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Abstract  4 

Nonparametric analyzes of regional agricultural production is frequently motivated by sustainability 5 

goals. In theory, an efficient allocation of production inputs and increased production outputs induced 6 

by innovations and technical progress could allow to save on scarce natural resources while 7 

simultaneously expanding the provision of food and fiber. Policy recommendations derived from two-8 

stage analyzes thus confidently advise policy makers and farmers to modernize, specialize or scale up 9 

to counteract technical inefficiency. In this paper two major objections are presented to these 10 

conventions within the agricultural economics literature. First, we show that when spatially differing 11 

climatic conditions are sufficiently considered in two-stage analyzes, conventional policy 12 

recommendations are not valid anymore. Second, we argue that from a production-theoretic point of 13 

view, the traditionally employed technical efficiency model fails in providing information on 14 

sustainability of agricultural production. We thus suggest to conceptually decompose technical 15 

efficiency into an operational and a physical efficiency measure. For the period 2004 to 2018, we find a 16 

stagnating trend in physical productivity in the agricultural sectors of 122 European regions. In 17 

conjunction with the subordinate role of contextual to environmental determinants of inefficiency we 18 

propose to neither motivate studies with sustainability goals by default nor derive policy 19 

recommendations whenever the impact of environmental factors is not sufficiently considered.  20 
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1 Introduction  26 

Just recently, Hansson, Manevska-Tasevka and Asmild (2020) have raised an important question 27 

regarding the interpretation of inefficiency obtained in non-parametric analyzes. What if the decision-28 

makers chose to conduct their farming business (at least to some degree) inefficiently? What if they 29 

acted rationally and based their decisions on considerations remote to the agricultural economist such 30 

as a preference for high animal welfare or other extensive practices? The authors convincingly argue 31 

that the contribution of studies that provide policy recommendations in order to nudge inefficient 32 

farmers to catch-up with sample peers is limited whenever the rational choice of the decision-maker is 33 

not sufficiently considered. 34 

In this paper we would like to build on the authors’ rationale by posing a different question. What if the 35 

decision-maker is not capable of choosing between conducting his farming business more or less 36 

productive? What if the varying degrees of inefficiency found in non-parametric analyzes are 37 

determined by spatially differing factors outside of the sphere of influence of both policy and decision-38 

makers? In such cases, policy recommendations would not only miss out on acknowledging rational 39 

production decisions but potentially even harm farmers by erroneously urging them to invest in what 40 

is referred to in the literature as better allocation of production inputs (Toma et al. 2017) by means of 41 

specialization (Galluzzo 2022), technological modernization (Nowak, Kijek and Domańska 2015), or 42 

operating on optimal scale (Galluzzo 2013). 43 

One might object that studies have hardly ever discussed factors that are determinate in the sense of 44 

being neither controlled by policy- and decision makers as explanatory factors of inefficiency. Indeed, 45 

the majority of studies in the literature is dedicated towards examining the effect of regionally differing 46 

sectoral characteristics such as size, specialization, or subsidies, which are of course subject to and 47 

manipulated by farmers or agricultural policies. Given the growing importance of studies on 48 

environmental efficiency or motivating efficiency analyses with sustainability goals, the neglection of 49 

determinate i.e., climate related factors, as a potential driver of (in-)efficiency comes as a surprise. 50 

Apart from some notable exceptions (, which will be adressed in the upcoming literature review 51 

section) few authors acknowledge the role environmental features play in explaining inefficiency 52 

variation and the consequences this might bear for studies’ policy implications.  53 

Following this line of thought, we’d further like to critically discuss the idea perpetuated in the 54 

literature that non-parametric efficiency and productivity analyzes are suitable tools in assessing the 55 

sustainability of (regional) agricultural production. A considerable amount of studies motivate 56 

conducting technical efficiency analysis with sustainability goals, e.g., pointing at ‘the potential for 57 

increasing agricultural production in the EU, balancing environmental resource savings with economic 58 

return. (Toma et al. 2017: 140)’ or the need for ‘growth in agricultural productivity and a more efficient 59 

way of utilizing limited inputs […]  [if] output is to keep up with the increasing demand for food and 60 

raw materials (von Hobe, Michels and Musshoff 2021: 2)’. In theory, rising productivity figures should 61 

reflect an improved feasibility in expansion of production possibilities, either induced by advanced 62 

technology or skills. The latter in turn are supposed to enable producers to increase (or maintain) 63 
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agricultural produce output, utilizing constant (or less) resource input quantities. Arguably though, 64 

findings of most productivity analyses may allow to support this motivation only to a very limited 65 

extent, because the technical efficiency model conventionally employed, contains only limited 66 

information on actual physical produce and resources. We thus suggest decomposing the latter into an 67 

efficiency model based on physical production factors and an efficiency model built on an operational 68 

input-output set. 69 

Empirical results for crop and mixed farms of 122 EU regions in the period 2004 to 2018 show that 70 

climatic conditions i.e., radiation, temperature and precipitation levels are statistically and 71 

economically significant in explaining efficiency variation. Given all other model parameters remain 72 

constant, we find that an increase in mean regional temperature of one degree Celsius already accounts 73 

for 1.5 % of (input-oriented technical) inefficiency variation. The results for the ‘operational’ and 74 

‘physical’ model efficiency affirm the claim that agricultural production efficiency substantially 75 

depends on neglected determinate factors. For the former, environmental and usually considered 76 

sectorial features e.g., economic size or intensity of practices, are found to determine a decision-makers 77 

degree of inefficiency. For the latter in turn, regional sectoral characteristics seem to play a subordinate 78 

role and inefficiency variation can mostly be attributed to spatially differing climatic conditions. In case, 79 

the latter are not sufficiently accounted for in efficiency analyses, inefficiency might be wrongfully 80 

attributed to decision-makers and policy recommendations misleading. 81 

Findings of the productivity analysis reveal that the claim of future increases in (technical) productivity, 82 

contributing towards a harmonization of saving on natural resources while expanding provision of food 83 

and fiber, is questionable at least. Although our findings do suggest an increase in technical 84 

productivity, productivity for our physical efficiency measure is stagnating, suggesting that further 85 

expansion of agricultural produce in accordance with environmentally sound production conditions, 86 

might be overestimated. As a consequence, motivating technical efficiency and productivity analyses 87 

with sustainability goals by default seems inadmissible.    88 

The remainder of the paper is organized as follows. The literature review in section 2 provides proof 89 

that the conventions lined out above exist and discusses why they are problematic above all in the 90 

context of regional agricultural production. In section 3, the theoretical framework for the empirical 91 

application case and the conceptual decomposition of technical efficiency and is introduced. In section 92 

4, results of the efficiency, (Malmquist-) productivity and second stage random effects Tobit panel 93 

regression analysis are discussed. The paper closes with concluding remarks in section 5.      94 

 95 
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2 Literature Review  96 

Of course, not all studies on agricultural production efficiency and productivity employing 97 

nonparametric methods are affected by the issue outlined above. Whether or not the neglection of 98 

environmental factors leads to deterred policy implications depends on a variety of factors, above all 99 

the scope of the analysis and how its results are interpreted. 100 

In the agricultural economics literature, the scope of studies varies significantly. Roughly, they may be 101 

divided in analyzes of efficiency (mostly) using cross-sectional data on the one hand and analyzes of 102 

productivity based on panel data on the other. Some works focus on specific farm types, e.g., dairy, crop 103 

or mixed farms and are conducted either on farm-level, regional, country or even global scale. Clearly, 104 

not all frameworks are equally vulnerable to the influence of determinate factors such as climatic 105 

conditions. In farm-level analyses of dairy farms for example, ecological features are expected to have 106 

a less pronounced effect on inefficiency variation when compared to productivity estimates of arable 107 

farms in a global scale setting. The criticism outlined in the introduction thus concerns studies to a 108 

different degree and above all applies to analyses conducted at least on a regional level.1  109 

