
Estimating the impact of working from home on urban equilibrium: neighborhood scale 
effects using mobile data 
 
Inessa Tregubova, Department of Geography, Hebrew University of Jerusalem 
Matan Gdaliahu, Department of Economics, Hebrew University of Jerusalem 
 
Abstract 

The COVID-19 pandemic has fundamentally reshaped urban dynamics through the accelerated 
adoption of remote and hybrid work, in almost all countries of the world, including Israel. The 
new work schedule allows employees from the IT and financial sector to work from home or from 
any other location outside the office, at least couple of days a week. This allows them to save time 
and money on commuting. These shifts challenge long-standing urban equilibrium frameworks, 
such as the Alonso-Muth-Mills model, which has traditionally guided understanding of residential 
choice in urban economics and regional science. Previously, proximity to the CBD served as a 
primary factor influencing residential desirability and house prices. However, with the increase in 
remote work, this proximity has become less relevant and new spatial equilibrium is currently 
more explained by housing value and local amenities. 

This paper examines the impact of working from home (WFH) on urban equilibrium in the Tel 
Aviv metropolitan area. To do so, we construct neighborhood-level WFH metrics using GPS-based 
mobility data and analyze their spatial and temporal variation in relation to rental price changes. 
Our findings reveal significant spatial heterogeneity in the response to WFH: while central 
neighborhoods have seen a decline in housing demand, remote neighborhoods exhibit faster rent 
price growth, which we interpret as a sign of increasing attractiveness. 

1. Introduction 

The COVID-19 pandemic significantly disrupted traditional urban dynamics, particularly in major 
cities around the world. During lockdown periods, a substantial portion of the workforce was 
compelled to work remotely, leading to a sharp decline in both economic activity in central 
business districts (CBDs) and daily commuting volumes. For instance, in the United States, the 
share of fully paid remote working days reached 33% during the pandemic (Dey et al., 2021)while 
in the European Union, approximately 37% of salaried employees worked from home (Eurofound, 
2020). Among occupations suitable for remote work (Dingel & Neiman, 2020) this figure was 
even higher—between 50% and 60%  

More critically, working from home (WFH) has persisted beyond the lifting of pandemic 
restrictions. Highly skilled employees, particularly in sectors with high adoption of digital tools 
such as information technology and finance, have continued to work from home several days per 
week. As a result, scholars have begun referring to such hybrid work arrangements as the “new 
normal” for urban labor markets (Barbosa et al., 2022; Barrero et al., 2021, 2023). 

Recent statistical evidence of major cities in Europe and US supports this shift: in 2023, 



approximately 48% of high-skilled workers in London were working remotely at least two days 
per week(ONS, 2023). In San Francisco, the figure stood at 33%, and in Paris, around 20%(Jaclyn 
DeJohn, 2024; OECD, 2023). 

This paper contributes to the growing literature on the long-term effects of remote work on urban 
equilibrium by examining how WFH patterns evolved during the Covid-19 pandemic and in the 
three years following, using high-resolution mobility data. We aim to address two central 
questions: 

- How can GPS-based mobility data be used to measure WFH dynamics at a fine spatial 
scale? 

- What is the impact of increased remote work on the urban spatial equilibrium, 
particularly as reflected in rental prices? 

To answer these questions, we employ a combination of spatial analysis and panel regression. The 
paper proceeds as follows. We begin with a review of the theoretical and empirical literature on 
urban equilibrium and the economic implications of remote work. We then present our theoretical 
framework, followed by a description of the study area and dataset. Next, we detail our empirical 
strategy for identifying WFH patterns and estimating their impact on rents. Finally, we present the 
results and discuss their implications for urban structure and policy. 

2. Literature review 

From a theoretical perspective, the new behavior of some high skilled workers implies significant 
changes to the classic Alonso-Muth-Mill monocentric ‘closed city’ model that economists 
normally use to explain housing market and population dynamics in the city (Alonso, 1964; Mills, 
1967; Muth 1969). This model suggests that residential location choices are driven by individuals 
seeking to maximize utility by making an optimal trade-off between commuting costs and housing 
quality, given a fixed income. Individuals aim to live as close as possible to the central business 
district (CBD), where workplaces are concentrated. Later extensions of the model added a third 
factor to residential choice: local accessibility of amenities (Brueckner et al., 1999). While the 
classic monocentric model assumes that neighborhoods located at the same distance from CBD 
are economically homogenous, introduction of amenities brings more spatial heterogeneity into to 
the model as it allows residents from different income groups to live at equal proximity to the 
CBD. 

With the rise of remote work however, commuting frequency (Barrero et al., 2021; Bond-Smith et 
al., 2022; Brueckner et al., 2021; Delventhal et al., 2022; Monte et al., 2023)  has been reduced, 
disrupting the established urban equilibrium. This has motivated a huge wave of research on how 
WFH affects housing markets, residential behavior and their impact on urban equilibrium. 

The papers that explore the impact of remote work on urban structure predict a new spatial 
equilibrium (Brueckner et al., 2021) where the density of population is better defined by the quality 
and density of local amenities rather than local employment level (Delventhal et al., 2022; Ramani 



& Bloom, 2021). Under these new conditions, remote workers are disconnected from their 
workplaces, and they value residential places based on their local characteristics such as the 
availability of natural amenities, safety, school quality and house prices. 

As a result of this shift, studies suggest a reduction of the housing and rental -price gradient in the 
long run.  Most papers describe a decrease in housing demand in the central areas of large cities 
and an increase in suburbia and small metro areas nearby – so called ‘donut effect’(Ramani & 
Bloom, 2021). While some papers present only theoretical evidence, others have empirically 
confirmed this phenomenon based on empirical evidence from the period 2020-2022. Especially 
interesting is the fact that the results are mostly consistent for different cities across the world: 
individuals tend to leave the central area but still stay within the metro area as it provides access 
to services, flattening intra-city house-price gradients, especially for rents. 

As such, in the US several papers report empirically- grounded population shifts (about 10%) in 
large US cities, from high-density zip codes and city centers towards lower-density and less 
expensive areas. (Althoff et al., 2022; Barrero et al., 2021; Health et al., 2020; Ramani & Bloom, 
2021). This movement is limited to metro boundaries, as only 4% of shifters move to rural areas.  

In the UK (De Fraja et al., 2020; Gokan et al., 2022) evidence also supports the “donut effect” 
with greater growth occurring in the suburbs and hinterlands surrounding large cities. Additionally, 
there is also an estimated “Zoomshock” (De Fraja et al., 2020) which represents a shift in economic 
activity due to remote work. This found to be significant and heterogeneous at a granular level, 
leading to decreased activity in productive city centers and increased activity in residential 
suburbs.  

In Italy, Biagetti et al (2024) find two opposite trends: on the one hand, survey evidence shows 
people desire to move closer to nature if allowed to work remotely. On the other hand, studies 
from Milan show that people desire to stay within the city as it provides good quality and a variety 
of services. In Australia, Lennox (2020) finds that the largest and most productive cities gain both 
jobs and residents as they accumulate most remote work jobs. But residents prefer to live in outer 
suburbs causing urban sprawl. Other work shows a significant increase in residents in smaller cities 
and towns close to large employment centres, especially ones with good access to natural 
amenities (Guaralda et al., 2020; Zenkteler et al., 2022). 

Despite the growing number of empirical studies on remote work, most face significant limitations. 
Many estimate the indirect impact of remote work based solely on its presence after the Covid-19 
outbreak, often without capturing pre-pandemic dynamics. Others rely on low-resolution data—
typically at the national or county level which limits their ability to examine dynamics within cities 
(Barrero et al., 2021; Biagetti et al., 2024; De Fraja et al., 2020).. A further challenge is that these 
studies are usually based on static snapshots taken at a single point in time, which prevents 
researchers from capturing temporal trends or behavioral shifts.  

These limitations stem from the inherent difficulty of measuring remote work accurately. Most 
existing approaches depend either on costly surveys, which are subject to human biases (Barrero 



et al., 2023; Biagetti et al., 2024; De Fraja et al., 2021), or ticket validation records, which only 
indirectly reflect remote work patterns (Zheng et al., 2024) 

A possible solution to these data limitations is to use mobile phone data. Overall, it has proven to 
be a reliable source for capturing high-resolution, dynamic travel patterns. However, in the context 
of remote work, studies utilizing such data have rarely examined long-term effects. Instead, they 
tend to focus primarily on the immediate impact on urban economic activity of mobility 
restrictions during lockdown periods (Huang et al., 2023; Östh et al., 2023). One of few studies 
that analyses long-term consequence of WFH is Li et al., 2024. They examine what popular third 
places in Beijing become frequented by remote workers, using mobile phone signals and app usage 
data from platforms designed to support remote work. Another study that measures two-years 
impact with mobile phone data is Monte et al (2023). They use GPS-locations of mobile users to 
measure changes in commuting frequency between 274 US cities and compare them with changes 
in housing prices gradients. 

