance σ2

y .
In the naive panel regression of Equation 1, the coefficient of interest, β, is not, in

general, identified due to various endogeneity issues, capturing various drivers of the
expansion (e.g. increasing demand for beef products and land appropriation/speculation).
To allow for a causal interpretation of it, we rely on a shift-share (or Bartik) instrumental
variable approach (Jaeger et al., 2018; Goldsmith-Pinkham et al., 2020; Borusyak et al.,
2022), where we instrument the endogenous variable ci,t with the Bartik instrument Bi,t,
controlling for covariates Xi,t, in the first stage (Equation 3):

yi,t = Xi,t−sγ + βĉi,t + ui,t, ui,t ∼ N (0, σ2
y) (2)

ci,t = Xi,t−sα+ ωBi,t + εi,t, εi,t ∼ N (0, σ2
c ) (3)

Bi,t = zi,t=0 gt−1, (4)

where our instrument, Bi,t is constructed as product of a measure for exposure to deforesta-
tion pressure via cattle expansion in an initial period (the shares), zi,t=0, and (exogenous)
changes in the demand for beef products (the shift), gt. Given an appropriately constructed
instrument, this approach allows us to isolate the effects due to changes in the demand for
agricultural products, focusing on cattle and related beef products.

In our setup, the shares should be a strong predictor for the expansion of pasture area
(and the cattle placed on them) and can be constructed in various ways. One can deduce
from Figure 1 that the expansion of pasture is clustering around pre-existing pasture areas.
Furthermore, Figure B1 in the appendix shows that the location of slaughterhouses is also
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closely related to the existence of pasture areas and their expansion, as are openings of
new ones related to the expansion of pasture areas. We combine these insights for the
construction of our shares. Specifically, we utilize geocoded data on federally inspected
slaughterhouses (SIF, eligible for exports) from Vale et al. (2022) and combine it with
information about pasture areas or cattle head in municipality i or its vicinity as follows:

zi,t=0 = exp{−di,t=0} ×
1

Ct=0

∑
k

ck,t=0 , (5)

where di,t=0 denotes the distance of municipality i to the nearest SIF slaughterhouse,2 Ct=0

denotes aggregate pasture area or cattle head in the larger region under investigation (e.g.,
the Legal Amazon), and

∑
k ck,t=0 is the sum of pasture area or cattle head in municipality

i and its neighbours as determined by contiguity.3 This interaction captures the notion that
pre-existing production patterns, both in the form pasture area and processing facilities for
beef products, are important predictors for the future expansion demand-driven agriculture.
As base period, we use slaughterhouse locations for those active in the period from 2000
to 2002 and the average municipality i’s share on total pasture area or cattle head in the
same period. For specifications investigating the effect of changes in cattle density, we use
the mean cattle density for municipality i in the same time period instead.

For the shift component of our instrument, gt, we leverage information about changes
in beef consumption in the main export markets for Brazilian beef products. Here, we
exploit the fact that changes towards a more meat-oriented (and in particular beef-oriented)
diet in emerging markets in this period were a strong exogenous shift due to increases in
average incomes in these markets. More specifically, in the main part of the our analysis
we use data on Chinese beef consumption for the construction of our shock.4 Figure B2 in
the appendix shows that Chinese beef consumption per capita has increased by over 50%
in recent decades, while still exhibiting substantial yearly fluctuations that we exploit as
source for our exogenous shocks. As described earlier and also shown in Figure B2, beef
exports to China have skyrocketed and it has become the largest exporting market for
Brazilian beef products over the last decades, by now accounting for almost two thirds of all

2We measure distance in hundreds of kilometers and compute it from the nearest edge of a municipality’s
polygon to the point location of the slaughterhouse. In case the slaughterhouse is located within a
municipality we compute the distance between a municipality’s centroid and the slaughterhouse.

3One could also use pasture area or cattle head directly or the respective measure of municipality i only.
However, with the chosen specification we (i) retain the interpretation as shares by being bounded between
zero and one and (ii) take into account agglomeration effects that potentially span across boundaries of
individual municipalities. Results based on pasture area or cattle head and incorporating only municipality
i’s information for the interaction with our distance measure yielded similar results.

4Note that, for the most part of our study, we define China as consisting of China mainland, Hong
Kong, and Macao.
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such exports (in value).5 The importance of changes in Chinese beef consumption for the
(external) demand for Brazilian beef products together with its plausibly exogenous nature
with respect to local (i.e. municipality-level) conditions make it a suitable shift component
for our Bartik instrument. To account for the fact that observed variations in consumption
and related exports affect demand for the inputs of production (in particular land) with a
delay, we use lagged changes in Chinese beef consumption in the construction of Bi,t. Our
primary research design thus leverages pure time-series shocks and is conceptually close to
the studies by Nunn and Qian (2014) that investigate the effect of US food aid on violent
conflict or by Droller (2018) studying the impact of population composition on lung run
economic development in Argentina.

However, as a validation for our main results, we also construct a shift-share instrument
that resembles such an approach by utilizing information about the destination of beef
exports on a municipality level. This approach is related to studies that construct their
instruments as the weighted sum of many shocks.6 Specifically, in this setting, our Bartik
instrument is constructed as:

Bi,t =
∑
m

zi,m,t=0 gm,t, zi,m,t=0 = zi,t=0 ×
exportsi,m,t=0

exportsi,t=0

, (6)

where zi,t=0 is defined as above. The second term for the construction of the export
market-specific share variable zi,m,t=0, where m = 1, . . . ,M denotes export markets, is
based on municipality-specific export shares for beef products retrieved from zu Ermgassen
et al. (2020). The Bartik instrument Bi,t is then the weighted sum of shocks to beef
consumption growth in market m, retrieved from FAO (2023). Thus, instead of shifting the
instrument by changes in Chinese beef consumption only, we shift it with the corresponding
measure of all export partners that municipality i had at initial time period t = 0. The
choice of the initial time period is dictated by the availability of data from zu Ermgassen
et al. (2020), who provide information on this granular level from 2015–2017 only.7

5Exports of beef products to other countries similarly have been trending upwards, especially for
markets located in Asia (e.g. Vietnam) or the Middle East and North Africa (e.g. Egypt).

6Prominent examples include Autor et al. (2013) on the effects of Chinese import competition on US
labor markets, Card (2009) on the effects of immigration on local labor markets in the US, or Hummels
et al. (2014) on offshoring activities of Danish firms. These and other studies, and their implications, are
thoroughly analysed in the recent literature on shift-share IV regressions designs (see e.g. Jaeger et al.,
2018; Goldsmith-Pinkham et al., 2020; Borusyak et al., 2022).