And even in studies examining efficiency on regional or even broader scope, the issue does not 110 

necessarily have to arise. An example for a concise and sound country-level analysis is provided by 111 

Coelli and Rao (2005), in which agricultural total factor productivity of 93 countries is examined by 112 

employing the (nonparametric) Malmquist Productivity Index. The authors argue that their findings 113 

are mainly of interest because they show a reversal in the productivity trend reported by previous 114 

studies. They further argue that future research should consider land quality, irrigation, and rainfall 115 

levels to allow for a more meaningful interpretation of the differences that exist between the countries’ 116 

efficiency numbers. The conclusions drawn by the authors are thus exclusively based on a relative 117 

comparison with other studies, make no judgments on why decision-makers might be inefficient and 118 

neither provide policy recommendations on how to enhance productivity levels. 119 

The latter is of course legitimate whenever environmental factors are explicitly and sufficiently 120 

accounted for within the methodological framework. Chambers, Hailu and Quiggin (2011) proposed a 121 

methodology to account for event-specific uncertainty in agricultural production. They showed how 122 

Data Envelopment Analysis (DEA) can be adapted to consider stochastic elements in a state-contingent 123 

setting. Their findings suggest that different quantities of rainfall influence agricultural efficiency 124 

estimates. A similar approach was pursued by Gadanakis and Areal (2020), who derived the efficiency 125 

scores based on sub-vector DEA to ensure that only farms with homogenous environmental conditions 126 

were compared. In another article, Chambers, Pieralli and Sheng (2020) incorporated climatic variates 127 

directly into the productivity accounting framework and decomposed the productivity growth 128 

measured (among others) into a technological change and a weather-related change component. Their 129 

 
1 One should note though, that an impact of environmental variables on efficiency cannot be ruled out completely 
in agricultural production contexts. Schmitt et al. (2022) showed that extreme weather events caused significant 
crop yield losses at farm level, which suggests that environmental factors might even affect inefficiency 
distributions in farm-level analysis.      
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results suggest that the observed slowdown in Australian agricultural productivity growth is not 130 

attributable to a slowdown in technological change but much rather induced by weather-related events. 131 

Chambers and Pieralli (2020) confirm the importance of climatic features by applying the method to 132 

the case of US agricultural production.  133 

Given that some studies are not affected due to a specific scope or a careful interpretation of the results 134 

and other analyzes explicitly account for the effect of environmental factors, one might question the 135 

relevance of the issue outlined in the introduction section. Even though the cases introduced here exist, 136 

they are by no means the norm. Let’s move from the exception to the rule.   137 

Instead of applying a methodology as described above, the two-stage analysis is the most popular 138 

approach to determine efficiency of decision-makers and explanatory factors of inefficiency. The two-139 

stage approach comprises calculating DEA estimates in a first step, before regressing on the yielded 140 

efficiency estimates in a censored or truncated regression model in the second stage. In the latter, the 141 

effect of contextual variables (within the sphere of influence of the decision-maker) is considered. In 142 

context of agricultural production these variables include but are not limited to e.g., size, specialization, 143 

and subsidies. A direct incorporation of climatic variates into the efficiency framework (of the first 144 

stage) as in the example of Chambers, Pieralli and Sheng (2020) is not intended. Interestingly, the issue 145 

equally arises in eco- or environmental efficiency analyses (e.g., Bależentis et al. 2020; Grassauer et al. 146 

2021; Yang, Wang and Bin 2022), which consider not climatic conditions but environmentally 147 

undesirable outputs, e.g., nutrient surpluses, within their efficiency model. When efficiency estimates 148 

reflect results on the latter, they are presumably even more sensitive to the impact of the climatic 149 

conditions with which they interact.  150 

While a few studies employing the two-stage approach consider environmental factors in the second 151 

stage of the analysis, there is no discussion of the consequences this might bear for policy implications 152 

(e.g., Heidenreich et al. 2022). In fact, in one particular case, soil quality is found to have a significant 153 

impact on inefficiency (, whereas the effect of other considered covariates is unclear), yet authors 154 

formulate mantra-like calls for investments in modernization to enable technological progress (Nowak, 155 

Kijek and Domańska 2015). In addition, there are plenty of examples, where studies ignore potential 156 

impact of environmental factors, yet suggest more or less concrete policy measures, such as enhancing 157 

farmers’ knowledge and managerial skills (Todorović et al. 2020), correction of scale and improvement 158 

of technology (Błażejczyk-Majka, Kala and Maciejewski 2012), learning processes and imitation of 159 

technologies (Baráth and Fertő 2017), removing misallocation of resources by investing in agricultural 160 

extension systems (Bagchi, Rahman and Shunbo 2019), agricultural innovation (He, Li and Cui 2021). 161 

In some of the above cases (e.g., Galluzzo 2013, Galluzzo 2022; Nowak, Kijek and Domańska 2015) these 162 

recommendations are not based on statistical and economic significance of sectoral characteristics. 163 

Much rather it seems to be an accepted convention to provide some general economic advice on how 164 

to enhance productivity. We do not mean to propose that none of the inefficiency found in these 165 

analyses cannot reasonably be targeted by such measures. Also, one might be tempted to say that 166 

modernizing farm equipment, acquiring new skills or adopting best practices should not be harmful 167 
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either way. Nonetheless, we would argue that this is not well thought out. The above-mentioned policy 168 

recommendations require for substantial investments in either machinery, skills or time. But spendings 169 

on machinery for example, will limit decision- and policymakers’ future scope of action and might be 170 

unjustified whenever inefficiency is due to climatic conditions outside of the sphere of influence or due 171 

to farmers’ conscious production choices (Hansson, Manevska-Tasevka and Asmild 2020).    172 

Even though the effect of differing climatic conditions on the efficiency estimates is largely ignored, 173 

‘environment’ and ‘sustainability’ are popular keywords to motivate nonparametric technical efficiency 174 

analysis. This is not limited to studies dedicated to eco- or environmental efficiency (e.g., He, Li and Cui 175 

2021), but just as much includes traditional technical efficiency analyzes (e.g., Toma et al. 2017; von 176 

Hobe, Michels and Musshoff 2021). The latter are motivated by the prospect of learning about the 177 

harmonization of saving on scarce natural resources (inputs) on the one hand and satisfying the 178 

growing demand for food and fiber (outputs) on the other. From a conceptual point of view though, this 179 

rationale makes sense only if the technical efficiency estimate contains information on scarce natural 180 

resources and the provision of food and fiber. In the majority of the studies discussed above though, 181 

the technical efficiency model has been calculated employing land, labor, capital and often intermediate 182 

consumption as inputs, while farm gross output or another form of operational output serves as output. 183 

While in the input-oriented case, technical efficiency estimates might thus indeed to some extent reveal 184 

potential in savings on quantities of land, fertilizer, pesticides or energy, in the output-oriented case, 185 

they may above all reflect farms’ or sectors’ economic returns.  186 

Partly, this convention could be explained by agricultural economists’ interest in good comparability of 187 

studies in different empirical application cases or with previous analyses. Also, when analyses are 188 

conducted for cases that might only be of interest to a small, specialized part of the scientific 189 

community, agricultural economists might be interested in aligning their conceptual and 190 

methodological approach with acknowledged and frequently employed approaches. This seems likely 191 

given that the profound methodological advances in nonparametric analysis are in context of 192 

agricultural production only scarcely adopted thus far.2 Regardless of the causes of the conventions 193 

lined out in this section, inadequate policy recommendations or erroneously motivating nonparametric 194 

analysis with sustainability goals should in any case be avoided. In this paper, we would like to 195 

contribute towards this goal by comparing the effect of regionally differing, determinate climatic 196 

conditions to conventionally employed contextual variables and proposing a conceptual alternative to 197 

the traditionally employed technical efficiency model with the approach introduced in the upcoming 198 

section.  199 

 200 

 
2 Substantial methodological advances have been made in the nonparametric methodology. Bădin et al. (2014) 
for example introduced a nonparametric conditional methodology, where a flexible location scale model is 
employed to regress the ratio of conditional to unconditional measure on external factors. Even though the 
methodology allows for the calculation of a pure managerial efficiency measure (, the residual of efficiency 
variation not attributable to external factors) thus far only two studies adopted the methodology in an 
agricultural production context. The study of Minviel and De Witte (2017) is the only analysis employing the 
methodology to agricultural efficiency in particular. (They did not consider environmental factors though, which 
is reasonable given their farm level scope.)   
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3 Methodology 201 