This paper addresses the existing gap in the understanding of remote work long-term impact on 
the intracity equilibrium based on reliable data by leveraging a high-resolution GPS dataset along 
with rental price data available both for the pre- and post-COVID-19 periods. Using these sources 
enables the direct estimation of the impact of remote work on rental price dynamics across time 
and space, capturing both temporal shifts and spatial heterogeneity in urban housing markets. 

3. Theoretical model 

The theoretical part of the study analyzes the potential outcomes of WFH opportunity on a spatial 
equilibrium. To do this we use the intercity model of Brueckner et al (2023) which we adapt to be 
applicable for neighborhoods of similar size within urban agglomeration. In this study we examine 
four types of neighborhoods: 

N1: Close distance to the CBD (𝑥!") with high amenity level (𝐴") 

N2: Close distance to the CBD (𝑥!#) with low amenity level (𝐴#) 

N3: Long distance from the CBD (𝑥!$)  with low amenity level (𝐴$) 

N4: Long distance from the CBD (𝑥!%) with high amenity level (𝐴%) 

where 𝑥!" = 𝑥!# = 𝑥&'( <	𝑥!$ = 𝑥!% = 𝑥) , 𝐴" = 𝐴% >		𝐴# = 𝐴$	 

Brueckner suggests that the resident utility function inside the city can be presented as: 

𝑢(𝑒* , 𝑞* , 𝐴*) = 	𝐴* + 𝑒* + 𝑉(𝑞*)																																																										(1) 

where 𝐴* denotes the amenity level in city i, 𝑒* denotes other consumption (non-housing) whose 
price is normalized to 1, and 𝑉(𝑞*)	 is a function of the utility from housing services 𝑞*. 

The budget constraint is as follows: 

𝑊(𝑝* , 𝛼*) = 𝑟*𝑞* + 𝑒*		                                                         (2) 



where 𝑟* 	is housing prices (rental prices in our analysis) and the wage in city i, 𝑊(𝑝* , 𝛼*)	is 
determined by the city’s population size 𝑝*, responds negatively to it (𝑤,< 0), and by the 
productivity level 𝛼*, to which it responds positively (𝑤- > 0 ). 

Substituting the budget constraint into the utility function yields: 

𝑢(𝑒* , 𝑞* , 𝐴*) = 	𝐴* +𝑊(𝑝* , 𝛼*) + 𝐻(𝑝*)																																																(3) 

where 𝐻(𝑝*) = 𝑉(𝑞*) − 𝑟*𝑞* is a net utility from housing, which is negatively influenced by 
population size (ℎ, < 0), since housing prices 𝑟* rise with population (we assume housing stock is 
fixed). Because both net housing utility and wages decline with population size, utility in city i 
also declines as population increases. 

Adaptation of utility function to the city neighborhoods 

Given that the paper addresses the impact of WFH inside cities, the analytical framework requires 
adjustments to reflect intracity specifics. To do this, we integrate insights from agglomeration 
theory as proposed by Koster and Thisse (2024). 

First, we assume two discrete levels of productivity within an agglomeration, denoted as: 𝛼&'( , 𝛼), 
representring the productivity levels in central and suburban neighborhoods, respectively. 
Following Koster and Thisse (2024), we posit that 𝛼&'( >	𝛼), as the higher economic density 
near the CBD attracts high-skilled, productive workers. Then, given the fact that highly productive 
workers tend to work longer hours and live closer to their work location, we can associate 
productivity with residents rather than firms.  

Next, we present two levels of neighborhood population:  𝑝&'( , 𝑝), where based on the classic 
Alonso-Muth-Mill model and the fact that neighborhoods have similar size   𝑝&'( >	𝑝) . 

As such, we replace 𝑝* , 𝛼* 	in Eq. 3 with neighborhood-specific variables, resulting in two distinct 
wage levels: 𝑊&'( ,𝑊). However, in contrast to Brueckner’s specification of budget constraint 
(Eq.2), here 𝑊(𝑝* , 𝛼*)	also capitalizes the commuting cost to CBD. That is, 

𝑊(𝑝* , 𝛼*) = 𝑟*𝑞* + 𝑒*		 + 𝑡𝑥*                                                        (4) 

where 𝑡 is the marginal commuting cost per unit of distance. We assume that for central-area 
residents 𝑥&'( = 0. As such, for commuters residing in the neighborhoods 3 and 4, the wage 
differs from that of the central-area residents by the amount of commuting cost, such that 
𝑊)&=𝑊&'( – 𝑡𝑥. However, this also holds for locally employed residents of these neighborhoods. 
By differentiating Eq. 2 with respect to distance to the CBD and assuming that 𝑒*		is independent 
of distance, we obtain: ./(,,-)

34
= .5

34
= −𝑡.  This implies that wages decrease at constant rate – 𝑡 

as distance to CBD increases, so 𝑊)6=𝑊&'( – 𝑡𝑥. Then, we can denote wages in remote 
neighborhoods simply as 𝑊) . 

Lastly, in the intercity model, net utility from housing is typically determined by how individuals 
maximize their utility from consuming housing alongside other goods. As such, the utility is not 



only the function of population but also reflects a neighborhood-specific idiosyncratic taste for 
housing of its residents. Therefore, we keep net utility from housing unique for each neighborhood 
- even their populations may be equal – denoted as	𝐻(𝑝* , 𝑁*),	or	𝐻!! .	The same assumption we 
apply to amenities based on Koster & Thisse's conclusion that amenities serve as a key source of 
a neighborhood’s heterogeneity. This yields the amenities value: 𝐴!! 

Equilibrium Without WFH 

The equilibrium condition absent WFH and migration costs requires utility to be equal across 
different neighborhoods: 

𝐴!*∗ +𝑊8
∗ + 𝐻!!

∗ = 𝐴!"
∗ +𝑊9∗ + 𝐻!#

∗                                             (5) 

Where 𝑓, 𝑔	 ∈ [𝐶𝐵𝐷, 𝑅]. For 𝑓, 𝑔 = 𝐶𝐵𝐷, 𝑖, 𝑗 = 1,2.  For  𝑓, 𝑔 = 𝑅, 𝑖, 𝑗 = 3,4 

Example I: N1 vs N3  

In N1 housing prices are high, so 𝐻!#
∗ 	is low. In N3 housing prices are low, so 𝐻!$

∗  is high. This 
balances the equilibrium equation: 

		𝐴!"	 +𝑊&'( + 𝐻!# = 𝐴!$ +𝑊) + 𝐻!$                                             (6) 

Which leads to: 𝐻!$ −	𝐻!"= (𝐴!"	 − 𝐴!$)+(𝑊&'( −𝑊))  

The housing prices of N3 should be low enough as well as residents’ individual preference for 
housing over amenities should be high enough to compensate for low real wages and lack of 
amenities in the neighborhood. 

Example II: N1 vs N2  

In both neighborhoods house prices are high and wages are high and identical (𝑊&'(). Then, 
modifying Eq.5 the equilibrium equation: 

𝐻!# −	𝐻!" = 𝐴!"	 − 𝐴!#                                                     (7)  

Notably, if we keep 𝐻 as the function of population, then we would have 𝐻!# = 𝐻!% and to satisfy 
the equilibrium: 𝐴!"	 = 𝐴!#. This would contradict the defining heterogeneity of neighborhoods. 
Therefore, it is crucial for our model to incorporate neighborhood-specific preferences into the net 
utility from housing. 

Equilibrium with WFH 

Now, assume WFH is possible, and all people start working from home all the time. However, 
insufficient time has passed for local services to adapt or for individuals to change their jobs. As 
such, 𝐴M!! = 𝐴!! and 𝑊!:

N = 𝑊!*. Moreover, individual value of housing also stays: 𝑉(𝑞*) =
𝑉(𝑞:)O  



That implies an individual can live in a certain neighborhood yet enjoy the productivity level of 
another neighborhood without paying commuting costs. In such case, wages must equalize across 
all neighborhood types: 

𝑊&'( = 𝑊)                                                                    (8) 

Consequently, the new equilibrium under WFH is (with the wage term canceled from both sides): 

𝐴!! + 𝐻P!* = 𝐴!" + 𝐻P!;                                                       (9) 

where 𝐻P!! denotes the net utility from housing in the neighborhood 𝑁* after WFH becomes 
possible. The new equilibrium implies that net housing utility under WFH decreases by the wage 
differential between the two neighborhoods. 