7We report results where we fixed the initial period at 2015 to maximize the time dimension of the
resulting panel. A handful of municipalities that recorded no exports in 2015 did so in subsequent year.
As sensitivity check, we also used specifications where we used export shares from the first year they
reported non-zero export flows as well as from years with the highest exports or number of export partners
as sensitivity checks. Results were qualitatively and quantitatively similar across all these specifications.
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Identification

For our identification strategy to be valid, we have to a priori argue that either one of the
two components of our instruments, the share or the shift, has to be exogenous. We follow
Borusyak et al. (2022) and view the shift component gt, in our case changes in international
(in particular, Chinese) beef consumption, as exogenous. While this conjecture cannot
be assessed empirically, we argue that it is unlikely that such consumption shocks affect
deforestation in municipality i at time t in other ways than through the expansion of
production inputs for beef products (in particular land) to satisfy demand them. Further,
we argue that dietary changes in China and other emerging markets have been driven
primarily by changes in incomes within them and are thus plausibly exogenous with respect
to local economic or environmental conditions in a given Brazilian municipality.8 To further
strengthen the validity of our instrument, we include a range of other time-varying controls
in Xi,t−s as described in the next subsection.

Data

We obtain all our data from openly available sources. Where necessary, we process and
aggregate them to the municipal level for all municipalities that are majorly in the Amazon,
Cerrado, or Pantanal biomes, leaving us with a cross-sectional dimension of N = 1, 574.
After all transformations and suitably lagging certain variables, our dataset covers the time
period 2002–2023. See Table A1 in the appendix for a detailed description of variables,
their transformations and sources.

Main Variables: Data for land use and land use transitions are taken from the
Brazilian Annual Land Use and Land Cover Mapping Project (MapBiomas, 2023). It
tracks land use at a spatial resolution of 30 by 30 meters for the period 1985–2022 and
provides summary statistics for land use and land use change at the municipal level. We
construct measures for forest and forest-like vegetation (i.e. including savanna) loss in two
ways: once using the difference in the area of the respective type of land cover and once
using the sum off all transitions from the respective vegetation type towards non-forest
formation. While the former measures net vegetation loss within a given municipality, the
latter measures gross vegetation loss. Similarly, we define the net change in pasture area
as difference in total pasture area and gross pasture gain as all transitions from other uses

8Agricultural prices, in particular for beef products, on international markets and in Brazil have, on
average, increased strongly in recent decades, despite temporary price drops. Price increases on a global
scale reflect predominantly shifts on the demand side and are essentially fixed for a given municipality
(with the exception of additional transport costs potentially borne by the producer). To account for these
effects, we control for agricultural commodity price fluctuations on the municipality level by including
price indexes constructed akin to Assunção et al. (2015).
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towards pasture. As additional measures for the expansion of the beef industry, we use
the headstock of cattle within a given municipality, retrieved from the Instituto Brasileiro
de Geografia e Estatística (IBGE) and compute cattle density, defined as the number of
cattle per hectare of pasture, as a measure for the intensive margin of beef production
(IBGE, 2022).

Controls: Following Equation 1, we control for a set of time-varying covariates at
the municipal level. We include socioeconomic conditions and developments measured by
changes in total population and gross domestic product (GDP) per capita, both obtained
from the IBGE (IBGE, 2022). To account for changes in prices of agricultural goods,
we follow Assunção et al. (2015) and construct price indices based on the interaction
of commodity prices as reported by the agricultural ministry of the state of Paraná
and commodity-specific land cultivation information taken from MapBiomas (2023). As
policy-related variables we include the total number of environmental fines for flora-related
offenses as reported from IBAMA (IBAMA, 2022) and the share of indigenous land on
total municipal area from the World Database on Protected Areas (UNEP-WCMC and
IUCN, 2022). Finally, we also include meteorological conditions in the form of an indicator
for dry spells based in the Normalized Difference Vegetation Index (NDVI) from Beguería
et al. (2010).

Shift-share Instrument: For the share part of our instrument we use geo-referenced
information on the location of federally inspected slaughterhouses, provided by Vale et al.
(2022), and interact it with pre-existing production patterns for both pasture areas, taken
from MapBiomas (2023), and cattle head or density, taken from IBGE (2022). For parts
of our analysis, we rely on municipality-level export statistics of beef products from
zu Ermgassen et al. (2020). The shift part of our instrument, changes in beef consumption
in China or all export destination markets, are taken from FAO (2023) and is measured in
tons of total human consumption of beef products.

4 Results

In this section, we briefly describe the main results of our empirical analyses. Sections C–E
in the appendix provide our full results, including heterogeneity and sensitivity analyses.

4.1 First Stage Regression

Table C1 reports the results of the first stage of the IV regressions following Equation 3,
regressing various measures for the agricultural expansion on the respective instrument Bi,t.
It can be discerned that our instrument is a strong predictor for the future agricultural
expansion in our preferred specification with municipality-specific time trends. F-statistics
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are well above the conventional rule-of-thumb value of 10 (Staiger and Stock, 1997). An
increase in the constructed instrument leads to a strong increase in the various expansion
measures under consideration.

4.2 Baseline Results

Table 1 reports that pasture expansion due to agricultural demand pressures is a significant
driver of forest and related vegetation loss in Brazil, particularly so in the Amazon. The
identified coefficients imply that a one-hectare increase of pasture caused by an agricultural
expansion reduces cover of forest-like vegetation (including e.g. savanna) by 0.98 hectare
in the biomes of the Amazon, Cerrado and Pantanal, by 0.91 hectare in the Legal Amazon
and 0.93 hectare in the Amazon biome. When considering forest loss only, these effect sizes
drop, as can be expected, the most for the broadest sample including the three biomes
mentioned above. In the Cerrado biome, pasture mainly replaces savanna-like vegetation,
thereby reducing the impact of demand-induced pasture expansion on forest loss. For
the Legal Amazon (that includes municipalities also lying the Cerrado biome) and the
Amazon biome, the estimated coefficients of −0.75 and −0.79 imply strong reductions
in forest cover caused by the demand-driven expansion of pasture ares. The effects of
an expansion of the cattle stock are similarly striking. Whereas their OLS counterparts
only show a weak, negative correlation with forest and forest-like vegetation loss, the IV
estimates unveil strong, negative effects. An additional unit of cattle on average decreases
forest cover by −0.51 to −0.62 hectare in the various specifications, with the strongest
effects occurring for municipalities in the Amazon biome. These estimates seem reasonable
given an average cattle stocking rate of 0.97 animal units per hectare in Brazil (Arantes
et al., 2018).