3.1 Conceptual Model Decomposition and Hypotheses  202 

Building on the remarks made in the literature review, the traditional technical efficiency model  might 203 

in the input-oriented case indeed contain relevant information on the potential of resource savings. In 204 

the output-oriented case though, information on expansion of physical produce might be quite limited, 205 

given that conventionally an operational measure like farm gross results are employed as output 206 

variable. Further, a lot of the policy recommendations drawn by agricultural economists are directed 207 

at evaluating and enhancing efficiency caused by rather operational choices of decision-makers. We 208 

therefore suggest to conceptually decompose the technical efficiency model into two components. First, 209 

an (input-oriented) operational model containing all relevant cost variables linked to production 210 

inputs, which allows to make a judgment on the efficiency of input allocation. Building on an operational 211 

efficiency measure, policy recommendations like modernization and specialization might be justified 212 

and more targeted. Second, an (output-oriented) physical efficiency model, where the farm gross 213 

results are substituted by actual produce that contains all the information necessary for a making the 214 

judgment on harmonization of resource conservation and provision of food and fiber. 215 

Since our criticism concerns the neglection of the impact of climatic conditions on efficiency estimates 216 

of the traditionally employed technical efficiency, the two introduced models will be compared to input- 217 

and output oriented (conventual) technical efficiency estimates. In a second step, we imitate the most 218 

frequently performed approach in the literature and incorporate a set of covariates representing 219 

sectoral characteristics into a second stage regression analysis. Of course, in our case we will also 220 

consider a set of environmental variables associated with crop yield variability, which we presume 221 

might translate to technical and physical efficiency of decision-makers. In case, we obtain a 222 

straightforward impact of environmental factors on technical efficiency estimates, the assumption H1a 223 

many studies implicitly build on will be rejected.  224 

H1a): Environmental factors do not have a statistically or economically significant impact on 225 

technical efficiency estimates.  226 

Since our criticism included the prospect that a neglection of environmental factors could also lead to 227 

seriously misleading policy recommendations by wrongly attributing inefficiency to inefficient input-228 

allocation, sectoral characteristics usually considered in the literature should play an economically 229 

subordinate role to environmental variables when explaining technical inefficiency. In this case, H1b 230 

needs to be rejected:  231 

H1b): Robustness of the statistical and economic significance of sectoral characteristics is not 232 

diminished by the inclusion of environmental variables as explanatory factors.  233 

Second, in order to test whether technical efficiency and productivity measures reveal future potential 234 

for a harmonization of resource conservation and provision of produce, the physical productivity 235 

measure needs to actually increase over the considered period and coincide with the technical 236 

productivity index results. In order to support our claim that this is not the case, H2 needs to be rejected. 237 
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H2): Physical productivity has increased over the considered period and follows a similar trend 238 

as technical productivity. 239 

         240 

3.2 Two-stage approach  241 

Data Envelopment Analysis 242 

In order to test hypotheses H1a and H1b, a two-stage approach is employed, which connects a radial 243 

Data Envelopment Analysis (DEA) model in the first step and a (censored) Tobit panel data regression 244 

model employing the yielded efficiency scores as dependent variable in the second step. Again, we are 245 

aware of e.g., the lack of a clear theory on the underlying data generating process when Tobit regression 246 

procedures are applied or that efficiency scores are not naturally independent observations but much 247 

rather serially correlated (Simar and Wilson 2007). Choosing a modified approach, building on an e.g., 248 

order-m or order-alpha frontier analysis adopting the nonparametric conditional methodology would 249 

solve those issues.  250 

Yet, the credibility of our line of thought depends on guaranteeing for a good comparability of our 251 

empirical results with the results yielded based on the conventions we criticized in the previous section. 252 

Adopting a modified and less frequently employed methodology might reasonably cast doubt on the 253 

transferability of our findings to the findings of other studies. Further, we would also like to encourage 254 

the replication of our approach in order to allow for future considerations of environmental factors that 255 

is easy to implement. Given that authors, like Bădin et al. (2014) or Chambers, Pieralli and Sheng 256 

(2020), already explored the path of modified methodologies, we choose to adopt the conventionally 257 

used two-stage framework.  258 

Based on the pioneering work of Farrell (1957) on production efficiency assessment, Charnes, Cooper 259 

and Rhodes (1978) were the first to introduce a linear programming technique, which allows to 260 

calculate relative efficiency scores of decision-making units considering multiple inputs and outputs. 261 

The mathematical formulations below reflect a reduced version of the DEA under variable returns to 262 

scale assumption, as first introduced by Banker, Charnes and Cooper (1984). Here the output-based 263 

radial efficiency scores are calculated as Debreu-Farrell measure of efficiency (Debreu, 1951; Farrell, 264 

1957). Equation (1) denotes the production possibility set that describes the feasible technology T:  265 

𝑃(𝑥) ≡ {𝑦 ∶ (𝑥, 𝑦)  ∈ 𝑇} (1) 

of a specific production context in which all outputs y are producible by the inputs x. The upper 266 

boundary of the set defines the efficiency frontier, a convex hull that envelopes the empirically 267 

observed input-output ratios and is interpreted as the best-practice frontier of the sample. The distance 268 

of an individual DMU’s output to the efficiency frontier (or its required proportional enlargement of 269 

output) determine a DMU’s degree of technical inefficiency. The linear programming problem of the 270 

output-oriented DEA model corresponds to (Banker, Charnes and Cooper 1984):  271 

max𝜙 (2) 
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𝑠. 𝑡. ∑ 𝑥𝑖𝑗𝜆𝑗

𝑛

𝑗=1

≤ 𝑥𝑖𝑜 𝑖 = 1, 2, … , 𝑚; 

 ∑ 𝑦𝑟𝑗𝜆𝑗

𝑛

𝑗=1

≥ 𝜙𝑦𝑟𝑜  𝑟 = 1, 2, … , 𝑠; 

∑ 𝜆𝑗

𝑛

𝑗=1

= 1 

𝜆𝑗 ≥ 0 

where the considered DMUo  is one of n decision making units in the sample, for which the efficiency 272 

in transforming a set of m inputs into s outputs is evaluated. The empirically observed input and output 273 

quantities of DMUo are expressed by the vectors 𝑥𝑖𝑜 and 𝑦𝑟𝑜 respectively. 𝜆 denotes the DMU’s weight 274 

and 𝜙 its efficiency score. The linear program for the output-oriented case under constant returns to 275 

scale assumption coincides with equation (2) if the convexity constraint ∑ 𝜆𝑗
𝑛
𝑗=1 = 1. is relaxed. The 276 

relationship of efficiency measured under constant returns to scale with efficiency measured under 277 

variable returns to scale reveals information on whether a decision-maker operates scale inefficient in 278 

the sense of operating on a scale section where the feasible technology is more restricted and only 279 

permits a lower level of productivity. The corresponding scale efficiency index can be calculated as 280 