We now derive the new net housing utility values for pairs of neighborhoods located at different 
distances from the CBD. Neighborhood pairs situated at equal distances are excluded from the 
analysis, as their wage levels were already equal in the pre-WFH equilibrium. 

Proposition I. New Equilibrium between N1 and N4 under WFH 

Assume that neighborhoods N1 and N4 provide the same level of amenities (𝐴!"	 = 𝐴!%) but differ 
in their distance to the CBD, with N1 being closer. Then, when WFH becomes possible, net 
housing utility equalizes: 

	𝐻!"∗ < 𝐻P!" = 𝐻P!% <	𝐻!%∗                                                  (10) 

Since we don’t assume WFH alters individual housing preferences, the equalization of net housing 
utility between N1 and N4 must result from population reallocation. Eq. 10 implies a net migration 
from N1 to N4 in the new equilibrium. As people migrate, rental prices fall in N1 and increase in 
N4: 𝑟!"∗ > 𝑟!"Q 	and		𝑟!%∗ < 𝑟!%Q 	 

Proposition II.  New Equilibrium between N2 and N4 under WFH 

Assume that N4 has higher amenities (𝐴!# < 𝐴!%)  but lower productivity (𝛼!# > 𝛼!%). Pre-WFH 
amenity advantage of N4 is offset by its lower productivity and hence lower wages. After enabling 
WFH, productivity differences disappear, i.e., 𝛼!# = 𝛼!%  and difference in housing utility is 
purely explained by amenities differential: 

𝐻P!% −	𝐻P!# =	𝐴!#	 − 𝐴!% < 0																																																(11)  

Eq. 11 implies that increase in net housing utility in N2 is even more significant than in N1. Then, 
out-migration from N2 and the corresponding decline in housing prices is faster than that in the 
high amenity neighborhood. 

Proposition III.  New Equilibrium between N1 and N3 under WFH 

Assume that N1 has higher amenities (𝐴!" > 𝐴!$)  but lower productivity (𝛼!" > 𝛼!$). Then, 
even that WFH equalizes productivity, i.e., 𝛼!" = 𝛼!$  N1 still keeps the amenity advantage. 



𝐻P!$ −	𝐻P!" =	𝐴!"	 − 𝐴!$ > 0																																																	(12)  

Then, the resident’s movement from N1 to N3 is assumed but in smaller rate than between N1 and 
N4. 

Proposition IV.  New Equilibrium between N2 and N3 under WFH 

Assume that N2 and N3 has the same level of amenities (𝐴!# = 𝐴!$)  but N3 is located further 
from CBD and then is lower in productivity (𝛼!# > 𝛼!$). Then, the new equilibrium equalizes net 
housing utility between N3 and N2: 

𝐻!#∗ < 𝐻P!# = 𝐻P!$ <	𝐻!$∗ 																																																														(13)  

If Eq.13 holds, population should be evenly distributed between N2 and N3. This implies residents’ 
migration from N2 to N3 until the housing prices converge, i.e., 𝑟!# = 𝑟!$.  

Summary of Propositions 

Summarizing all propositions, we learn that under a WFH equilibrium—where individuals work 
entirely from home but maintain unchanged preferences for housing—residential relocation occurs 
from the central city to more affordable suburban neighborhoods. Among these, neighborhoods 
offering amenity advantages become particularly attractive. This reallocation of population is 
expected to exert upward pressure on housing prices in remote neighborhoods and downward 
pressure on prices in the central business district. 

4. Study area 

4.1 Remote and hybrid work in Israel 

The choice of the Tel Aviv Metropolitan Area (TAM) as the study area is motivated by its' 
monocentric urban structure and its’ significant potential for remote work.  During the COVID-19 
pandemic, Israel underwent three national lockdowns: March 19–May 4, 2020; September 18–
October 18, 2020; and December 27, 2020–February 7, 2021. These lockdowns compelled many 
employers to adopt remote work practices. According to estimates by Zontag et al (2022), based 
on Labor Force Surveys by Israel’s Central Bureau of Statistics, approximately 20% of all workers 
worked remotely during the second and third lockdowns. 

In sectors dominated by highly skilled professionals, such as IT and communications, finance, and 
professional, scientific, and technical services, the share of remote workers reached 65–70%, 
aligning with similar rates observed in the U.S. and Europe. Furthermore, Zontag et al. (2022) 
found that individuals with longer commutes were more likely to work remotely, suggesting that 
distance from the workplace plays a significant role in telework adoption. Hence, we expect higher 
levels of remote work among residents located further from their work locations. 

A study by the Bank of Israel found that while telework declined after pandemic restrictions were 
lifted, it did not disappear (BOI 2022). By late 2021, around 15% of workers continued working 
from home several days per week. Notably, most of these workers chose to work from home rather 



than from other locations. This trend may be linked to the high rate of home internet access – over 
91% among working-age, non-religious Jews in 2020 (CBS, 2023).  

Although, no comprehensive national studies have tracked WFH trends in Israel beyond 2022, 
official statistics suggest that hybrid work arrangements have persisted, particularly in The Tel 
Aviv Metropolitan Area (TAM).  

Anecdotal evidence of a shift toward a new urban spatial equilibrium can be seen in migration 
patterns.  According to our analysis of annual migration reports of Central Bureau of Statistics 
(2024), after the Covid-19 pandemic, Tel Aviv Municipality experienced the most significant 
population loss since 2011 (Fig. 1). While the Tel Aviv Municipality experienced a positive net 
migration of around 3% between 2018 and 2019, this trend reversed sharply during 2020–2022, 
with the in-out migration ratio dropping to –25%. A more detailed analysis indicates that the 
decline was largely driven by the out-migration of young families, with the steepest decreases 
occurring in the 30–44 age group and among children aged 0–4. 

 
Fig. 1Migration dynamics in the Tel Aviv Municipality 

 
      4.2 The Structure of the Tel Aviv Metropolitan Area  

The TAM exhibits a monocentric urban structure similar to that of major European cities, which 
also report remote work rates of approximately 20%. We identify evidence of the TAM’s 
monocentricity through the analysis of three distinct sources. 

First, to validate Tel Aviv's monocentricity, we use data from a 2018–2019 cellular-based travel 
survey conducted by the Israeli Ministry of Transport. This survey tracked daily travel patterns via 
mobile phone data from major telecom providers (Pelephone and Cellcom), covering 
approximately 40% of the population—about 3.7 million individuals. Based on the analysis of 
weekday morning trips in 1270 transport zones in the area we find a clear pattern: commuting 
distance increases with the distance from central Tel Aviv. In Fig.2, the zones with the lightest 
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commuter outflows are represented by Tel Aviv and its neighboring cities: Ramat Gan, Herzliya, 
and Petah Tikva that contain the highest concentration of workplaces. 

Another factor that makes TAM a good case study for remote work is its high share of employees 
in sectors well-suited to telecommuting, particularly information and communication technologies 
(ICT) and finance. According to surveys conducted by the Central Bureau of Statistics, these 
sectors account for 24.2% of total employment in the region(CBS, 2023). Having established the 
TAM potential for remote work, we proceed to quantify it and measure its impact using mobile 
GPS signals.  

4.3 Statistical Areas of Israel Central Bureau of Statistics 

As the research focuses on spatial heterogeneity, all spatial units presented are aggregated at the 
level of Israel’s Statistical Areas (SAs), defined by the Central Bureau of Statistics. These units 
offer the finest spatial resolution available for socioeconomic and demographic analysis in Israel. 
Within the boundaries of the TAM, there are a total of 1,223 residential and 101 commercial or 
institutional SAs. The average estimated population per residential SA in TAM is approximately 
3,137 residents. 
 

 

Fig. 2 Outbound Commuting Distances in the TAM (2019) 



5. Data 

   5.1 Mobile signals Data 

Empirical testing of the model requires a method for measuring the dynamics of remote work at 
the neighborhood level before and after the Covid-19 pandemic. To this end, we use a unique 
dataset of mobile GPS signals collected between January 2019 and December 2023 by a 
commercial data analytics company Habidatum with coverage of all Israel. For the purpose of the 
study, we consider only the period until the end of September 2023 as the surge of rocket attacks 
from Gaza in October 2023 also forced people to work from home, thus distorting the impact of 
WFH on actual presence at home. 

The original dataset includes approximately 400 million anonymized geo-located signal clusters, 
representing the activity of about 310,000 unique users each month. Each row presents information 
relating to type of platform (IOS/Android), the beginning and end of the individual’s stay, 
coordinates and number of signals during the stay. An illustration of the original dataset with 
relevant features is provided in Table 1. 