4.3 Heterogeneity Analysis

Table 2 contrasts effects in the Legal Amazon for the whole period of investigation
(2003–2022) with the post-2015 period, where the instrument is constructed using infor-
mation on municipality-specific export shares by destination. For pasture, effects of the
demand-driven expansion are estimated to be lower in more recent years. Reassuringly,
the estimates across the specifications of our instrument, ranging from −0.61 to −0.63.
On the contrary, the alternative specification based on export shares in the construction
of the instrument reveals that despite increases in cattle headstock still has a negative
effect on forest cover in the Legal Amazon, this effect has been more muted in recent years.
This drop in effect size could be interpreted in various ways. For once, land pressure from
the agricultural expansion could have reduced in the later period, with intensification
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Table 1: IV regressions: Agricultural expansion and deforestation

Biomes AMA, CER, PAN Legal Amazon Amazon biome

OLS IV OLS IV OLS IV

∆ forest-like vegetation cover

∆Pasture -0.688∗∗∗ -0.981∗∗∗ -0.728∗∗∗ -0.905∗∗∗ -0.781∗∗∗ -0.932∗∗∗

(0.043) (0.065) (0.042) (0.080) (0.040) (0.084)
∆Cattle -0.018∗∗∗ -0.888∗∗∗ -0.020∗∗∗ -0.623∗∗∗ -0.021∗∗∗ -0.737∗∗∗

(0.005) (0.267) (0.007) (0.147) (0.008) (0.173)

∆ forest cover

∆Pasture -0.604∗∗∗ -0.580∗∗∗ -0.676∗∗∗ -0.752∗∗∗ -0.746∗∗∗ -0.788∗∗∗

(0.055) (0.118) (0.051) (0.081) (0.047) (0.074)
∆Cattle -0.015∗∗∗ -0.533∗∗∗ -0.020∗∗∗ -0.508∗∗∗ -0.020∗∗ -0.620∗∗∗

(0.005) (0.182) (0.007) (0.147) (0.008) (0.158)

Fit statistics
Observations 31,480 31,480 16,160 16,160 10,060 10,060
F-test, ∆Pasture 758.96 577.53 438.62
F-test, ∆Cattle 32.519 62.516 33.854

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Note: Table shows results for estimation of Equation 1, using OLS in odd columns and the IV specification
in even columns. The first two columns hold results for all municipalities in the Cerrado, the Amazon and
the Pantanal biomes, the third and fourth columns for all municipalities in the nine states that constitute
the Legal Amazon, and the last two columns for municipalities that are either fully or partly in the Amazon
biome. All models include information on GDP per capita, population, the share of indigenous areas on total
land area, an indicator for dry spells as well as the lagged number of environmental fines, lagged agricultural
price indices, and lagged forest area. All variables except the indicator for dry spells, lagged forest cover
and cattle density enter the models in first differences. Models include municipality and time fixed effects
as well as a municipality-specific linear time trend. Standard errors are clustered at the municipality level.
F-tests report the F-statistics of the first stage for IV specifications.

of livestock becoming more prevalent (Molossi et al., 2023). On the other hand, this
result might also provide suggestive evidence that in recent years other factors behind the
agricultural expansion, such as land appropriation motives, have become more important.
This conjecture is to a certain extent supported by the stark increase in anti-environmental
rhetoric in the political discourse during this period, especially during the presidency Jair
Bolsonaro which has been shown to increase forest fires and related forest loss (Oliveira
et al., 2023).

4.4 Intensification

Finally, Table 3 provides some suggestive evidence that livestock intensification could de-
crease land pressure from agricultural production. As reported also above, both an increase
of pasture area and cattle headcount decrease forest cover significantly in municipalities
in the Legal Amazon. However, an increase in the cattle density, used as a proxy for
livestock intensification, reduces forest loss, when keeping the cattle head stock constant.
This result gives an indication that by more intensive use of available pasture could indeed
decrease pressure on forested land. A word of caution should be made with respect to
our measure for intensification, namely cattle density that we define as number of cattle
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Table 2: IV regressions: Alternative instrument, post-2015 period

Legal Amazon, ∆forest cover

Whole period Post-2015

OLS IV-int OLS IV-int IV-exp

∆Pasture -0.676∗∗∗ -0.752∗∗∗ -0.538∗∗∗ -0.605∗∗∗ -0.632∗∗∗

(0.051) (0.081) (0.070) (0.115) (0.125)
∆Cattle -0.020∗∗∗ -0.508∗∗∗ -0.006 7.62 -0.072∗∗

(0.007) (0.147) (0.006) (218.5) (0.030)

Fit statistics
Observations 16,160 16,160 5,656 5,656 5,656
F-test, ∆Pasture 577.53 161.21 81.956
F-test, ∆Cattle 62.516 0.01280 19.726

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Note: Table shows results for estimation of Equation 1 for the Legal Amazon. The first
two columns hold results for the whole period (2003–2022), the latter three columns for the
post-2015 period. The fourth column presents IV results using the instrument with shares as
specified in Equation 5, the fifth columns with shares and shift as defined in Equation 6. All
models include information on GDP per capita, population, the share of indigenous areas on
total land area, an indicator for dry spells as well as the lagged number of environmental fines,
lagged agricultural price indices, and lagged forest area. All variables except the indicator for
dry spells, lagged forest cover and cattle density enter the models in first differences. Models
include municipality and time fixed effects as well as a municipality-specific linear time trend.
Standard errors are clustered at the municipality level. F-tests report the F-statistics of the
first stage for IV specifications.

per hectare of pasture. Using such a simple measure for agricultural intensification is
likely to miss out some important aspects such as the concentration of production units in
vertically integrated units. Furthermore, the result that intensified livestock production,
defined as a higher cattle density, might reduce land pressure and deforestation should be
reflected with the other adverse environmental effects that it could have. This includes
potential groundwater pollution due to more concentrated animal waste and resulting
forest degradation, as has been documented for the expansion of intensified beef farming
in the Brazilian Amazon (Vale et al., 2019).