𝑆𝐸(𝑜) =  𝜙𝐶𝑅𝑆(𝑜) 𝜙𝑉𝑅𝑆(𝑜)⁄  (Arru et al. 2019). 281 

 282 

Panel Tobit Regression Model 283 

In the second stage, the determinants of the yielded efficiency estimates are assessed conducting a 284 

random effects panel data Tobit regression analysis. The yielded efficiency scores range in the interval 285 

[0,1] (with 1 = efficient, < 1 inefficient) for the input-oriented case and 1 (efficient) and > 1 (inefficient) 286 

for the output-oriented case. Employing a Tobit regression model to determine the relationship 287 

between inefficiency variation, contextual and environmental variables is believed to partly account for 288 

the input (output) -oriented efficiency measure being right (left) censored at 1, where the scores of the 289 

efficient DMUs are concentrated. Acknowledging the more fundamental methodological critique 290 

associated with two-stage analysis, this variant is expected to at least produce more meaningful results 291 

as e.g., an OLS based regression. A reduced version of the random effects panel data Tobit model is 292 

denoted by (Radovanov et al. 2020): 293 

𝜙𝑖𝑡
∗ =  𝑥𝑖𝑡

′ 𝛽 + 𝜀𝑖𝑡  

(3) 𝜙𝑖𝑡 = 0 𝑖𝑓 𝜙𝑖𝑡
∗ ≤ 0 

𝜙𝑖𝑡 = 𝜙𝑖
∗ 𝑖𝑓 𝜙𝑖𝑡

∗  ≥ 0 

where 𝑦𝑖𝑡  is the dependent variable measured by 𝑦𝑖𝑡
∗  it as the latent dependent variable of the efficiency 294 

estimate according to efficiency model for positive values, otherwise censored, corresponding to region 295 
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i and period t. The vector of independent covariates is denoted as 𝑥𝑖𝑡
′  with 𝛽 being the coefficient vector 296 

and 𝜖𝑖𝑡 the error term, which is expected to be independently and normally distributed.  297 

 298 

3.3 Malmquist-productivity index  299 

Ideally, the validity of the conceptual decomposition of the efficiency model could be proven by 300 

employing the Malmquist-productivity index. In case, the technical productivity trend can be 301 

interpreted as product of the operational and physical productivity trend, future analyzes could simply 302 

incorporate the two proposed model set-ups to validify the implications of the technical efficiency 303 

model within their framework. This would allow for more refined policy implications allowing for a 304 

precise targeting of operational inefficiencies and productivity losses with some of the above criticized 305 

policy recommendations. 306 

The Malmquist-productivity index (MPI) introduces by Caves et al. (1982) is an acknowledged method 307 

to account for trends in productivity when non-parametric methods are employed. The index values 308 

are calculated analogously to the DEA method based on distance functions, yet the decision-makers 309 

input-output combinations are not simply projected against the frontier of one period, but also against 310 

the production possibility frontier of a different base period. The Malmquist-Productivity Index thus 311 

accounts for the distance of inefficient decision-makers’ input-output set to the production possibility 312 

frontier of a certain period t+1, relates this to the mean distance of DMUs to the production possibility 313 

frontier of a previous period t as well as relating the level of the production possibility frontier in t+1 314 

to the one in t.  315 

Based on an input vector 𝑥𝑡 =  {𝑥1
𝑡 , 𝑥2

𝑡 , … , 𝑥𝑚
𝑡 }, and an output vector 𝑦𝑡 = {𝑦1

𝑡 , 𝑦2
𝑡 , … , 𝑦𝑛

𝑡}, given the 316 

production possibility set 𝑃𝑡 = {𝑥𝑡 , 𝑦𝑡}, the geometric mean of the Malmquist-Producitvity Index for t 317 

and t+1 corresponds to (Grifell-Tatjé and Lovell, 1994): 318 

𝑀𝑃𝑡
𝑡+1 = [

𝐷0
𝑡(𝑥𝑡+1, 𝑦𝑡+1)𝐷0

𝑡+1(𝑥𝑡+1, 𝑦𝑡+1)

𝐷0
𝑡(𝑥𝑡 , 𝑦𝑡)𝐷0

𝑡+1(𝑥𝑡 , 𝑦𝑡)
]

1
2 (4) 

The index equals 1, if productivity remains constant. Values larger (smaller) than one indicate 319 

increasing (decreasing) overall productivity. Färe et al. (1994) further proposed to decompose the MPI 320 

into the technological and efficiency change component. The technological change measures the 321 

‘frontier-shift’ and thus reveals differences in maximum feasible productivity over the considered time 322 

period. Values above one are believed to reflect positive technological development. For period t and 323 

t+1 it is defined as: 324 

𝑀𝑃𝑇𝐸𝐶𝐻𝑡
𝑡+1 = [

𝐷0
𝑡(𝑥𝑡+1, 𝑦𝑡+1)𝐷0

𝑡(𝑥𝑡 , 𝑦𝑡)

𝐷0
𝑡+1(𝑥𝑡+1, 𝑦𝑡+1)𝐷0

𝑡+1(𝑥𝑡 , 𝑦𝑡)
]

1
2 (5) 

The efficiency change component in turn reflects how on average the distance of inefficient DMUs to 325 

the frontier develops. Values above one thus reveal the degree to which decision-makers are able to 326 

‘catch-up’ to the most productive observations in the sample. For period t and t+1 it is denoted as:  327 
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𝑀𝑃𝐸𝐹𝐹𝐶𝐻𝑡
𝑡+1 = [

𝐷0
𝑡(𝑥𝑡+1, 𝑦𝑡+1)

𝐷0
𝑡(𝑥𝑡 , 𝑦𝑡)

]
1
2 (6) 

For further details on the methodology of the Malmquist-Productivity Index see Caves et al. (1982), 328 

Färe et al. (1994) and Grifell-Tatjé and Lovell (1994).  329 

 330 

4. Data  331 

4.1. Efficiency model data  332 

Technical efficiency 333 

For the outlined approach, availability of data is crucial. For one, the conceptual decomposition of the 334 

traditional technical efficiency measure is only possible if data not only on conventionally employed 335 

inputs and outputs is available, but also data on input costs and explanatory factors.  Further, the 336 

empirical application case should equally permit the integration of environmental data. In conjunction 337 

with the broad interest of agricultural economists in production efficiency, productivity and its 338 

determinants in the European Union, the EU’s farming sector seems suitable as empirical application 339 

case.   340 

Agricultural production data stems from the farm accountancy data network (FADN) database (2022) 341 

of the years 2004 to 2018. Farming sectors’ representation of 122 regions (according to the FADN 342 

classification) classified as fieldcrops and mixed production farms are used. As outlined in the literature 343 

review, vulnerability of livestock specialists to climatic conditions might be limited and consequently 344 

they have not been taken up into the sample.  345 

Technical efficiency (for both the input- and output-oriented case) will be computed with the 346 

(conventionally used) inputs land represented by the total utilized agricultural area (UAA) in hectare 347 

(SE0253), labor given as total labor input expressed in full time person working equivalents (SE010), 348 

capital as [€] value of the closing evaluation of total assets (SE436) and finally the intermediate 349 

consumption [in €] accounting for production specific costs such as seeds and seedlings, fertilizers, 350 

feed, other crop protection as well as overheads (SE275). The total output [€] (SE131), which denotes 351 

the monetary value of output of crops and crop products, livestock, and livestock products and of other 352 

input, including other gainful activities (OGA) of the farms, serves as the output of the technical 353 

efficiency model. 354 

 355 

Operational efficiency 356 

In order to decompose the traditional technical efficiency measure, the (input-oriented) operational 357 

efficiency will also be calculated with the total output as output and the intermediate consumption, 358 

which represents direct costs of production. The remaining inputs of the operational efficiency measure 359 

 
3 Reference number in FADN database. Detailed information on standard variables in the FADN database may be 
found here: https://agridata.ec.europa.eu/extensions/FADNPublicDatabase/FADNPublicDatabase.html. 