Table 1 . An illustration of the original dataset 

Identifier 
Identifier 

type 
Timestamp 

Local date 

time 

Duration 

seconds 

Centroid 

latitude 
Centroid longitude Bump count 

001b3***115 GAID 

01/01/2020 

18:27:10 

01/01/2020 

20:27:10 12036 31.7969337 34.70179411 14 

0050c***f20 IDFA 

01/01/2020 

18:19:06 

01/01/2020 

20:19:06 11218 31.8041044 34.76149723 19 

Data preparation comprises several steps aiming at retaining only users whose records demonstrate 
high accuracy and consistent stay patterns. We filter the data in the following way to ensure reliable 
WFH estimations: 

1. Remove occasional stops by filtering out stays with a duration of less than 3 minutes and 
those located outside TAM 

2. Remove users with total frequency < 4 stays, frequency of night hours<2 and frequency of 
work hours<2 

3. Remove months with unique users after filtering <50,000 but keep all months with Covid-
19 restrictions. We empirically identify the 50,000 threshold by analyzing user distribution 
across statistical areas and ensuring a minimum of three users per area. 

After applying the filters, we arrive at an average of 160,000 unique users per month which 
represents 4% of TAM population (Fig.3). We limit the period of analysis and start from 01/2020 
as in 2019 the dataset has an insufficient number of users. We exclude the following months due 
to data limitations: December 2020, December 2022, July 2023, and August 2023. The lack of 
signals in the listed months is primarily attributed to technical configurations on the side of the 
data provider. Although we do not have direct explanation from the provider, previous studies 



using similar datasets have observed comparable drops in signal volume during lockdown periods 
(Z. Li et al., 2024). They explained these declines by the tendency of individuals to disable location 
sharing in response to government-imposed mobility restrictions. 

 
Fig. 3 Monthly volumes of users in mobility dataset 

5.2 Rental Price Data 
 
One of the key components required to estimate the impact of remote work on urban equilibrium 
is rental prices. This study relies on rental listings provided by the Israel Central Bureau of 
Statistics (CBS). Each listing includes detailed information about the rental unit, such as the asking 
price, unit size, and geographic location. The dataset contains approximately 1.8 million listings 
from Q1 2015 to Q4 2024, with 53% of them located in the TAM. Rental prices increased from 
56 NIS per square meter in Q1 2015 to 70.6 NIS in Q4 2024, reaching a peak of 72.5 NIS in Q1 
2023 (Fig.4). This reflects an overall price growth of 26.2%. 

 
Fig. 4 Rental price dynamic in TAM 



The dynamics of the rental price gradient (Fig. 5) reveal patterns consistent with previous research. 
Following the COVID-19 outbreak, the previously declining gradient trend—reflecting increasing 
price differences between central and peripheral areas—began to flatten in 2021–2022 and later 
shifted upward. This shift reflects a relative acceleration of rent growth in peripheral 
neighborhoods, leading to a shrinking gap between central and outlying areas. Temporary 
slowdowns occurred in mid-2021 and early 2023. Overall, these trends support our hypothesis that 
remote work has increased rental demand in more distant neighborhoods. 

 
Fig. 5 The dynamics of the rental price per m2 gradient 2017-2024 

 5.3 Other sources  

Other datasets are used to validate the estimation of WFH and build the data for the panel 
regression estimation, are presented in Table 2. 

Table 2. Data sources 

Num Dataset Source of data Variables Unit 

1 Israel Census 2022 Israel Central 
Bureau of Statistics 

Demographic 
features 
 

Statistical area 

2 GIS layer of buildings MAPI ( Survey of 
Israel) 

Building use Building 

3 Employment zones Israel Open data 
portal 

Number of 
employers 

Employment zone  
  

4 Geography of POIs and public 
spaces  
 
 
 
 

Open Street Map POI’s category 
 

POI 



6. The Empirical strategy 

     6.1 Remote work estimations   

This study employs two complementary approaches to estimating remote work at the statistical 
area (SA) level: 

• Area-based estimation: measures the change in the difference between daytime and 
evening signal volumes during workdays across statistical areas. 

• Individual-based estimation: tracks the percentage of work hours at home at the user level 
over time. 

The area-based approach offers broader representativeness and enables validation across months 
and spatial units. The individual-based approach provides higher precision and allows for tracking 
user-level behavioral changes and profiling remote work patterns. 

We expect the aggregated results by statistical area to show consistent temporal and spatial 
correlations. 

Area-based estimation of remote work 

In the first approach to estimating remote work dynamics, we construct a normalized indicator 
(Eq.14) by comparing mobile signal density during weekday daytime and evening hours across 
2022 Census statistical areas. To ensure comparability, we apply two adjustments. First, we define 
equal-length time windows for both day and evening periods, each spanning exactly five hours. 
Second, we weight evening signals so that the total number of signals in the TAM area remains 
constant between day and evening. This adjustment assumes that all workers reside within TAM 
and that all TAM residents work there. 

𝐼 = 3<=	>*9?<@>ABCB?*?9	>*9?<@>
3<=	>*9?<@>DBCB?*?9	>*9?<@>

                                                             (14) 

Under normal conditions, we expect the indicator 𝐼 to be negative in residential areas, positive in 
commercial areas, and near zero in mixed-use zones. Remote work, however, shifts daytime 
activity from commercial to residential areas which is widely confirmed in previous research 
(Biagetti et al., 2024; Ramani & Bloom, 2021), driving 𝐼 toward zero across all area types—
particularly during lockdowns. We use this convergence as additional validation of the 
representativeness of the mobile data. In the post–COVID-19 period, the dynamic trajectory of 𝐼 
reveals the pace and extent of recovery in different neighborhoods: increasing 𝐼 in commercial 
zones signals a return to office-based work, while persistently low or decreasing 𝐼 in residential 
areas indicates the continued presence of remote work. 

Individual-based estimation of remote work 

This estimation of remote work consists of 2 steps: the identification of individuals' home and 
work locations and the estimation of the share of an individual’s work days spent at home. 
Calculations are done at the monthly level. The full workflow is presented in Fig.6. 



Home and work locations 

In the study the identification of home and work location incorporates a deterministic approach. 
This is popular for home-work detection based on mobile data (Kung et al., 2014). Home locations 
are characterized by an individual’s stays frequency during night hours (10 PM to 7 AM) and 
Saturdays. The minimum required frequency is set to two times during night hours and one time 
during Saturdays. Work locations are defined as the most frequent locations located outside the 
home neighborhood where signals are recorded only during workdays (from Sunday till Thursday 
excluding national holidays and weekends).  

The validation of detected home and work locations relies on publicly available data sources, 
including the Israel Census 2022, employment zones, and the GIS layer of buildings. Home 
locations are aggregated by CBS statistical areas and compared with Census data using the Pearson 
correlation, while work locations are validated against declared employment figures within Israel’s 
designated work zones, also using the Pearson correlation. Additionally, each home location is 
linked to a specific building, and the proportion of identified home locations situated in 
commercial buildings is calculated as an accuracy measure. Lastly, each geohash is labeled as 
either a home or a work location based on the dominant category of detected points. The results 
are then intersected with official work zones to measure classification accuracy, including the 
evaluation of Type I and Type II errors. 

Before estimating an individual’s remote work hours, we first define their typical hourly activity 
pattern based on office days. An office day is defined as a day when at least one signal is detected 
at the individual's work location, while a working day refers to a weekday that is not a weekend or 
public holiday. Estimating these probabilities is necessary for two main reasons: (1) signal 
distribution across hours and users is not uniform, meaning that for some users, signals may be 
observed only during specific times of day, which can bias remote work estimations; (2) 
individuals may follow different work hour schedules, which vary significantly across the 
population.  

Therefore, for each hour between 8 AM and 7 PM, we estimate the probability that an individual 
is at one of three types of locations: home, work, or a third place—based on statistics derived from 
office days. The methodology is identical for all location types; however, we illustrate it here using 
the example of the work location. To compute these probabilities, we apply Bayesian conditional 
probability. Specifically, for each hour ℎ on office days we estimate the probability of being at that 
work location as follows: 

𝑃*(𝑊|ℎ) = 𝑃*(𝑊) ∗ 𝑃*(ℎ|𝑊)/𝑃*(ℎ)                                             (15) 

Where 𝑃*(𝑊) denotes an individual's share of office location hours in a working day during the 
month, 𝑃*(ℎ)	 denotes an individual’s share of exact hours on office days, 𝑃*(ℎ|𝑊)	 is the 
individual’s share of exact hour at an office location on office days. Similarly, we calculate an 
individual’s conditional probability of being at home 𝑃*(𝐻|ℎ) or a third place 𝑃*(𝐴|ℎ) at specific 
hour of days with signals from work location.  