4.5 Robustness Checks

Table E1 in the appendix documents the results for various sensitivity checks. In particular,
it reports results for specifications where we (i) restrict the sample to municipalities that
had at least ten percent forest cover in 2002 and experienced forest loss in the period
until 2022, (ii) use the contemporary change in Chinese beef consumption as shift variable
instead of its lag , and (iii) use lagged values for the measures of the agricultural expansion.
Results for these robustness checks are qualitatively and quantitatively are largely similar
to our main results. However, there are two exceptions. First, the effect of cattle density
becomes insignificant, if we restrict our sample. This could be an indication that the
effects of livestock intensification have been successful only in those municipalities that
did not exhibit forest loss in the past decades, a rather unsurprising result. Second, the
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Table 3: IV regressions: Intensification results

Legal Amazon, ∆forest cover

OLS IV OLS IV OLS IV

∆Pasture -0.676∗∗∗ -0.752∗∗∗

(0.051) (0.081)
∆Cattle -0.020∗∗∗ -0.508∗∗∗

(0.007) (0.147)
∆Cattle Density 0.002 0.27∗∗∗

(0.002) (0.055)

Fit statistics
Observations 16,160 16,160 16,160 16,160 16,160 16,160
F-test, (1st stage) 577.53 62.516 432.84

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Note: Table shows results for estimation of Equation 1, using OLS in odd columns and the IV specification in
even columns for the Legal Amazon. All models include information on GDP per capita, population, the share of
indigenous areas on total land area, an indicator for dry spells as well as the lagged number of environmental fines,
lagged agricultural price indices, and lagged forest area. All variables except the indicator for dry spells, lagged
forest cover and cattle density enter the models in first differences. Models include municipality and time fixed
effects as well as a municipality-specific linear time trend. Standard errors are clustered at the municipality level.
F-tests report the F-statistics of the first stage for IV specifications.

effect of an increase in the cattle headstock flips sign if we use the unlagged instrument in
our specification, most often becoming insignificant. We can rationalize this finding by
considering that demand-induced shocks are unlikely to increase cattle herds within the
same year given that cattle needs to be raised and responds therefore with a lag. This
could in turn mute the mediated effect on deforestation.

5 Conclusion & Outlook

The expansion of agriculture is one of the main drivers behind the continued deforestation
in the Brazilian Amazon, threatening biodiversity, the regional and global climate, as well
as a number of other ecosystem services provided by the rainforest. In this paper, we
analyzed the different motivations and mechanisms behind this expansion, and estimated
causal effects of the rise in agricultural production on deforestation rates. We showed that
this rise, stemming from a growing global demand for beef, is one of the major drivers of
deforestation. Our results revealed that both the expansion of pasture area and an increase
in the head stock of cattle cause stark reductions in forest or forest-like vegetation cover,
particularly so in the Amazon biome. However, our results suggested that these effects
have become weaker in recent years, in which deforestation has surged. We interpreted this
as evidence for the increasing importance of other related motives, such as land grabbing.
Lastly, we provided evidence that livestock intensification could play an important role in
decreasing land pressure from agricultural expansion.

The potential avenues for future research are manifold. In the context of this study,
more detailed analyses of heterogeneity, e.g., along the dimensions of time and biome
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could yield deeper insights into the dynamics of the agricultural expansion. While we
provided suggestive evidence for weak land governance and land appropriation, with land
values ultimately governed by agricultural productivity, becoming increasingly important
drivers of deforestation, deeper investigations are warranted. Another important alley
for future research concern the incorporation of these dynamics into analyses of existing
and proposed interventions; the Cadastro Ambiental Rural, e.g., set out to improve land
governance, but has arguably been turned into a vehicle for land appropriation.
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A Data description

Table A1: Variable description

Variable Description Main source(s)

Forest cover Forest Formation (class ID 3), in hectare MapBiomas
(2023)

Savanna cover Savanna Formation (class ID 4), in hectare MapBiomas
(2023)

Forest-like vegetation
cover

Forest-like vegetation formation; including Forest
Formation (3), Savanna Formation (4), Flooded Forest (6),
and Forest Plantation (9), in hectare

MapBiomas
(2023)

Gross forest loss all Sum of transitions from forest formation towards non-forest
formation, in hectare

MapBiomas
(2023)

Gross savanna loss
all

Sum of transitions from savanna formation towards
non-forest formation, in hectare

MapBiomas
(2023)

Gross forest-like
vegetation loss all

Sum of transitions from forest, savanna, or flooded forest
formation and forest plantations towards non-forest
formation, in hectare

MapBiomas
(2023)

Pasture Area used as pasture (class ID 15), in hectare MapBiomas
(2023)

Pasture gain gross Sum of transitions towards pasture, in hectare MapBiomas
(2023)

Gross domestic
product

Real gross domestic product index, in constant BRL IBGE (2022)

Population Population headcount IBGE (2022)
Cattle Cattle headcount IBGE (2022)
Cattle density Number of cattle per hectare of pasture area IBGE (2022)
Environmental fines Number of fines for flora-related offenses IBAMA (2022)
Protected areas Share of municipality area designated as protected areas,

including indigenous areas
UNEP-WCMC
and IUCN (2022)

Agricultural prices Indices constructed as weighted sum of commodity prices
as reported by the agricultural ministry of Paraná following
Assunção et al. (2015), weights derived from land use
statistics

Ministry of
Agriculture –
Paraná;
MapBiomas
(2023)

SPEI dry Indicator for dry spells based on the Normalized Difference
Vegetation Index (NDVI)

Beguería et al.
(2010)

Slaughterhouse
distance

Distance to federally inspected slaughterhouses (eligible for
export of beef products)

Vale et al. (2022)

Beef consumption Human consumption of beef products, in thousand tons FAO (2023)
Notes: Table shows variables used in regressions on a municipality-level and variables used for

construction of the shift-share instrument, a short description and their sources.
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B Additional figures

Figure B1: Slaughterhouse locations in 2000 and 2018. Red trapezes denote SIF slaughter-
houses, blue squares non-SIF slaughterhouses. Source: Vale et al. (2022)

Figure B2: Chinese per capita beef consumption and Brazilian exports of beef products to
China. Sources: FAO (2023) & UN Comtrade (2022)
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C Main Regression results

C1 First stage results

Table C1: First stage results for IV specification

Model: (1) (2) (3) (4) (5) (6)

Biomes Amazon, Cerrado and Pantanal

Pasture Pasture Gain

Pasture IVt−1 1,052.9∗ 1,125.7 2,947.0∗∗∗ 567.9 748.3 1,685.8∗∗

(615.7) (799.2) (727.6) (549.9) (712.6) (673.5)

F-test (1st stage) 113.49 97.010 758.96 54.109 71.643 432.97

Cattle Cattle Density

Cattle IVt−1 427.9 1,574.1∗∗ 2,705.4∗∗ -0.0003∗∗∗ -0.0003∗∗∗ 0.0003∗∗∗

(745.5) (797.0) (1,173.1) (9.35 × 10−5) (9.29 × 10−5) (3.76 × 10−5)