- 12 - 

 

are included as the production costs tied to the classical inputs of technical efficiency.4 The total labor 360 

input is thus substituted by the sum of wages paid (SE370) and spendings on contract (SE350) and 361 

contractual work (SE720). This includes wages, security charges (and insurance) of wage earners, as 362 

well as costs linked to work carried out by contractors. As equivalent to the land input serves the 363 

monetary value linked to maintaining and improving agricultural land (e.g., fencing, drainage and fixed 364 

irrigation equipment) (SE447). Finally, the capital input is substituted by capital costs, which we 365 

calculated as the sum of depreciation (SE360), balance of interest paid and received (SE381), balance 366 

of subsidies and taxes on investment (SE405) and net investment on fixed assets (SE521). We carefully 367 

considered dependencies of all variables to rule out potential redundancies.  368 

Note that for a variety of regions, subsidies and interest received, result in negative aggregate capital 369 

costs, forcing us to exclude a considerable amount of observations from the sample (, since 370 

nonparametric analyzes do only allow for a consideration of positive integer numbers). The integration 371 

of the capital costs thus led to a reduction of sample size from 1,997 to 1,646 observations. This could 372 

potentially cause operational efficiency estimates to be biased, either positively because regions 373 

receiving high absolute amounts of subsidies could conduct business less intensive or inefficient, or 374 

negatively because higher amounts of interests received could signal a high long-term operational 375 

efficiency or simply benefits due to profitable investments in the past.  376 

 377 

Physical efficiency 378 

The second measure we are proposing as a supplement to the traditional technical efficiency model, is 379 

the physical efficiency model. In contrast to the operational efficiency measure, here in the (output-380 

oriented case) the inputs of the technical efficiency model are taken over, while the total output will be 381 

substituted by physical outputs that contain the information that may allow to evaluate if actual 382 

produce is indeed expanded. Overall, three different physical outputs, wheat (SE110*SE025), maize 383 

(SE115*SE025) and milk (SE125*SE085) produce, which can be seen as proxy outputs for the 384 

production technologies of the crop specialists and mixed farming sectors in the EU, are considered. All 385 

three variables are given in absolute amounts in kilogram. Given the already high number of four inputs, 386 

limiting the output variables to three seems rational, to keep the share of efficient DMUs following an 387 

enlarged production set moderate.  388 

Analogously to the operational efficiency model, the number of observations is considerably lower than 389 

for its technical efficiency counterpart, since data availability for actual produce is not available for all 390 

regions or at any point in time. In total, for the efficiency measure, sample size drops from 1,997 to 391 

1,195 observations. Since availability of produce data also differed for individual regions within the 392 

time frame considered, the calculation of the Malmquist-Productivity index (, which requires data to be 393 

 
4 Note that in data envelopment analysis, the technical efficiency measure may also be decomposed 
methodologically into a cost and allocative efficiency measure if input quantities and prices are fully available. 
This approach is not adopted here since i.e., the total output considered is not simply calculated as output 
quantities multiplied by their price. Also, quantity data is not available for all inputs (e.g., intermediate 
consumption).  
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available for each region of all inputs, outputs and years) is based on a panel of 876 observations, thus 394 

posing the smallest sample size for any model within this paper. Similar to the operational efficiency 395 

model, the physical efficiency measure could thus be (, supposedly positively) biased since actual 396 

produce has been least consistently reported by eastern EU member countries. The latter have been 397 

found to be rather technically inefficient when compared to western member states (e.g., Błażejczyk-398 

Majka, Kala and Maciejewski 2012; Kaiser and Schaffer 2022), which could cause structural differences 399 

in between the model samples.  400 

Note that a comparison of mean efficiency estimates between the different models calculated with 401 

different data would in any case bear only very limited implications due to, e.g., differences in sample 402 

size, the enlarged size of the production set and thus differing shares of efficient DMUs (Bravo-Ureta et 403 

al. 2007; Minviel and Latruffe 2017). In line with our research issue, discussion of results will thus focus 404 

on model differences regarding the individual productivity trends and the explanatory power of the 405 

sectoral characteristics and environmental variables considered.   406 

The presumed production dependency for the proposed models is supported by all inputs correlating 407 

significantly and strongly positive with the respective outputs (see Appendix S1 and S2 for a table 408 

showing correlations and significance levels). Descriptive statistics of the model inputs and outputs are 409 

given in table 1. 410 

 411 

Variable Obs. Mean Std. dev. Min Max 

UAA [ha] 1,812 83.40 113.22 1.78 790.61 

Labor [TLU] 1,812 1.98 1.86 0.40 20.99 

Intermediate Consumption [€] 1,812 82,154.80 120,890.70 2,412.00 964,507.00 

Total assets [€] 1,812 512,376.30 591,530.70 15,860.00 3,401,421.00 

Costs UAA [€]  1,812 245,032.00 391,472.30 1,604.00 2,828,859.00 

Costs labor [€] 1,812 26,006.82 50,074.67 200.08 401,567.30 

Capital costs [€] 1,812 22,626.35 34,381.33 -79.944.00 293,590.00 

Gross Output [€] 1,812 127,844.70 175,541.10 5,689.00 1,498,796.00 

Wheat yield [kg] 1,696 5,466.845 7,978.05 31.72 53,631.51 

Maize yield [kg] 1,474 7,436.677 10,904.55 106.05 141,200.50 

Milk produce [kg] 1,514 44,001.65 101,145.30 0.00 858,638.40 

Table 1. Descriptive statistics of model inputs and outputs.  412 

 413 

4.1. Regression covariates data 414 

Sectoral characteristics 415 

In the literature, most contextual variables either refer to size, specialization, diversification, intensity 416 

or extensivity of practices and of course subsidization. A variety of authors assumes size to be beneficial 417 

for farms’ efficiency due to increasing returns to scale (Forleo et al. 2021). Galluzzo (2016) argues for 418 

example, employing FADN data of Italian farms, that especially small-sized family farms’ technical 419 

efficiency is low and largely dependent of subsidization. In order to incorporate the effect of size into 420 

the second stage of the analysis, we consider the economic size of a holding expressed in 1,000 Euro of 421 

standard output (SE005).  422 
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In our sample, crop specialized, and mixed production farm types are considered. Especially in context 423 

of the physical efficiency model, specialization could be decisive for the relationship of the partial 424 

productivities of crop yields and milk produce. Nonetheless, given that only the two farm types with 425 

migrating production technologies are considered, it might be useful to consider a continuous variable 426 

that accounts for the degree of specialization rather than considering the two farm types as 427 

dichotomous covariate. The number of dairy cows, expressed in livestock units (SE085), comprising all 428 

female bovine animals (including female buffaloes), which are held principally for milk production, thus 429 

serve us as specialization covariate. 430 

Forleo et al. (2021) convincingly argued that apart from being an important factor in securing profitable 431 

incomes of family farms, diversification also influences farmers’ technical efficiency. In line with 432 

previous studies (e.g., Arru et al. 2019), we therefore include other gainful activities (OGA) in form of 433 

total OGA output (SE700), related to the holding created i.e., from processing of farm products, receipts 434 

from contract work, agritourism, production of renewable energy or forestry.  435 

To account for the intensity or extensivity of practices respectively, fertilizer quantities and agricultural 436 

area out of production are considered. The amount of purchased fertilizers and soil improvers 437 

(excluding those used for forests) (SE295) are considered as a proxy for rather intensive farming, 438 

whereas more agricultural area withdrawn from production (SE074), due to compulsory agricultural 439 

policy measures and permanent grassland and meadows no longer used but maintained in good 440 

environmental condition, are expected to reflect rather extensive farming practices.  441 