Then, Work hour flag: 

𝑊𝐻 = Z1, 	𝑃*(𝑊|ℎ) > 𝑃*(𝐻|ℎ)		𝑎𝑛𝑑		𝑃*(𝑊|ℎ) > 𝑃*(𝐴|ℎ)
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 `  	; 

Workhours day flag: 

𝑊𝐻𝐷 = Z1,∑𝑊𝐻 > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒`  	; 

Remote work hour flag: 

𝑅𝑊𝐻 = Z1,𝑊𝐻 = 1	𝑎𝑛𝑑	𝑂𝐷 = 0	𝑎𝑛𝑑	𝐻𝐿 = 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 	` 

Where 𝑂𝐷=1 indicates an office day and HL = 1 indicates that the individual's actual location is at 
home.  

In order to avoid giving high weights to non-typical office hours (e.g. late evening),  the Remote 
work hour flag is weighted using a general monthly probability: 

𝑅𝑊𝐻_𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = 𝑅𝑊𝐻 ∗ 1/𝑛e𝑃(𝑊|ℎ) 

where n is number of users in specific month.  

The days where an individual has at least one weighted remote work hour higher than 50%, are 
called remote work days (𝑅𝑊𝐷).  The monthly remote work level for a neighborhood is defined  
as: 

𝑅𝑒𝑚𝑜𝑡𝑒	𝑊𝑜𝑟𝑘	𝑙𝑒𝑣𝑒𝑙	 = 𝑎𝑣𝑔(∑("&'()
∑("')()

                                              (16) 

As the final target is to provide numbers by statistical area, the remote work level is averaged 
across users whose home location falls within that statistical area. The accuracy of estimations is 
validated by correlating the monthly dynamics of the TAM 𝑅𝑒𝑚𝑜𝑡𝑒	𝑊𝑜𝑟𝑘	𝑙𝑒𝑣𝑒𝑙 with the monthly 
share of remote work hours from Labor Force Surveys conducted by Israel Central Bureau of 
Statistics. 

A limitation of this approach is the difficulty in capturing work activity occurring in ‘third places’ 
i.e. places that are not predominantly home or work locations. The accuracy of GPS signals is often 
insufficient to unambiguously link a user's location to a specific point of interest (POI), particularly 
in urban settings where many POIs are located within mixed-use buildings. This spatial ambiguity 
complicates the identification of remote work sites beyond home or office. 



 
Fig. 6 Remote work estimation process 

 

6.2 Classifying neighborhoods 

Additionally, following the theoretical model, each statistical zone is classified into one of four 
neighborhood types: CBD (N1), central residential neighborhood (N2), remote residential 
neighborhood (N3), remote neighborhood with high amenities (N4). The classification is based on 
a plot comparing amenity accessibility within a 1 km buffer around each statistical area to its 
distance from the Azrieli commercial center (Fig. 7). Both variables were standardized by 



subtracting the median and dividing by the standard deviation to ensure comparability. For this 
study, we apply Brueckner’s  (1999) definition of amenities, focusing on two categories: natural 
amenities (parks and sea beaches) and modern amenities which include cafés, restaurants, shops, 
schools, and hospitals. We don’t include historical amenities in the analysis, as the study area lacks 
a significant historical heritage. 

Neighborhoods with a positive scaled distance (y-axis) are classified as remote areas or satellite 
cities, while those with a negative value are considered part of the central area. The x-axis 
represents amenities, where negative values indicate low accessibility to amenities and positive 
values indicate high accessibility to amenities. 

 
Fig. 7 Neighborhoods Types distribution 

 

6.3 Panel data description  

Based on the collected data, we construct a balanced panel that includes only Statistical Areas 
(SAs) within the TAM where both rental listings and home location estimations from GPS signal 
data are available for every quarter between Q1 2020 to Q3 2023 (“examined period”). To estimate 
remote work levels, we use individual-level WFH indicators, which are then averaged by SA 
according to users’ inferred home locations. To convert monthly WFH estimates into quarterly 
values, we select the month within each quarter that contains the highest average number of users 
per SA, ensuring consistency and data quality. The final panel covers 15 quarters, 620 SAs, and 
comprises a total of 9,300 observations. 



The neighborhoods are categorized into four types: 44 CBD neighborhoods (N1), 457 residential 
neighborhoods with low amenities with 60 in Tel Aviv (N2) and 397 outside (N3), and 119 satellite 
city centers (N4). Fig. 8 presents the average asking rent per square meter by quarter and 
neighborhood type. The average asking rent per square meter across neighborhoods in the balanced 
panel ranged from ₪27  to ₪158  over the examined period. 

 
Fig. 8 Rental prices dynamics in 4 groups of neighborhoods 

6.4 Empirical testing of WFH impact on rental prices 

Following the theoretical model, the goal of the empirical study is to examine how the opportunity 
to work from home influences the urban equilibrium. Following Ramani and Bloom (2022) and 
Bruckner et al (2023) we estimate this by measuring the impact of WFH on rental prices across 
the TAM. Specifically, we specify four equations: 

- Equation (17): Assesses the direct effect of WFH on rental prices relative to neighborhood 
distance from the CBD and relative to local accessibility of services. 

- Equation (18): Based on the empirical methodology proposed in Bruckner (2023) equation 
7. That is, an integration of three variables: the share of WFH, a binary indicator for 
whether the neighborhood’s level of amenities is above the median, and the number of 
amenities as a continuous variable. Accordingly, in the same equation, there will be an 
integration of three variables with respect to the distance from the CBD—namely, the share 
of WFH, a binary indicator for whether the neighborhood is located closer than the median 
distance to the CBD, and the actual distance as a continuous variable. 



- Equation (19): Examines the differential impact of WFH across neighborhood types, which 
incorporates both distance and accessibility dimensions. 

- Equation (20): An Event Study estimation is conducted in which the treatment group is 
defined as neighborhoods of the fourth type: remote neighborhoods with a high level of 
amenities. We assume that these neighborhoods, in line with the prediction of the 
theoretical model, will experience a greater inflow of population and, consequently, an 
increase in rental prices. This effect will be examined in comparison to all other 
neighborhood types, which serve as the control group. 

Given our assumption that households adjust to changes in work patterns with some lag, our 
estimation incorporates an interaction term using the log of the previous quarter’s WFH rate. 
Although a longer lag (e.g., two quarters) would be desirable, data constraints and sample size 
considerations favor a one-quarter lag. Additionally, since many rental agreements in Israel allow 
for termination every three months, it is reasonable to assume that relocation decisions are often 
made within that timeframe. 

Equation (17) integrates two interaction mechanisms to account for potential heterogeneity in the 
effect of WFH across urban geography. Specifically, we interact the lagged WFH rate with both 
the distance to the CBD and the accessibility of amenities. The full specification is as follows: 

Equation (17) is specified as follows: 

𝑅!,# = 	𝛼 + β∑ WFH!,#$%&
%'( + 𝛿)(WFH!,#$) × CBDdis!) + 𝛿*(WFH!,#$) × A!) + γ∑ R!,#$%&

%') + 𝜏# + 𝜀!,#               (17)                       

Where R!,# denotes the log asking rent per square meter in neighborhood n during quarter q, WFH!,#$% 
is the lagged WFH rate, 𝐶𝐵𝐷𝑑𝑖𝑠* is the distance to the CBD, A! captures the density of local 
amenities per square kilometer, 𝜏+ is quarter fixed effects, and 𝜀*,+ is the error term.  

We expect both interaction terms to reveal meaningful spatial variation in the rental price response 
to WFH. A negative and statistically significant 𝛿" would suggest that the rental impact of WFH 
increases with distance to the CBD, consistent with the hypothesis that WFH enables households 
to relocate to peripheral areas. Similarly, a negative and statistically significant 𝛿# would imply 
that higher accessibility to local amenities amplifies the effect of WFH on rental prices, indicating 
that remote workers may still place value on urban-like conveniences when choosing residential 
locations. 

Equation (18) is based on the empirical methodology proposed in Bruckner (2023), as follows: 

𝑅!,% = 	𝛼 + β∑ WFH!,%&'(
')* + 𝛿"(WFH!,%&" × HighA × A!) + 𝛿"(WFH!,%&" × CloseCBD ×

																																																														CBDdis!) + γ∑ R!,%&'(
')" + 𝜏% + 𝜀!,%                                                    (18) 

The innovation in this specification lies in the inclusion of two additional interaction terms: one 
with a dummy variable equal to 1 if the neighborhood's amenity level is above the sample median, 
HighA, and another with a dummy variable equal to 1 if the neighborhood's distance to the CBD is 
below the sample median, CloseCBD. 