F-test (1st stage) 1.2581 11.902 32.519 566.92 573.72 843.47

Observations 31,480 31,480 31,480 31,480 31,480 31,480

Legal Amazon

Pasture Pasture Gain

Pasture IVt−1 1,440.9∗∗ 1,358.8 2,756.0∗∗∗ 1,005.9 1,162.0 2,001.4∗∗∗

(716.1) (826.1) (835.8) (645.3) (727.3) (763.8)

F-test (1st stage) 181.84 136.77 577.53 132.54 152.33 486.96

Cattle Cattle Density

Cattle IVt−1 1,792.3∗∗∗ 1,455.9∗∗ 3,528.7∗∗∗ -0.0003∗∗∗ -0.0003∗∗∗ 0.0003∗∗∗

(540.4) (591.3) (1,020.1) (9.34 × 10−5) (9.29 × 10−5) (3.75 × 10−5)

F-test (1st stage) 24.592 13.780 62.516 288.82 293.68 432.84

Observations 16,160 16,160 16,160 16,160 16,160 16,160

Fixed-effects
muni_id Yes Yes Yes Yes Yes Yes
year Yes No Yes Yes No Yes
State-year FEs No Yes No No Yes No
Municipality-specific trends No No Yes No No Yes

Clustered (muni_id) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: Table shows first-stage results for IV estimation of Equation 3 for the whole period (2003–2022), for all municipalities in the Cerrado, the
Amazon and the Pantanal biomes in the upper panel and for the Legal Amazon in the lower panel. All models use the instrument based on the
shares as specified in Equation 5. All models include information on GDP per capita, population, the share of indigenous areas on total land
area, an indicator for dry spells as well as the lagged number of environmental fines, lagged agricultural price indices, and lagged forest area.
All variables except the indicator for dry spells, lagged forest cover and cattle density enter the models in first differences. All models include
municipality fixed effects, models in columns (1) and (4) include year fixed effects, models in columns (2) and (5) include state-year fixed
effects, models in columns (3) and (6) include a municipality-specific linear time trend. Standard errors are clustered at the municipality level.
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C2 Second stage results

Table C2: Regression results for biomes Amazon, Cerrado, Pantanal

OLS IV-int IV-share OLS IV-int IV-share OLS IV-int IV-share
Model: (1) (2) (3) (4) (5) (6) (7) (8) (9)

Dependent Variable: Difference in forest-like vegetation cover

Pasture -0.727∗∗∗ -1.27∗∗∗ -1.18∗∗∗ -0.718∗∗∗ -1.40∗∗∗ -1.32∗∗∗ -0.688∗∗∗ -0.981∗∗∗ -0.935∗∗∗

(0.036) (0.225) (0.183) (0.039) (0.337) (0.259) (0.043) (0.065) (0.059)
Cattle -0.025∗∗∗ -2.86 -1.08 -0.021∗∗∗ -1.03∗ -0.663∗∗ -0.018∗∗∗ -0.888∗∗∗ -0.661∗∗∗

(0.006) (4.48) (0.662) (0.006) (0.600) (0.303) (0.005) (0.267) (0.181)
Cattle Density 1.64 -22.5∗∗ -22.1∗∗ 5.79∗∗ -66.4∗∗ -59.4∗ 1.24 20.3∗∗∗ 25.8∗∗∗

(1.49) (9.81) (10.7) (2.57) (32.6) (31.6) (1.69) (3.36) (8.86)

Dependent Variable: Difference in forest cover

Pasture -0.646∗∗∗ -0.894∗∗∗ -0.853∗∗∗ -0.639∗∗∗ -0.959∗∗∗ -0.905∗∗∗ -0.604∗∗∗ -0.580∗∗∗ -0.574∗∗∗

(0.048) (0.180) (0.155) (0.050) (0.197) (0.171) (0.055) (0.118) (0.089)
Cattle -0.022∗∗∗ -2.02 -0.753 -0.018∗∗∗ -0.727 -0.458∗ -0.015∗∗∗ -0.533∗∗∗ -0.404∗∗∗

(0.006) (3.05) (0.493) (0.006) (0.518) (0.274) (0.005) (0.182) (0.129)
Cattle Density 0.741 -17.7∗∗ -17.7∗∗ 4.99∗ -69.0∗∗ -62.6∗ -0.110 15.3∗∗∗ 20.1∗∗

(1.18) (8.16) (9.00) (2.55) (33.2) (32.7) (1.12) (3.19) (7.91)

Dependent Variable: Gross forest-like vegetation loss all

Pasture Gain 0.906∗∗∗ 1.04∗∗∗ 1.10∗∗∗ 0.895∗∗∗ 1.07∗∗∗ 1.18∗∗∗ 0.859∗∗∗ 1.02∗∗∗ 1.04∗∗∗

(0.020) (0.185) (0.219) (0.021) (0.183) (0.264) (0.024) (0.045) (0.042)
Cattle 0.021∗∗∗ 1.46 0.549 0.017∗∗∗ 0.618 0.392 0.014∗∗∗ 0.554∗∗∗ 0.429∗∗∗

(0.005) (2.18) (0.392) (0.005) (0.453) (0.239) (0.005) (0.165) (0.110)
Cattle Density -1.74 18.7∗∗ 17.9∗∗ -5.48∗∗ 55.7∗ 49.5∗ -0.958 -18.1∗∗∗ -23.7∗∗∗

(1.45) (8.65) (9.01) (2.71) (28.8) (27.6) (1.63) (3.14) (8.81)

Dependent Variable: Gross forest loss all

Pasture Gain 0.855∗∗∗ 1.22∗∗∗ 1.32∗∗∗ 0.852∗∗∗ 1.16∗∗∗ 1.30∗∗∗ 0.807∗∗∗ 0.884∗∗∗ 0.892∗∗∗

(0.028) (0.346) (0.423) (0.030) (0.282) (0.406) (0.037) (0.042) (0.036)
Cattle 0.020∗∗∗ 1.54 0.544 0.016∗∗∗ 0.597 0.355 0.013∗∗∗ 0.465∗∗∗ 0.350∗∗∗

(0.005) (2.32) (0.401) (0.005) (0.453) (0.242) (0.005) (0.163) (0.115)
Cattle Density -1.16 15.8∗∗ 15.2∗ -5.17∗∗ 56.4∗ 50.5∗ -0.231 -14.8∗∗∗ -19.4∗∗

(1.17) (7.45) (7.85) (2.59) (28.8) (27.8) (1.19) (2.95) (7.52)

Fixed-effects
muni_id Yes Yes Yes Yes Yes Yes Yes Yes Yes
year Yes Yes Yes No No No Yes Yes Yes
State-year FEs No No No Yes Yes Yes No No No
Muni-specific trends No No No No No No Yes Yes Yes