Finally, in line with the majority of technical efficiency analyzes in agricultural production contexts (e.g., 442 

Minviel and De Witte 2017, Minviel and Latruffe 2017, Todorović et al. 2020), we consider the total 443 

subsidies on current operations linked to production (SE605), including subsidies on crops and 444 

livestock, total support for rural development, decoupled payments, as well as subsidies on 445 

intermediate consumption and external factors.  446 

 447 

Environmental factors 448 

Although only scarcely addressed in agricultural efficiency analyses, the dependence of European crop 449 

yield variability from climatic conditions is well documented (Supit et al. 2010). In our framework four 450 

environmental factors, namely radiation, temperature, precipitation and wind speed are accounted for. 451 

Note that the effect of climatic conditions on actual crop yield variability is much more complex that 452 

may be considered here on an aggregate annual and regional level. In crop yield variability studies, 453 

climatic conditions are frequently modelled non-linearly for different crop types individually and 454 

according to seasonal and spatial variations (Palosuo et al. 2011). For all of the considered variables 455 

there is an optimal corridor of values, which is beneficial to crop growth. Nonetheless, for the context 456 

of European crops, some assumptions regarding the potential aggregate effects of the environmental 457 

factors on technical efficiency can be made based on crop yield variability studies.      458 

In context of European crop production, Peltonen-Sainio et al. (2010) find a negative effect of high 459 

temperature and precipitation levels on crop yield productivity. Heavy rainfall for example, can cause 460 
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root rot or drowning of the crops. Hot and dry periods, especially in form of high maximum 461 

temperatures in summer, cause reduction of the growth of shoots, root growth and are also associated 462 

with lower wheat and maize yield productivity in European regions (Pirttioja et al. 2015; Zscheischler, 463 

Orth and Seneviratne 2017). We thus expect precipitation (given as annual mean of rainfall [mm]) and 464 

climate (represented by the mean annual temperature of each region [°C]) as unfavorable determinants 465 

of inefficiency.  466 

High values of global solar radiation are known to enhance photosynthesis, which is responsible for 467 

sufficient accumulation of assimilates. Low levels of solar radiation lead to shortened grain filling 468 

periods and an increased risk of lodging. Mean total global radiation (in KJ/m2) is thus expected to be 469 

a positive determinant of a region’s efficiency. (Guo et al. 2022)   470 

While moderate wind speed alters the balance of hormones in crops and contributes to making carbon 471 

dioxide available to plants, wind erosion can be quite harmful, causing loss of plant nutrients, organic 472 

matter and changes in soil texture, which results in lower yield productivity. Mean wind speed [m/s] is 473 

thus included as fourth (supposedly unfavorable) environmental variable in the analysis (Lyles 1975; 474 

Fryrear 1985).    475 

The four climatic variables are available as high-resolution point data derived from the Agri4Cast 476 

Resources Portal (European Commission 2022) and were extracted using a shape layer with the FADN 477 

classification of European regions. Finally, continuous annual means were calculated for all regions.5 478 

Extraction, cutting, and field statistics were performed using QGIS 3.14.  479 

Descriptive statistics of sectoral characteristics and environmental regression covariates are given in 480 

table 2. 481 

 482 

Variable Obs. Mean Std. dev. Min Max 

Global radiation [KJ/m2] 1,812 12,772.13 2,676.96 7,130.48 21,764.89 

Temperature [°C] 1,812 11.87 3.40 -0.44 20.70 

Wind speed [m/s] 1,812 3.04 0.83 1.32 5.71 

Precipitation [mm] 1,812 1.85 0.58 0.11 4.27 

Total production subsidies [€]  1,812 27,678.51 39,264.17 14.00 290,500.00 

Economic size [€] 1,812 115.59 163.50 5.20 1,369.00 

Area out of production [ha] 1,812 3.72 5.86 0.00 67.40 

OGA output [€] 1,812 4,147.23 15,624.19 0.00 199,317.00 

Fertilizers purchased [€] 1,812 11,451.09 16,350.24 122.00 125,666.00 

Nr. of dairy cows [LU] 1,812 4.81 11.34 0.00 103.52 

Table 2. Descriptive statistics of regression covariates.  483 

 484 

 
5 Please note that the climatic conditions thus refer to the total area of each region and are not agricultural area 
specific. Hence, weather events occurring on non-agricultural areas also partly constitute the environmental 
variables.  
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4 Empirical Results  485 

4.1 Two-stage approach 486 

Descriptive statistics of the efficiency estimates for the different models are provided in table 3.  487 

 488 

Variable Orient. Eff. model Obs. Mean Std. dev. Min Max 

in_te_vrs 

input 

technical 1,812 
0.87 0.11 0.42 

1 
in_te_se 0.86 0.16 0.21 

in_ope_vrs 
operational 1,646 

0.86 0.17 0.22 
1 

in_ope_se 0.81 0.20 0.17 

oo_te_vrs 

output 

technical 1,812 
1.28 0.37 

1 
4.67 

oo_te_se 1.13 0.29 4.83 

oo_phy_vrs 
physical 1,195 

1.12 0.20 
1 

2.49 

oo_phy_se 1.11 0.23 3.15 

 489 

Table 3. Descriptive statistics of input- and output-oriented technical, operational and physical efficiency model 490 

estimates under variable returns to scale assumption (vrs), as well as scale efficiency estimates (se).  491 

Looking at the input-oriented models, operational (scale) efficiency is found to be lower than technical 492 

efficiency. Analogously, for the output-oriented models, the EU farming sectors are less physically 493 

(scale) than technically (scale) efficient. For the different models, estimates of the Tobit regression 494 

analysis are given in table 4. First of all, we find the environmental factors radiation, temperature and 495 

precipitation to have a statistically and economically significant impact on the physical, the input-496 

oriented and output-oriented technical efficiency models. Signs of covariates are consistent over all 497 

three models6 and correspond to the expected effect based on the literature. Only exception is the 498 

variable wind, which reveals inconsistent results, suggesting a positive effect on both technical 499 

efficiency models, yet a negative impact on operational efficiency. 500 

Also, wind speed is found to be statistically insignificant for the physical efficiency model. From a 501 

conceptual point of view this does not seem plausible since physical efficiency should be most 502 

vulnerable to all environmental factors. This suggests that the variable is quite sensitive to the model 503 

set-up and leads us to the conclusion that its results should be interpreted carefully. 504 

The latter means that as expected there is no or only a quite moderate effect of environmental variables 505 

on operational efficiency. Indeed, our results suggest that operational efficiency largely depends on 506 

contextual variables regularly considered in the literature. Apart from the agricultural area excluded 507 

from production, all covariates are statistically significant. A higher number of dairy cows is found to 508 

be beneficial for profitability (in our sample of crop specialists and mixed farms), while engaging in 509 

other gainful activities and receiving more subsidization might signal that farmers either willingly 510 

conduct their business more extensively or are inadvertently less input allocation efficient. Quite 511 

surprisingly though, larger economic size and quantities of fertilizers have a negative impact on 512 

operational efficiency.   513 

 
6 Please note that for all output-oriented models the sign of the effect has to be the opposite as for the input-
oriented models since in the output-oriented case >1 denotes inefficiency, while in the input-oriented case 0 to < 
1 denotes inefficiency. 
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𝜙𝑖𝑡
𝑣𝑟𝑠  input-oriented  output-oriented 

  technical operational  technical physical 

  (1) (2)  (3) (4) 

Global radiation 
 2.18e-05*** 

(5.03e-06) 
-1.36e-06 

(6.28e-06) 

 -5.79e-05*** 
(1.78e-05) 

-3.20e-05* 
(1.70e-05) 

Temperature 
 -0.015*** 

(0.004) 
0.005 

(0.004) 

 0.041*** 
(0.013) 

