Circular Economy based system thinking

The energy system of northern Sweden has started the transition to a climate neutral society. This is fueled partly by new establishments (attracted by access to clean and cheap power) and partly by the transition of existing iron and steel industry from coal to hydrogen (<u>Hybrit, H2GreenSteel</u>). New establishments are projected to increase the population, which will increase the final energy demand for heating buildings and transportation. Hybrit is building hydrogen storage to balance their energy demand (takes power from grid) and is looking into ways to process waste heat to supply the district heating grid. We see this transformation as an opportunity to transition towards a circular economy (CE), including decreasing energy demand by using services in different ways (e.g., car sharing) and potential for beneficial sector coupling.

As a part of the SureCity EraNet project, Luleå Technical University developed a generic city-based energy system optimization model (TIMES-city), which now is applied to different municipalities in northern Sweden. The model minimizes total system cost over years subjected to meet the given annual demand for energy-intensive goods and services (annual person-km traveling in car etc.) over various constraints (e.g., emissions reduction targets). In this proposal, we revisit the system analysis through the lens of CE.

This project aims to aid local decision-makers in identifying where and how CE can facilitate a more sustainable energy transition. For this, we implement CE strategies into the framework of system thinking. Here CE strategies are integrated into the energy system modeling of municipalities in northern Sweden. It includes three major steps:

Step1: Choosing the CE principle to be implemented: In system analysis, there is always a tradeoff between the level of details to be considered and what makes sense to model. This study uses the 3Rs CE principle, *reuse, recycle and reduce.*

Step2: Identifying the scope of chosen strategy in system analysis: Here, we analyze how the chosen CE strategies can be implemented in each of the system analysis steps; system conceptualization, system representation, scenario development and result analysis.

	Conceptualization	System Representation	Scenario	Result Analysis
		(examples)	Development	(examples)
			(examples)	
Technology	consider sector	-increased product life,	-high technology	- analyze emissions
Inclusion	coupling – flow	product efficiency and	readiness level (TRL)	from processes
	of materials and	process efficiency	of circular	causing pollution and
	energy both	-technologies for capturing	technologies	global warming
	between and	and/or producing energy		- analyze material and
	within sectors	commodities from waste		energy wastage in
		(e.g., waste-heat, biowaste)		processes and
				consumption
Required	Consider	- Include options for sharing	- shared economy	- analyze the level of
Action	behavior change	cars and other appliances	(focus on service	circularity in results
	and usage of	(land-mover etc.)	instead of owning	- percent of recycling
	technologies in	- Investments in new	cars and appliances)	- percent of renewable
	new ways	business models	- recycling shares	and non-renewable
		- include recycling	- reduced repair/	sources in supply
		indicators	maintenance cost	

Step3: Mapping the findings to system analysis framework and include CE strategies.