Fit statistics
Observations 31,480 31,480 31,480 31,480 31,480 31,480 31,480 31,480 31,480
F-test, Pasture 113.49 147.26 97.010 113.54 758.96 1,013.8
F-test, Pasture Gain 54.109 48.232 71.643 50.614 432.97 547.34
F-test, Cattle 1.2581 9.8736 11.902 30.924 32.519 65.782
F-test, Cattle Density 566.92 846.87 573.72 806.05 843.47 751.08

Clustered (muni_id) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: Table shows results for estimation of Equation 1 for the whole period (2003–2022), using OLS in columns (1), (4) and (7), the IV
specification in the other columns for all municipalities in the Cerrado, the Amazon and the Pantanal biomes. Models in columns (2), (5), and
(8) use the instrument based on the shares as specified in Equation 5, models in columns (3), (6) and (9) alternatively use municipality i’s
initial share on total pasture, share on total cattle head stock or cattle density as share variable for pasture/pasture gain, cattle head and
cattle density, respectively. All models include information on GDP per capita, population, the share of indigenous areas on total land area,
an indicator for dry spells as well as the lagged number of environmental fines, lagged agricultural price indices, and lagged forest area. All
variables except the indicator for dry spells, lagged forest cover and cattle density enter the models in first differences. All models include
municipality fixed effects, models in columns (1) to (3) include year fixed effects, models in columns (4) to (6) include state-year fixed effects,
models in columns (7) to (9) include a municipality-specific linear time trend. Standard errors are clustered at the municipality level. F-tests
report the F-statistics of the first stage for IV specifications.
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Table C3: Regression results for Legal Amazon

OLS IV-int IV-share OLS IV-int IV-share OLS IV-int IV-share
Model: (1) (2) (3) (4) (5) (6) (7) (8) (9)

Dependent Variable: Difference in forest-like vegetation cover

Pasture -0.770∗∗∗ -0.909∗∗∗ -0.810∗∗∗ -0.762∗∗∗ -1.08∗∗∗ -0.951∗∗∗ -0.728∗∗∗ -0.905∗∗∗ -0.832∗∗∗

(0.035) (0.089) (0.110) (0.038) (0.096) (0.099) (0.042) (0.080) (0.071)
Cattle -0.030∗∗∗ -0.701∗ -0.482∗∗ -0.025∗∗∗ -0.991∗ -0.608∗ -0.020∗∗∗ -0.623∗∗∗ -0.537∗∗∗

(0.008) (0.371) (0.242) (0.008) (0.548) (0.311) (0.007) (0.147) (0.117)
Cattle Density 2.84 -34.3∗∗ -34.0∗∗ 5.68∗∗ -67.0∗∗ -59.8∗ 1.68 32.7∗∗∗ 42.0∗∗∗

(2.49) (15.0) (16.6) (2.52) (33.1) (32.0) (2.54) (5.59) (14.7)

Dependent Variable: Difference in forest cover

Pasture -0.721∗∗∗ -0.797∗∗∗ -0.730∗∗∗ -0.715∗∗∗ -0.894∗∗∗ -0.804∗∗∗ -0.676∗∗∗ -0.752∗∗∗ -0.701∗∗∗

(0.043) (0.149) (0.139) (0.045) (0.144) (0.140) (0.051) (0.081) (0.074)
Cattle -0.029∗∗∗ -0.591 -0.409∗ -0.025∗∗∗ -0.792 -0.486 -0.020∗∗∗ -0.508∗∗∗ -0.439∗∗∗

(0.008) (0.359) (0.236) (0.008) (0.518) (0.304) (0.007) (0.147) (0.116)
Cattle Density 1.90 -29.2∗∗ -29.3∗∗ 4.82∗ -70.1∗∗ -63.4∗ 0.235 27.7∗∗∗ 36.4∗∗∗

(2.16) (13.4) (14.9) (2.47) (34.0) (33.2) (2.00) (5.46) (13.8)

Dependent Variable: Gross forest-like vegetation loss all

Pasture Gain 0.918∗∗∗ 0.756∗∗∗ 0.761∗∗∗ 0.907∗∗∗ 0.849∗∗∗ 0.879∗∗∗ 0.870∗∗∗ 0.956∗∗∗ 0.963∗∗∗

(0.020) (0.188) (0.165) (0.021) (0.134) (0.108) (0.024) (0.030) (0.029)
Cattle 0.025∗∗∗ 0.426 0.277 0.022∗∗∗ 0.681 0.408 0.017∗∗∗ 0.474∗∗∗ 0.412∗∗∗

(0.007) (0.337) (0.221) (0.007) (0.465) (0.273) (0.006) (0.130) (0.102)
Cattle Density -3.11 30.9∗∗ 30.2∗∗ -5.27∗∗ 56.9∗ 50.4∗ -1.79 -31.3∗∗∗ -40.9∗∗∗

(2.42) (13.9) (15.0) (2.64) (29.5) (28.1) (2.57) (5.18) (14.9)

Dependent Variable: Gross forest loss all

Pasture Gain 0.879∗∗∗ 0.817∗∗∗ 0.846∗∗∗ 0.875∗∗∗ 0.827∗∗∗ 0.858∗∗∗ 0.828∗∗∗ 0.916∗∗∗ 0.920∗∗∗

(0.027) (0.157) (0.129) (0.028) (0.150) (0.121) (0.035) (0.028) (0.028)
Cattle 0.025∗∗∗ 0.440 0.289 0.022∗∗∗ 0.646 0.382 0.017∗∗∗ 0.448∗∗∗ 0.386∗∗∗

(0.007) (0.331) (0.217) (0.007) (0.463) (0.273) (0.006) (0.133) (0.104)
Cattle Density -2.37 26.6∗∗ 26.1∗ -4.93∗∗ 57.8∗ 51.5∗ -0.770 -27.0∗∗∗ -35.4∗∗∗

(2.15) (12.3) (13.3) (2.50) (29.5) (28.4) (2.09) (5.01) (13.3)

Fixed-effects
muni_id Yes Yes Yes Yes Yes Yes Yes Yes Yes
year Yes Yes Yes No No No Yes Yes Yes
State-year FEs No No No Yes Yes Yes No No No
Muni-specific trends No No No No No No Yes Yes Yes

Fit statistics
Observations 16,160 16,160 16,160 16,160 16,160 16,160 16,160 16,160 16,160
F-test, Pasture 181.84 210.29 136.77 160.96 577.53 758.12
F-test, Pasture Gain 132.54 104.08 152.33 117.68 486.96 542.56
F-test, Cattle 24.592 46.664 13.780 33.986 62.516 88.673
F-test, Cattle Density 288.82 431.74 293.68 412.71 432.84 385.50