0.048*** 
(0.013) 

Wind speed 
 0.035*** 

(0.009) 
-0.034*** 

(0.011) 

 -0.115*** 
(0.032) 

0.116 
(0.032) 

Precipitation 
 -0.020*** 

(0.007) 
-0.004 

(0.010) 

 0.058** 
(0.028) 

0.070*** 
(0.025) 

Economic size 
 9.32e-05 

(7.08e-05) 
-1.01e-04** 
(8.85e-05) 

 -8.64e-04*** 
(2.67e-04) 

1.31e-04 
(2.20e-04) 

Area out of 
production 

 -0.004*** 
(0.001) 

-7.72e-05 
(0.001) 

 0.010*** 
(0.003) 

0.001 
(0.003) 

Fertilizers 
purchased 

 -1.07e-06 
(6.53e-07) 

-1.92e-06*** 
(7.35e-07) 

 9.08e-07 
(2.46e-06) 

9.79e-08 
(2.52e-06) 

Nr. of dairy cows 
 0.003** 

(0.001) 
0.006*** 

(0.001) 

 -0.003 
(0.004) 

-0.008** 
(0.004) 

Total production 
subsidies 

 1.65e-07 
(3.82e-07) 

-1.53e-06*** 
(4.86e-07) 

 -1.70e-07 
(1.42e-06) 

-1.80e-06 
(1.30e-06) 

OGA output 
 2.73e-07 

(2.49e-07) 
-4.54e-07* 
(2.36e-07) 

 -9.33e-07 
(9.73e-07) 

7.74e-07 
(8.43e-07) 

constant 
 0.727*** 

(0.068) 
1.011*** 

(0.078) 

 1.756*** 
(0.000) 

0.707*** 
(0.237) 

Log likelihood  947.93 708.80  -814.90 -267.58 

Note: ***, ** and * denote significance at 1%, 5% and 10% level. 514 

Table 4. Panel Tobit regression analysis results for input- and output-oriented technical efficiency, input-oriented operational efficiency and output-oriented 

physical efficiency model under variable returns to scale assumption. 
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Partly, this could be due to the calculation under variable returns to scale, which to some extent offsets 515 

size-related differences. Thus, the negative effect of fertilizers could be interpreted as such, that 516 

operational efficiency is lower for farms of relatively comparable size (, occupying the same scale 517 

section), when they use larger quantities of fertilizers. Potentially, the peers constituting the different 518 

scale sections are regions characterized by farms of comparably smaller economic size, which spend 519 

less on input quantities. Yet, the effect of economic size is found to be statistically significant in the 520 

operational and output-oriented technical efficiency model exclusively. Assuming its effect to be 521 

meaningful, it is limited to the models that are neither associated with the harmonization of resource 522 

savings nor provision of food and fiber.  523 

Comparing the results of the operational with the input-oriented technical efficiency model, a few 524 

things should be noted. First of all, apart from the number of dairy cows and the share of land excluded 525 

from production, no variable representing sectoral characteristics is found to have a statistically 526 

significant effect on input-oriented technical efficiency when environmental factors are considered. 527 

The negative effect of land excluded from production seems plausible given that the efficiency measure 528 

is partly based on total utilized agricultural area. The higher the share of UAA excluded from 529 

production, the lower the partial productivity of the land employed. In accordance with the findings for 530 

operational efficiency, mixed productions farms’ efficiency might benefit from a higher share of 531 

livestock. An effect of size, fertilization or subsidization on the other hand cannot be found.  532 

For the output-oriented models we find similar results for the sectoral characteristics. While in the 533 

technical efficiency model economic size and agricultural land excluded from production have a 534 

statistically significant negative effect on efficiency, in the physical efficiency model the only non-535 

environmental factor that is statistically significant is the number of dairy cows, which is supposed to 536 

contribute to milk produce productivity. Thus, the results of the physical efficiency model suggest that 537 

physical produce substantially depend on environmental factors outside of the sphere of influence of 538 

the decision-maker. Nonetheless, it should be critically noted that we would have expected agricultural 539 

area out of production to have a profound effect on physical efficiency. Especially since it was found to 540 

have a statistically significant effect in the other output-oriented model. 541 

It stands out that the interpretation of the conventional covariates is not always straightforward due to 542 

their statistical significance and signs of effects changing across the considered models. On the contrary 543 

(except for the variable wind speed), the interpretation of the environmental variables’ effects is quite 544 

straightforward. Indeed, their varying economic significance according to efficiency model is also 545 

reasonable. As expected, we find higher coefficients for environmental variables in the physical 546 

efficiency model than in the output-oriented technical efficiency model. In conjunction with the higher 547 

standard deviation and maximum value (0.37 and 4.67 compared to 0.20 and 2.49) we conclude that 548 

the economic significance of environmental factors is more pronounced for the physical than the 549 

technical efficiency measure. 550 

Given the Farrell-Debreu measure of efficiency, the interpretation of the coefficients might be most 551 

graphic for the input-oriented technical efficiency. Given all other model parameters stay constant, a 552 
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change of one degree in mean temperature or one mm of precipitation could account for 1.5 or 2 553 

percent of the efficiency estimate respectively. A change of global radiation of 1,000 KJ/m2 would in 554 

turn explain 2.2 percent of inefficiency. Given a mean efficiency of 0.87 and taking into account that in 555 

the sample temperature ranges from 0.44 to 21 degrees Celsius (3.40 std. deviation), precipitation from 556 

0.11 to 4.27 mm (0.58 std. deviation) and radiation from 7,130 to 21,764 (2,677 std. deviation), the 557 

results suggest that environmental factors do not only have a statistically significant but also 558 

economically significant effect on agricultural production efficiency.  559 

 560 

4.1 Malmquist productivity results 561 

Descriptive statistics for the Malmquist-productivity index results are provided in table 5. 562 

 563 

Variable Prod. model Obs. Mean Std. dev. Min Max 

MP_te 

technical 1,456 

1.10 0.21 0.50 2.39 

TECH_te 1.07 0.17 0.67 1.88 

EFFCH_te 1.03 0.17 0.41 1.92 

MP_ope 

operational 1,091 

0.98 0.21 0.36 2.39 

TECH_ope 0.93 0.17 0.47 2.44 

EFFCH_ope 1.06 0.21 0.51 1.98 

MP_phy 

physical 742 

0.92 0.14 0.52 1.95 

TECH_phy 0.91 0.12 0.61 1.42 

EFFCH_phy 1.01 0.11 0.58 1.90 

Table 5. Average Malmquist-productivity index (MP), technological (TECH) and efficiency change (EFFCH) 564 

component value for technical, operational and physical productivity of the period 2005-2018 (base year = 565 

2004).    566 

 567 

The results of the Malmquist-productivity index support the findings of the efficiency analysis. Looking 568 

at figure 1, we can obtain that the distribution of operational and technical productivity figures is quite 569 

wide whereas the variation of physical productivity estimates is rather narrow.  570 

This suggests that for operational productivity the potential for productivity gains is in principle high. 571 

Nonetheless, over the considered period it has rather stagnated and on average sample peers have even 572 

become about 7 percent less productive (negative technological change). The stagnating overall trend 573 

in operational productivity thus stems from a substantial positive efficiency change effect, meaning that 574 

less productive decision-makers have ‘catched up’ to the frontier, indicating a more efficient allocation 575 

of production inputs.  576 

In accordance with the findings for physical efficiency estimates, the range of physical productivity 577 

values is narrow when compared to the other models. The decline in mean technological change to 578 

about 0.91 suggests that substantial physical productivity gains due to induced technological change 579 

are rather unlikely. Overall, physical productivity has on average decreased of about eight percent, 580 

meaning that less productive regions have at least moderately catched up to sample peers. 581 
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Figure 1. Fitted and index values according to years for the Malmquist-productivity index, technological and efficiency change component 582 