Equation (19) introduces a vector of neighborhood-type dummy variables Type!+  to evaluate 
heterogeneity in the WFH effect: 

𝑅!,% = 	𝛼 + β∑ WFH!,%&'(
')* + 𝛿(WFH!,%&" ×∑ Type!

+,
+)# ) + γ∑ R!,%&'(

')" + 𝜂! + 𝜏% + 𝜀!,%                (19) 

Here, 𝜂* and 𝜏+ are neighborhood and quarter fixed effects, respectively. The base group in this 
regression is CBD neighborhoods (Type I), so we expect positive coefficients for neighborhoods 
located in satellite cities (Type III & IV), and negative for central residential neighborhoods (Type 
II).  All regressions cluster standard errors by neighborhood type. 

Since our theoretical prediction suggests that the neighborhoods most positively affected by the 
option to WFH are those that are both remote and characterized by a high level of amenities, we 
examine the impact on these neighborhoods using an Event Study framework. Specifically, we 
define an interaction variable between a dummy variable—equal to 1 if neighborhood n belongs 
to the group of remote neighborhoods with high amenity levels—and a set of quarter indicators. 

We exclude the last quarter of 2019—the final quarter before the outbreak of the COVID-19 
pandemic—from the regression, allowing it to serve as the benchmark period for estimation. The 
regression specification includes neighborhood and quarter fixed effects, as presented below: 

𝑅!,% = 	𝛼 +	𝛾% D 𝑄% ∗ 𝑅𝐻!

#-%-

%)".%"
%/&"0%,

	+	𝐴𝑑!,%+	𝜂! + 𝜏% + 𝜀!,%																																								 (20) 

The variable RH is equal to 1 if the neighborhood belongs to the group of remote neighborhoods 
with high levels of amenities. In order for the parallel trends assumption to hold, we require that 
the estimated coefficients γ for the quarters prior to the last quarter of 2019 are statistically 
insignificant. Conversely, we expect the post-treatment (from 2020) γ coefficients to be positive 
and statistically significant. Such a pattern would indicate that the option to WFH had a positive 
effect on rental prices in this group of neighborhoods, relative to other neighborhoods. 

7. Results 

     7.1 Results of area-based remote work estimation  
The analysis of mobile signal dynamics reveals the clear presence of remote work in the TAM 
starting in April 2020. The most significant drop in signals during work hours in the central area 
is observed in September 2020, during the second lockdown (Fig. 9). 



 
Fig. 9 Mobile signals during work hours in 01/2020 (left) and 09/2020 (right) 

In addition, we study changes in the day-to-evening ratio independently for residential and 
commercial zones. To distinguish between these two areas, we use the sign of the day-to-evening 
signal ratio from January 2020, rather than relying on Census classifications. Within the residential 
category, we only focused on areas where, according to the 2022 Census, more than 50% of 
residents work outside their home. As expected, the indicator moves in opposite directions for 
commercial (Fig. 10) and residential zones (Fig. 11), showing a significant decline in signals in 
commercial zones and raise in residential ones during the second lockdown in September 2020. 
Notably, none of these areas return to their pre-pandemic levels—each remains below the baseline 
of January 2020. Overall, this confirms the ability of mobile signals data to reflect WFH dynamics. 
 

 
Fig. 10 Day/evening signals ratio dynamic in commercial locations 



 
Fig. 11 Day/evening signals ratio dynamic in residential locations with more than 50% of employers working outside their 

residence location 

7.2 Results of individual-based remote work estimations 

The validation results for the estimated home and work locations, based on GPS-signal data and 
compared with the official datasets described in Section 6.2, are presented in Table 3. The table 
demonstrates a high level of accuracy in identifying both home and work locations.  

The estimated number of home locations per CBS statistical area shows a moderate positive 
Pearson correlation with population counts from the 2022 Israel Population Census (𝜌=0.57) at 
the statistical area level and a high correlation at the municipality level (𝜌=0.9). The moderate 
correlation at the statistical area level is largely explained by low smartphone penetration and the 
complete non-use of smartphones on Saturdays in religious neighborhoods. When these areas are 
excluded from the analysis, the correlation increases to 𝜌 =0.68. Moreover, only 2.3% of estimated 
home locations were identified in commercial buildings, indicating high spatial accuracy. 

Similarly, the estimated number of work locations is strongly correlated with the number of 
declared employers in designated work zones (𝜌=0.91). At the geohash level, classification 
accuracy reached 96%. 

Table 3. Validation results for detected home and work locations 

Validated measure Validation source ρ (Pearson) Accuracy (%) Spatial unit 

Home locations vs. Census 
population 

2022 Israel Population 
Census 0.57 - 

Statistical area 

Home locations vs. Census 
population  

2022 Israel Population 
Census 0.9 - 

Municipality 

Home locations in residential 
buildings  

GIS building layer 
- 97.7% 

Building 

Work locations vs. declared 
employers in work zones  

CBS official 
employment register 0.91 - 

Employment 
zones 



Geohash classification 
(home/work) 

Intersection with 
official work zones - 96% 

Geohash 

Remote work estimates for the Tel Aviv Metropolitan Area align closely with data from the Central 
Bureau of Statistics (CBS) on average weekly work-from-home hours. A sharp increase in remote 
work share to 35% is observed between March and November 2020, followed by stabilization at 
approximately 23% from 2021 to 2023, with noticeable dips during vacation months (Fig.12). 

Occupational differences in remote work adoption, as identified in prior research (Zontag et al, 
2022), are also evident in our findings. Neighborhoods where workers in the top three WFH-
suitable occupations account for less than 10% of the workforce consistently show a 6 ppt lower 
remote work share compared to neighborhoods with a high concentration of such workers (Fig.12). 
Furthermore, while low-skilled neighborhoods largely return to pre-COVID levels in terms of days 
spent at home, high-skilled neighborhoods (with more than 30% of high-skilled workers) maintain 
a 9 ppt increase in work-from-home days through September 2023 compared to January 2020. 

 
Fig. 12 WFH dynamics by share of high-skilled workers 

7.3 Result of empirical testing of WFH impact on rental prices  

This section presents the empirical results of the dynamic panel estimations conducted to examine 
the effect of remote work on residential rent prices. The models incorporate lagged variables at the 
quarterly level, allowing us to capture not only contemporaneous effects but also delayed 
responses in the housing market. The estimations control for fixed effects where applicable (time 
fixed effect in equations 17-18, time and SA (statistical area) fixed effects in equations 19-20). 

The results are presented across three tables, each focusing on a different dimension of the housing 
market’s spatial structure. Table 4 examines the interactions between WFH rate and distance from 
the CBD, WFH rate and degree of local amenities; Table 5 focuses on the methodology based on 
Bruckner (2023); Table 6 introduces neighborhood types based on both distance and degree of 
amenities, capturing heterogeneous effects across urban, and suburban areas. 



Table 4. Estimated results for Equation 17 
 

  (1) (2) (3) (4) 
 ln (Rent per m2) 

VARIABLES     
          
ln(WFH) 0.00396 0.0113*** 0.0102*** -0.000545 

 (0.00377) (0.00367) (0.00373) (0.0248) 
lag1 ln(WFH) -0.0305 -0.0554** -0.0582** -0.0568** 

 (0.0249) (0.0230) (0.0245) (0.0273) 
lag2 ln(WFH)   0.00669*** 0.00656*** 

   (0.00211) (0.00204) 
ln_diff    0.0627 

    (0.162) 
ln(amenities) -0.0165 -0.00773 -0.00744 -0.00747 

 (0.0187) (0.00484) (0.00505) (0.00506) 
lag1 ln(WFH) × ln(amenities) -0.00337 -0.00368 -0.00353 -0.00351 

 (0.00322) (0.00249) (0.00262) (0.00256) 
ln(distance to CBD) -0.191*** -0.0159 -0.0158 -0.0160 

 (0.0246) (0.0100) (0.0102) (0.0105) 
lag1 ln(WFH) × ln distance to CBD  0.00334 0.00733*** 0.00747*** 0.00730** 

 (0.00313) (0.00262) (0.00277) (0.00310) 
lag1 ln (Rent per m2)  0.512*** 0.511*** 0.511*** 

  (0.0216) (0.0217) (0.0219) 
lag2 ln (Rent per m2)  0.345*** 0.345*** 0.345*** 

  (0.0338) (0.0337) (0.0340) 
ln(number of ads) -0.0185*** -0.00723*** -0.00718*** -0.00720*** 

 (0.00198) (0.00147) (0.00148) (0.00147) 
Constant 5.878*** 0.775** 0.786** 0.771*** 

 (0.262) (0.305) (0.306) (0.273) 
     

Observations 8,680 8,060 8,060 8,060 
Number of Code SAs 620 620 620 620 
SA FE No No No No 
Time FE Yes Yes Yes Yes 
Robust standard errors in parentheses     
*** p<0.01, ** p<0.05, * p<0.1     

 
 
Empirical Findings and Interpretation; remote work, distance from the CBD and amenities. 