Clustered (muni_id) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: Table shows results for estimation of Equation 1 for the whole period (2003–2022), using OLS in columns (1), (4) and (7), the IV
specification in the other columns for all municipalities in the states comprising the Legal Amazon. Models in columns (2), (5), and (8) use the
instrument based on the shares as specified in Equation 5, models in columns (3), (6) and (9) alternatively use municipality i’s initial share
on total pasture, share on total cattle head stock or cattle density as share variable for pasture/pasture gain, cattle head and cattle density,
respectively. All models include information on GDP per capita, population, the share of indigenous areas on total land area, an indicator for
dry spells as well as the lagged number of environmental fines, lagged agricultural price indices, and lagged forest area. All variables except the
indicator for dry spells, lagged forest cover and cattle density enter the models in first differences. All models include municipality fixed effects,
models in columns (1) to (3) include year fixed effects, models in columns (4) to (6) include state-year fixed effects, models in columns (7) to
(9) include a municipality-specific linear time trend. Standard errors are clustered at the municipality level. F-tests report the F-statistics of
the first stage for IV specifications.
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D Heterogeneity Analysis

D1 Biome-specific results

Table D1: Biome-specific regression results

Model: (1) (2) (3) (4) (5) (6)

Amazon Biome

Dependent Variable: ∆ forest-like vegetation cover ∆ forest cover

Pasture -0.908∗∗∗ -0.932∗∗∗ -0.732∗∗∗ -0.788∗∗∗

(0.075) (0.084) (0.163) (0.074)
Cattle -1.05∗ -0.737∗∗∗ -0.854∗ -0.620∗∗∗

(0.554) (0.173) (0.516) (0.158)
Cattle Density -53.8∗∗ 49.2∗∗∗ -51.9∗∗ 47.9∗∗∗

(23.1) (8.43) (22.6) (8.41)

Fit statistics
Observations 10,060 10,060 10,060 10,060
F-test, Pasture 165.89 438.62 165.89 438.62
F-test, Cattle 9.1950 33.854 9.1950 33.854
F-test, Cattle Density 180.42 272.81 180.42 272.81

Cerrado Biome

Dependent Variable: ∆ forest-like vegetation cover ∆ forest cover ∆ savanna cover

Pasture 0.602 -1.14∗∗∗ -0.136 -0.089 -0.116 -0.359∗∗∗

(0.776) (0.183) (0.160) (0.088) (0.101) (0.139)
Cattle 0.375 -2.31 -0.101 -0.155 -0.027 -0.727

(0.374) (4.17) (0.192) (0.353) (0.088) (1.30)
Cattle Density 81.1 -849.7 -578.1 -789.3 1,125.5∗∗ 296.9

(477.3) (718.7) (394.2) (499.2) (503.6) (367.0)

Fit statistics
Observations 21,240 21,240 21,240 21,240 21,240 21,240
F-test, Pasture 56.955 275.98 56.955 275.98 56.955 275.98
F-test, Cattle 4.5191 1.4342 4.5191 1.4342 4.5191 1.4342
F-test, Cattle Density 18.146 12.320 18.146 12.320 18.146 12.320

Fixed-effects
muni_id Yes Yes Yes Yes Yes Yes
year Yes Yes Yes Yes Yes Yes
Muni-specific trends No Yes No Yes No Yes

Clustered (muni_id) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: Table shows results for estimation of Equation 1 for the whole period (2003–2022), using IV regressions with the instrument based on
the shares as specified in Equation 5 for all municipalities in the Amazon biome (upper panel) and Cerrado biome (lower panel). All models
include information on GDP per capita, population, the share of indigenous areas on total land area, an indicator for dry spells as well as the
lagged number of environmental fines, lagged agricultural price indices, and lagged forest area. All variables except the indicator for dry spells,
lagged forest cover and cattle density enter the models in first differences. All models include municipality fixed effects, models in columns (1),
(3) and (5) include year fixed effects, models in columns (2), (4) and (6) additionally include a municipality-specific linear time trend. Standard
errors are clustered at the municipality level. F-tests report the F-statistics of the first stage for IV specifications.
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D2 Period-specific results

Table D2: Regression results for post-2015 period

OLS IV-int IV-exp OLS IV-int IV-exp
Model: (1) (2) (3) (4) (5) (6)

Biomes Amazon, Cerrado & Pantanal

Dependent Variable: Difference in forest-like vegetation cover

Pasture -0.580∗∗∗ -1.20∗∗∗ -0.889∗∗∗ -0.552∗∗∗ -0.904∗∗∗ -0.669∗∗∗

(0.051) (0.300) (0.149) (0.054) (0.254) (0.091)
Cattle -0.001 -0.955 -0.010 -0.006 0.439 -0.055∗∗

(0.007) (1.22) (0.031) (0.005) (0.897) (0.024)
Cattle Density -2.90∗∗∗ 546.1 -2.91∗∗∗ -2.39∗∗ -22.6 -3.78∗∗∗

(0.696) (1,224.9) (0.989) (0.946) (17.6) (1.18)

Dependent Variable: Difference in forest cover

Pasture -0.516∗∗∗ -0.685∗∗∗ -0.640∗∗∗ -0.482∗∗∗ -0.785∗∗∗ -0.571∗∗∗

(0.057) (0.262) (0.114) (0.063) (0.251) (0.120)
Cattle -0.001 -0.580 0.005 -0.005 0.326 -0.057∗∗∗

(0.006) (0.742) (0.031) (0.005) (0.662) (0.021)
Cattle Density -1.96 79.1 -1.59 -2.22∗∗∗ -41.3 -3.83∗

(1.32) (195.6) (1.03) (0.555) (30.3) (1.97)

Fit statistics
Observations 11,018 11,018 11,018 11,018 11,018 11,018
F-test (1st stage), Pasture 44.089 62.434 70.674 98.706
F-test (1st stage), Cattle 4.5179 68.639 3.6725 65.528
F-test (1st stage), Cattle Density 0.29784 7,795.6 62.733 6,989.4

Legal Amazon

Dependent Variable: Difference in forest-like vegetation cover

Pasture -0.624∗∗∗ -0.496 -0.558∗∗∗ -0.601∗∗∗ -0.706∗∗∗ -0.652∗∗∗

(0.056) (0.340) (0.090) (0.059) (0.089) (0.099)
Cattle -0.004 -0.225 -0.034 -0.006 10.4 -0.079∗∗

(0.008) (0.194) (0.041) (0.006) (298.8) (0.039)
Cattle Density -2.74∗∗∗ 297.8 -2.62∗ -3.83∗∗∗ -50.4 -6.48∗∗