583 
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For our sample, technical productivity is the only model in which we obtain mean productivity gains of 584 

about 10 percent, driven by a significant frontier-shift of 7 percent and a moderate catch-up of 3 585 

percent. Interestingly, the results indicate that the idea of viewing the operational and physical 586 

productivity measure as decomposed parts of traditional technical productivity must be rejected. This 587 

could be due to the above-mentioned lower comparability of the indices caused by the substantially 588 

reduced sample size and thus potential biases.  589 

In any case, the results clearly show that physical productivity has decreased and only reveals a low 590 

potential for future productivity gains. For the considerably reduced samples, we find that the trends 591 

in physical and operational productivity are negative over the considered period and counteract the 592 

productivity gains measured with the traditional technical efficiency model.            593 

4.2 Discussion 594 

Our results only partly confirm the findings of previous studies assessing determinants of technical 595 

efficiency. While in the output-oriented case, economic size has a positive effect on efficiency, this 596 

cannot be confirmed for the input-oriented case. We find that our covariate representing extensivity is 597 

found to have a negative impact on efficiency. Indeed, and in contrast to findings of previous studies 598 

(e.g., Galluzzo 2018; Newman and Mathews 2007), we even find a negative effect of specialization (on 599 

crop farming) at least for the input-oriented case. Furthermore, the effect of covariates employed to 600 

account for diversification, intensive practices, and subsidies on the traditional technical efficiency 601 

model is unclear.  602 

On the contrary, all four environmental variables employed have a statistically and economically 603 

significant effect on technical efficiency. Since the variable wind speed seems to be rather sensitive 604 

given the results of the decomposed efficiency models, we conclude that global solar radiation, 605 

temperature and precipitation are important determinants of technical efficiency. As a consequence, 606 

we argue that H1a and H1b can be rejected.      607 

Regarding the implications of efficiency models for the harmonization of resource savings and 608 

expansions of food and fiber, the findings of the productivity analysis reveal a mixed picture. It could 609 

be shown that environmental factors have the most pronounced effect on the physical efficiency 610 

measure, while being least important for explaining operational efficiency.  Yet, we could not provide 611 

evidence that the technical productivity measure can simply be decomposed into an operational and 612 

physical model of productivity. Indeed, the product of trends in operational and physical productivity 613 

do not coincide with the trend in technical productivity. Even though the comparability of the models 614 

might thus be limited, the physical productivity trend is actually decreasing for the EU’s regional 615 

agricultural production and period of 2004 to 2018. The latter clearly suggests that future enlargement 616 

of produce while simultaneously reducing resource input might be overestimated and in any case needs 617 

to be accounted for explicitly, whenever studies motivate technical efficiency or productivity analyses 618 

by sustainability goals. Hypothesis H2 can thus also be rejected. 619 
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As already pointed out, one major drawback of our analysis might be the differing data sets according 620 

to each model, which followed from excluding observations that were neither available for a specific 621 

region, inconsistently over time or in case of operational productivity incompatible with the Malmquist-622 

productivity index method. The resulting trade-off, to either further limit sample size in the 623 

productivity analysis for all three models or to lessen comparability of the results should be critically 624 

noted and might partially explain why the productivity analysis does not support the idea of the 625 

conceptual decomposition. Another drawback that was mentioned above is the choice of the 626 

methodology, for which a variety of limitations are well-documented (see 2.). While we are confident 627 

that environmental factors indeed play a vital role in explaining inefficiency variation and that they are 628 

not subordinate to previously considered contextual variables, the validity of our remarks on the 629 

economic significance (and its precise extent) of individual covariates might indeed be impaired by the 630 

method’s limitations.  631 

 632 

5 Concluding remarks 633 

Based on conventions within nonparametric regional agricultural production efficiency and 634 

productivity analyses, two research issues were examined. First, we questioned the validity of regularly 635 

formulated (, rather operational) policy recommendations such as e.g., modernization, specialization 636 

and acquiring managerial skills, to reduce inefficiency whenever environmental factors are not 637 

properly accounted for in the analysis. Our findings clearly indicate that in analyses with a regional 638 

scope, environmental factors are decisive in explaining inefficiency variation. This could be shown for 639 

the frequently assessed case of EU agricultural production, employing the most popular nonparametric 640 

framework. In addition, our results suggest that the effect of regularly considered contextual covariates 641 

used to motivate the above-mentioned policy recommendations is subordinate to the effect of 642 

regionally differing determinate factors. Whenever determinate factors, such as environmental 643 

conditions might be relevant due to a regional, inter-country or even global scope, but are not 644 

accounted for, regularly proposed policy recommendations could be arbitrary and their value for 645 

decision- or policy makers thus unclear.  646 

This paper further tried to contribute to the literature by proposing a decomposition of the traditional 647 

technical efficiency model. We presumed that a careful choice of inputs and outputs could differentiate 648 

the information the technical efficiency model contains on operational and physical productivity. The 649 

results of the efficiency analysis support this line of thought, showing a lower (higher) sensitivity of the 650 

operational (physical) efficiency model to environmental variables when compared to traditional 651 

technical efficiency. Even though a conceptual decomposition of technical efficiency could not be 652 

validified by the results of the productivity analysis, basing policy implications on the findings of the 653 

operational efficiency model, might nonetheless allow to make justified claims about decision-makers’ 654 

input allocation efficiency and help find best practices for future productivity increases.  655 

Interestingly, while the trend of technical productivity was found to be moderately positive for the 656 

considered period, physical productivity decreased, hence casting serious doubts on the idea of an 657 
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ongoing harmonization of resource savings and provision of food and fiber. In conjunction with the 658 

technical efficiency model containing only limited information on actual produce, we conclude that the 659 

second issue raised, whether conventional technical efficiency and productivity analysis should be 660 

motivated by sustainability goals, should be objected to.  661 

Finally, we would like to encourage future analyzes employing any nonparametric approach to assess 662 

determinants of efficiency to include environmental variables into their framework. Accounting for the 663 

stochastic nature of agricultural production methodologically might be useful, yet not always fully get 664 

a grasp on the structural impact spatially varying climatic features have on technical efficiency. By 665 

avoiding these conventions of nonparametric efficiency and productivity analyzes, future studies could 666 

help decision-makers to indeed improve their input allocation efficiency with targeted policy 667 

implications, while avoiding to wrongfully attribute inefficiency due to climatic factors outside of their 668 

sphere of influence or their conscious and rational choices.  669 
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Appendix.  

S1. Pairwise correlation coefficients and corresponding significance levels for operational model inputs and outputs.  

 Costs land Costs labor 
Intermediate  
Consumption 

Capital costs 
Gross  

output 

Costs land 1     

Costs labor 0.33*** 1    

Intermediate Consumption 0.37*** 0.97*** 1   

Capital costs 0.40*** 0.87*** 0.93*** 1  

Gross output 0.38*** 0.96*** 0.99*** 0.93*** 1 

Note: ***, ** and * denote significance at 1%, 5% and 10% level. 

S2. Pairwise correlation coefficients and corresponding significance levels for physical model inputs and outputs. 

 UAA Labor 
Intermediate  
Consumption 

Total assets Yield wheat Yield maize 
Milk  

produce 

UAA 1       

Labor 0.85*** 1      

Intermediate Consumption 0.94*** 0.80*** 1     

Total assets 0.64*** 0.47*** 0.74*** 1    

Yield wheat 0.97*** 0.77*** 0.95*** 0.71*** 1   

Yield maize 0.92*** 0.75*** 0.90*** 0.71*** 0.92*** 1  

Milk produce 0.88*** 0.81*** 0.92*** 0.88*** 0.88*** 0.84*** 1 

Note: ***, ** and * denote significance at 1%, 5% and 10% level. 
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