Table 4 presents the regression estimates aimed at evaluating the relationship between remote work 
prevalence, spatial proximity to the CBD, the degree of local amenities, and their joint effects on 
residential rental prices. The results indicate that, controlling lags of rental prices and WFH rate 
including time fixed effects, neighborhoods located further from the CBD have experienced 
relatively higher rental price growth in the wake of increased remote work rates. This pattern 
emerges most clearly through the interaction term lag1 ln(WFH) × ln distance to CBD , which is 
central to the research hypothesis; The coefficient associated with this term ranges from 0.0033 to 



0.0073, implies that, compared to other similar neighborhoods, a 1% increase in distance from the 
CBD and a 1% higher remote work share (in the previous quarter) is associated with an additional 
increase of up to 0. 0073% in rent prices. 

On the other hand, it was found that, once controlling for the distance from the CBD, the degree 
of amenities has no statistically significant effect on rental prices. A possible explanation is the 
high collinearity between this variable and the distance to CBD—on average, neighborhoods 
located closer to the CBD also tend to have a higher level of amenities. 

It is important to note that this result does not suggest that peripheral neighborhoods now have 
higher absolute rents than central areas. Rather, it indicates a convergence in rent levels, such that 
the gap between central and peripheral areas has narrowed following shifts in work patterns which 
we also see in Fig.5. 

Beyond the central interaction, several additional patterns emerge. In Column (1), the model 
excludes lagged rent values. The ln(WFH) coefficient suggests a positive and statistically 
significant short-run effect, with a 1% increase in the current remote work rate associated with a 
rent increase of up to 0.01%. In contrast, the lagged value lag1 ln(WFH) is consistently negative 
and significant, suggesting that remote work adoption in the previous quarter is correlated with 
lower current rent levels, potentially reflecting delayed household mobility or market adjustment 
dynamics. Specifically, a 1% increase in lagged remote work is associated with a decline in rents 
of up to 0.06%. 

The coefficient for ln(distance to CBD) is negative and significant in the first specification, 
indicating that, on average, neighborhoods located 1% farther from the center have rents 
approximately 0.19% lower. However, in Column (2), once rent lags of ln (Rent per m2) are 
included, the explanatory power of distance vanishes. This suggests that rental persistence absorbs 
much of the spatial gradient. As expected, past rents are strongly predictive of current rents, 
confirming price inertia in the housing market. The variable ln(amenities) is not statistically 
significant across all the specifications presented, most likely due to the high level of collinearity 
with the distance to CBD variable. 

Column (3) introduces lag2_ln_wfh, capturing remote work prevalence two quarters prior. This 
variable exhibits a positive and statistically significant effect, akin to the contemporaneous 
coefficient and in contrast to the short-run negative lag. This outcome supports the hypothesis that 
households adjust their housing decisions with a lag, possibly within a typical contract renewal 
window of one to two quarters. 

Finally, Column (4) adds ln_diff, measuring the deviation of a neighborhood’s remote work rate 
from the peer-group average. The coefficient on this term is not statistically significant, suggesting 
no systematic premium or penalty for neighborhoods that deviate from expected remote work 
levels once other covariates are accounted for. 

 

 



Table 5. Estimated results for Equation 18 

  (1) (2) (3) 

 ln (Rent per m2) 
VARIABLES    
        
ln(WFH) 0.148*** 0.104 0.101 

 (0.0417) (0.0916) (0.0886) 
lag1 ln(WFH)   0.00953** 

   (0.00423) 
lag2 ln(WFH)   0.00509 

   (0.00322) 
High Amenities -0.0623** -0.0115** -0.00989* 

 (0.0269) (0.00520) (0.00575) 
lag1 ln(WFH) × High Amenities 0.00373 -0.000433 0.000502 

 (0.00396) (0.00445) (0.00477) 
ln(amenities) -0.0243*** -0.0181*** -0.0185*** 

 (0.00265) (0.000999) (0.000919) 
High Amenities × ln(amenities) 0.102 0.0405** 0.0428** 

 (0.0921) (0.0170) (0.0175) 
lag1 ln(WFH) ×  ln(amenities) -0.00965*** -0.0102*** -0.0105*** 

 (0.000609) (0.000685) (0.000637) 
High Amenities × lag1 ln(WFH) × ln(amenities) 0.0122*** 0.0164*** 0.0178*** 

 (0.00257) (0.00323) (0.00317) 
Close to CBD -0.0399 -0.303*** -0.319*** 

 (0.219) (0.0640) (0.0679) 
ln(WFH) × Close to CBD  -0.252*** -0.251*** -0.260*** 

 (0.0503) (0.0480) (0.0488) 
ln(distance to CBD) -0.214*** -0.0409** -0.0414** 

 (0.0214) (0.0175) (0.0171) 
Close to CBD × ln(distance to CBD) -0.00362 0.0325*** 0.0343*** 

 (0.0270) (0.00739) (0.00834) 
lag1 ln(WFH) × ln(distance to CBD) -0.0160*** -0.00988 -0.0101 

 (0.00416) (0.00938) (0.00888) 
Close to CBD × lag1 ln(WFH) × ln(distance to CBD) 0.0273*** 0.0277*** 0.0287*** 

 (0.00606) (0.00557) (0.00598) 
ln_lag1_rentperM  0.506*** 0.505*** 

  (0.0197) (0.0199) 
ln_lag2_rentperM  0.339*** 0.338*** 

  (0.0341) (0.0342) 
ln(number of ads) -0.0185*** -0.00755*** -0.00742*** 

 (0.00184) (0.00125) (0.00129) 
Constant 6.107*** 1.041*** 1.068*** 

 (0.226) (0.302) (0.302) 

    
Observations 8,680 8,060 8,060 
Number of CodeSAs 620 620 620 
SA FE No No No 
Time FE Yes Yes Yes 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1    



    
Empirical Findings and Interpretation; Methodology based on Bruckner (2023) 

This specification allows us to compare the effect of WFH between amenity-rich and amenity-
poor neighborhoods, as well as between neighborhoods located near the CBD and those farther 
away. 

The results presented in the table 5 indicate that, among neighborhoods with a high degree of local 
amenities, the effect of the share of WFH on rental prices is positive and statistically significant. 
Moreover, each additional increase in the level of local amenities further amplifies this positive 
effect on rental prices. Empirically, a 1% increase in the share of WFH, combined with a 1% 
increase in the degree of amenities, is associated with up to a 0.018% increase in rental prices 
(Column 3). 

In contrast, for neighborhoods with the low level of amenities, the effect is negative and 
statistically significant (the coefficient of lag1 ln(WFH) × ln(distance to CBD) is about -0.01.), 
controlling for the neighborhoods’ proximity to the CBD. This specification therefore suggests 
that, with respect to the level of amenities, when households choose to relocate farther from the 
CBD, they are more likely to do so to neighborhoods with a high level of local amenities. 

Consistent with the theoretical prediction, neighborhoods located closer to the CBD exhibit a 
negative relationship between the share of working from home and rental prices. This result also 
holds when focusing exclusively on neighborhoods relatively close to the CBD; even among them, 
greater distance from the center is associated with a positive effect of the share of WFH on rental 
prices. Specifically, for neighborhoods relatively close to the CBD, a 1% increase in distance from 
the CBD combined with a 1% increase in the share of WFH is associated with up to a 0.03% 
increase in rental prices. In contrast, for neighborhoods located relatively far from the CBD, no 
statistically significant effect of an additional marginal unit of distance is observed. 