(0.943) (658.9) (1.46) (1.13) (38.5) (2.62)

Dependent Variable: Difference in forest cover

Pasture -0.576∗∗∗ -0.499 -0.519∗∗∗ -0.538∗∗∗ -0.605∗∗∗ -0.632∗∗∗

(0.062) (0.310) (0.098) (0.070) (0.115) (0.125)
Cattle -0.003 -0.208 -0.012 -0.006 7.62 -0.072∗∗

(0.008) (0.184) (0.042) (0.006) (218.5) (0.030)
Cattle Density -2.39 -0.462 -2.16 -3.70∗∗∗ -70.9 -6.65∗

(1.49) (109.6) (1.52) (0.779) (52.8) (3.59)

Fit statistics
Observations 5,656 5,656 5,656 5,656 5,656 5,656
F-test (1st stage), Pasture 42.347 76.372 161.21 81.956
F-test (1st stage), Cattle 25.617 36.949 0.01280 19.726
F-test (1st stage), Cattle Density 0.16655 3,991.8 31.623 3,511.0

Fixed-effects
muni_id Yes Yes Yes Yes Yes Yes
year Yes Yes Yes Yes Yes Yes
Municipality-specific trends No No No Yes Yes Yes

Clustered (muni_id) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: Table shows results for estimation of Equation 1 for the post-2015 period (2016–2022), using OLS in columns (1) and (4) and the IV
specification in the other columns for all municipalities in the Cerrado, the Amazon and the Pantanal biomes (upper panel) and the Legal
Amazon (lower panel). Models in columns (2) and (5) use the instrument based on the shares as specified in Equation 5, models in columns (3)
and (6) alternatively use the instrument based on the shares as specified in Equation 6. All models include information on GDP per capita,
population, the share of indigenous areas on total land area, an indicator for dry spells as well as the lagged number of environmental fines,
lagged agricultural price indices, and lagged forest area. All variables except the indicator for dry spells, lagged forest cover and cattle density
enter the models in first differences. All models include municipality and time fixed effects, models in columns (4) to (6) additionally include a
municipality-specific linear time trend. Standard errors are clustered at the municipality level. F-tests report the F-statistics of the first stage
for IV specifications.
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E Robustness checks

Table E1: Regression results for robustness checks

Model: (1) (2) (3) (4) (5) (6) (7) (8)

Biomes Amazon, Cerrado & Pantanal Biome

Dependent Variable: ∆ forest-like vegetation cover ∆ forest cover

Pasture -0.981∗∗∗ -0.880∗∗∗ -0.895∗∗∗ -0.972∗∗∗ -0.580∗∗∗ -0.674∗∗∗ -0.504∗∗∗ -0.655∗∗∗

(0.065) (0.075) (0.061) (0.075) (0.118) (0.098) (0.124) (0.118)
Cattle -0.888∗∗∗ -0.821∗∗∗ 0.549∗∗ -1.19∗∗∗ -0.533∗∗∗ -0.622∗∗∗ 0.307 -0.791∗∗∗

(0.267) (0.281) (0.251) (0.382) (0.182) (0.224) (0.207) (0.260)
Cattle Density 20.3∗∗∗ 512.2 11.3∗∗∗ 3.05∗∗ 15.3∗∗∗ 639.2 8.04∗∗∗ 26.1∗∗∗

(3.36) (981.2) (2.26) (1.45) (3.19) (1,313.5) (2.13) (4.29)

Fit statistics
Observations 31,480 16,860 31,480 31,480 31,480 16,860 31,480 31,480
F-test, Pasture 758.96 566.53 497.12 1,240.4 758.96 566.53 497.12 1,240.4
F-test, Cattle 32.519 23.607 47.467 27.541 32.519 23.607 47.467 27.541
F-test, Cattle Density 843.47 29.820 951.41 808.56 843.47 29.820 951.41 808.56

Legal Amazon

Dependent Variable: ∆ forest-like vegetation cover ∆ forest cover

Pasture -0.905∗∗∗ -0.882∗∗∗ -0.909∗∗∗ -0.956∗∗∗ -0.752∗∗∗ -0.727∗∗∗ -0.741∗∗∗ -0.810∗∗∗

(0.080) (0.078) (0.067) (0.095) (0.081) (0.086) (0.077) (0.090)
Cattle -0.623∗∗∗ -0.712∗∗∗ 1.82 -0.837∗∗∗ -0.508∗∗∗ -0.579∗∗∗ 1.45 -0.688∗∗∗

(0.147) (0.159) (2.14) (0.190) (0.147) (0.151) (1.79) (0.186)
Cattle Density 32.7∗∗∗ 593.5 20.8∗∗∗ 45.1∗∗∗ 27.7∗∗∗ 724.3 16.8∗∗∗ 42.0∗∗∗

(5.59) (1,169.4) (4.32) (7.00) (5.46) (1,508.7) (4.09) (6.89)

Fit statistics
Observations 16,160 12,660 16,160 16,160 16,160 12,660 16,160 16,160
F-test, Pasture 577.53 600.65 328.64 939.76 577.53 600.65 328.64 939.76
F-test, Cattle 62.516 45.144 4.2422 56.052 62.516 45.144 4.2422 56.052
F-test, Cattle Density 432.84 22.360 486.75 415.00 432.84 22.360 486.75 415.00

Fixed-effects
muni_id Yes Yes Yes Yes Yes Yes Yes Yes
year Yes Yes Yes Yes Yes Yes Yes Yes
Muni-specific trends Yes Yes Yes Yes Yes Yes Yes Yes

Clustered (muni_id) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: Table shows results for estimation of Equation 1 for the whole period (2003–2022), using the IV specification for municipalities in the
Amazon, Cerrado, or Pantanal biome (upper panel) and Legal Amazon (lower panel). Models in columns (1) and (5) show results for the
baseline specification. Models in columns (2) and (6) show results for municipalities with forest cover larger than 10% in 2002 and forest loss
until 2022. Models in columns (3) and (7) show results with the instrument Bi,t entering equation 3 in unlagged form. Models in columns (4)
and (8) show results with the measure for pasture/cattle expansion ci,t entering equation 1 in lagged form. All models include information
on GDP per capita, population, the share of indigenous areas on total land area, an indicator for dry spells as well as the lagged number of
environmental fines, lagged agricultural price indices, and lagged forest area. All variables except the indicator for dry spells, lagged forest cover
and cattle density enter the models in first differences. All models include municipality fixed effects, year fixed effects and a municipality-specific
linear time trend. Standard errors are clustered at the municipality level. F-tests report the F-statistics of the first stage for IV specifications.
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