Table 6. Estimated Results for Equation 19 

  (1) (2) (3) (4) (5) (6) 
 ln (Rent per m2) 

VARIABLES       
              
ln(WFH) 0.000105 0.000223 -8.34e-05 0.000238 -0.000561 0.0422* 

 (0.00366) (0.00398) (0.00354) (0.00340) (0.00371) (0.0145) 
lag1 ln(WFH) -0.00439* -0.00586 -0.0134** -0.0132** -0.0132** -0.0147*** 

 (0.00141) (0.00279) (0.00250) (0.00259) (0.00248) (0.00211) 
lag2 ln(WFH)  -0.0127*   -0.0113 -0.0115 

  (0.00524)   (0.00504) (0.00500) 
ln_diff      -0.252* 

      (0.0906) 
lag1 ln(WFH) × central low A   -0.00698*** -0.0154*** -0.0145*** -0.0131*** 

   (0.000485) (0.000557) (0.000559) (0.000614) 
lag1 ln(WFH) × remote low A   0.0141*** 0.0118*** 0.0117*** 0.0129*** 

   (0.00102) (0.000878) (0.000902) (0.00108) 



lag1 ln(WFH) × remote high A   0.00925*** 0.0179*** 0.0171*** 0.0188*** 
   (0.00137) (0.000590) (0.000878) (0.00130) 

ln_lag1_rentperM    0.141*** 0.141*** 0.140*** 

    (0.0165) (0.0165) (0.0172) 
ln_lag2_rentperM    -0.0180* -0.0182* -0.0189* 

    (0.00710) (0.00720) (0.00702) 
ln(number of ads) -0.0189*** -0.0182*** -0.0185*** -0.0179*** -0.0177*** -0.0175*** 

 (0.00122) (0.00135) (0.00113) (0.00111) (0.00106) (0.000948) 
Constant 4.131*** 4.109*** 4.132*** 3.635*** 3.612*** 3.683*** 

 (0.00632) (0.0150) (0.0113) (0.0833) (0.0827) (0.1000) 
       

Observations 8,680 8,060 8,680 8,060 8,060 8,060 
R-squared 0.328 0.314 0.328 0.328 0.329 0.329 
Number of CodeSAs 620 620 620 620 620 620 
SA FE Yes Yes Yes Yes Yes Yes 
Time FE Yes Yes Yes Yes Yes Yes 
Robust standard errors in parentheses      
*** p<0.01, ** p<0.05, * p<0.1       

 

Empirical Findings and Interpretation: neighborhood types based on distance and accessibility.  

Table 6 presents regression estimates that disaggregate the effect of remote work by neighborhood 
type, where types are defined by both proximity to the CBD and local amenities degree. Unlike 
previous specifications, this model includes neighborhood fixed effects, since the variable of 
interest—neighborhood type—varies within the panel and is not omitted due to multicollinearity. 

The interaction terms between neighborhood type and lagged remote work (lag1 ln(WFH) × 
central low A,  lag1 ln(WFH) × remote low A, lag1 ln(WFH) × remote high A ) are central to 
addressing the research question. The coefficient on lag1 ln(WFH) alone remains negative on 
average, indicating that a 1% increase in remote work in the previous quarter is associated with a 
decline in current rent prices between 0.015% and 0.004%. However, this negative effect is 
attenuated in suburban neighborhoods, as reflected in the positive interaction coefficients for 
remote low A and remote high A. In aggregate, the effect of lagged remote work on rents is 
negligible in remote low A neighborhoods and even positive in remote high A neighborhoods. In 
contrast, central low A neighborhoods experience a sharper negative effect than the base category 
(CBD). 

Table 7 summarizes the marginal effects of lagged remote work across neighborhood types, based 
on the results from Column 4, which includes the richest set of controls and exhibits the highest 
R²: 

 

 

 

 



Table 7.  Summary of the influence of working from home by neighborhood type 

 CBD Residential Central  Residential Remote Satellite City 

lag1_ln_wfh –1.96% –1.96% –1.96% –1.96% 

Interaction term — –1.05% +1.89% +2.25% 

Total effect –1.96% –3.01% –0.07% +0.29% 

These results are consistent with the theoretical framework proposed in this paper: peripheral 
neighborhoods benefit from the rise of WFH, while central neighborhoods lose ground in relative 
rental value. A particularly noteworthy finding is that neighborhoods located in the central area 
but with lower degree of local amenities—experience the greatest decline, exceeding even that 
observed in the CBD. 

One plausible explanation is that households responding to remote work opportunities opt for more 
decisive relocation strategies. Instead of shifting slightly out of the urban core, many choose to 
move farther to suburban locations where rent is significantly lower, thereby maximizing housing 
consumption per monetary unit. Without sufficient amenities, there is little incentive to remain in 
the central area and bear its high housing costs. In essence, the value of distancing from the CBD 
rises when commuting constraints are relaxed, making distant, lower-cost neighborhoods more 
attractive. 

Together, the three tables provide compelling empirical support for the hypothesis that remote 
work has reshaped the spatial dynamics of urban rental markets. The negative effect of lagged 
remote work on rental prices—most evident in central and low local level of amenities areas—
suggests a weakening of the traditional urban rent premium. Suburban and satellite neighborhoods 
appear to benefit, as indicated by the attenuated or even positive effects of remote work in those 
areas. 

Finally, Figure 13 presents the results of the Event Study approach specified in Equation (20). This 
analysis focuses on remote neighborhoods with high amenity levels—the group that, according to 
the theoretical model, is most affected by the option to work from home. It addresses two 
questions: (i) whether rental price trends were similar across neighborhood types before the 
COVID-19 pandemic, and (ii) whether the observed changes are persistent or fade over time. 

As can be seen, the coefficients of the interaction term for neighborhoods in the group of remote 
with high levels of amenities are statistically insignificant prior to the COVID-19 outbreak. 
However, following the onset of the pandemic, the coefficients become positive and statistically 
significant for a period of approximately one and a half years. This indicates that rental prices in 
thes neighborhoods exhibited a relatively stronger upward trend compared to other neighborhoods, 
but only for a limited period. After the Q42022 the effect has disappeared. 



 
Fig. 13 Evidence from an event study analysis 

This provides further evidence of a relative increase in demand for more affordable, remote 
neighborhoods that still offer a sufficient level of amenities. They are consistent with the 
theoretical prediction that the option to work from home reduces reliance on CBD proximity, 
allowing households to choose locations that lower housing costs or provide higher-quality 
housing without sacrificing local amenities. 

8. Conclusions and contribution 

This study contributes to our understanding of how the rise of remote work influences spatial 
equilibrium reflected in housing market inside urban agglomeration. We began with two core 
research questions: 

1. How can GPS-based mobility data be applicable to measure work-from-home (WFH) 
dynamics at statistical area level? 

2. What is the impact of increased remote work on urban spatial equilibrium, particularly as 
reflected in changes in rental prices? 

Both questions are addressed empirically and theoretically in the paper. First, we demonstrate that 
GPS- signals data can reliably capture spatial and temporal heterogeneity in WFH behavior. While 
such data demand careful preprocessing to account for biases related to time-of-day or device 
sampling, they provide valuable insights into real-time shifts in urban activity patterns at high 
spatial and time granularity. 



Second, our empirical results strongly support the theoretical expectation that remote work 
reshapes the spatial distribution of housing demand. Across multiple specifications, we find that 
neighborhoods farther from the CBD experience relatively faster rental price growth as remote 
work prevalence increases. The key interaction term—between lagged WFH rates and distance to 
the CBD—consistently shows that remote work flattens the traditional rent gradient by reducing 
the premium placed on centrality. 

This effect is most noticeable in remote neighborhoods both with high and low level of 
accessibility, where remote work is associated with rent increase, compared to decline in more 
central areas. Notably, the greatest negative effects are observed not in the CBD itself, but in the 
adjacent residential neighborhoods—locations that combine high rents with lower accessibility 
benefits. This suggests that remote workers prefer to move farther from the center, where they can 
attain better living conditions for a lower price, rather than paying high rents in central areas.  

While the association with distance from the CBD is consistent across all models, the role of 
amenities is less straightforward. On the one hand, among central neighborhoods, those lacking 
access to amenities show slower rental price growth. We associate this with higher out-migration, 
suggesting that amenities may encourage residents to remain in the central area despite higher 
housing costs. On the other hand, the fastest rent growth is observed in remote neighborhoods 
without amenities, which, before the rise of WFH, offered the most affordable housing options. 
This pattern indicates that, when relocating, households tend to prioritize maximizing housing 
utility over maintaining access to amenities. Overall, the results suggest that, in the context of 
remote work, housing affordability has become a more important factor than accessibility. This 
likely reflects the increased amount of time people spend at home. 

Taken together, these results provide compelling evidence that remote work is not just a short-
term disruption but a structural force reshaping urban housing markets. It alters both the spatial 
logic of household location choices and the equilibrium dynamics of rent prices. 

These insights have important implications for urban policy and planning. Policymakers should 
recognize the continued presence of remote and hybrid work and adjust zoning, infrastructure 
investment, and service provision accordingly. For instance, growing peripheral neighborhoods 
may require expanded transportation, digital infrastructure, and public services to accommodate 
the rising demand for housing in these areas. 

Finally, this paper contributes to the evolving theory of urban spatial structure by explicitly 
incorporating the role of remote work. As cities continue to adapt to post-pandemic realities, 
understanding the spatial implications of work location flexibility will be essential. Our findings 
underscore the need to rethink traditional models of urban form, commuting behavior, and housing 
demand in light of a more decentralized, digitally connected workforce. 
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