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ABSTRACT
This research explores the global development of four patent-rich high-technology
sectors from 1975-2019 in terms of cluster formation trends, innovation
performance, agglomeration and inter-cluster knowledge networks. The
descriptive and explanatory analysis is framed within the context of sector- and
cluster life cycle theories. The pharmaceuticals and semiconductor sectors are
considered mature, while the information technology and solar photovoltaics
sectors move from the initial exploration phase to growth, and then to a mature
development phase during the study period. The empirical results show that
agglomeration and knowledge network factors have a strong influence on cluster
innovation performance right before, during and soon after the high-growth phase
of the sectors. In the mature sectors, more recent periods show a positive influence
of knowledge network factors and a negative influence of scale-bases
agglomeration in the pharmaceuticals sector. The semiconductor sector shows a
positive influence of network connectivity, which may partly explain the sector’s
high spatial concentration in clusters. These observations can be explained by
long-term trends in these respective sectors.
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1. INTRODUCTION
The innovation performance of high technology clusters is of great importance for
economic well-being, scientific progress, and increasingly, geo-strategic
competition (such as between China and the United States) (Chen, Chen, and
Dondeti 2020; Porter 2000). Innovation activity tends to be concentrated in a small
number of globally dispersed locations. The growth (or decline) of a single cluster
can therefore have far-reaching implications beyond its immediate location
(Feldman and Kogler 2010; Malecki 2021), although knowledge about these
implications remains scarce.

Concisely defined, innovation performance is the ability to generate new
knowledge and apply it in an economically useful way (Acs, Anselin, and Varga 2002;
Tidd and Bessant 2014). Although there is a rich literature on high-technology
clusters and the factors associated with high innovation performance, much of this
knowledge comes from case studies, especially of highly successful clusters or
groups of clusters (Saxenian 1996; Asheim and Coenen 2005; Hassink and Shin
2005; Esmaeilpoorarabi, Yigitcanlar, and Guaralda 2018). While these scientific
contributions are very valuable, it is not clear if their conclusions can be
generalized more widely across different high technology sectors, across different
countries, or across different time-periods. Increasingly, the global importance of
high technology clusters is being recognized, as cities, rather than the nation state,
are seen as the spatial unit at which knowledge production and innovation take
place (World Economic Forum 2018; Dutta et al. 2022). So far, systematic empirical
studies that increase understanding of the variations in growth of high technology
clusters, both in time and place, have been lacking.

Current theoretical work can be seen as contradictory. Taking agglomerations of
people and firms as an example, on the one hand it can foster a larger local market,
specialized suppliers, a deeper labor pool, mutual trust among actors and lower
transaction costs (McCann 2013). On the other hand, agglomeration can also
increase local competition for resources, raising prices of land and business
accommodation, leading to diseconomies of scale (McCann 2013; Richardson 1995).

In other words, the factors that influence innovation performance vary. In the
literature this variation in influence is typically explained by the knowledge base or
development phase of a sector (Breschi 2000; Binz and Truffer 2017; Breschi and
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Malerba 1997; Ter Wal and Boschma 2011). For example, agglomeration may be seen
as more important in the early development phase of the sector, or in sectors that
rely more on intangible knowledge (Ter Wal and Boschma 2011; Martin and Sunley
2011). As clusters mature, some researchers observe that the  importance of
agglomeration disappears (Ter Wal and Boschma 2011), while others, including many
policy makers, do not view agglomeration advantages as a temporary phenomenon
(Porter 2000; Martin and Sunley 2003). In order to shed light on all stages of the
cluster lifecycle dimension, this paper considers the development of
high-technology sectors over a period of more than four decades.

This research provides empirical insight into the global development of high
technology clusters, their innovation performance, and the factors that are
associated with it. The aim of the study is to understand "when" (in terms of sector
or development phase) specific factors best explain cluster innovation performance.
It also includes an analysis of the global shifts that occurred in the location of top
clusters (Dicken 1998). The empirical analysis is based on 42 years of patent grant
data from the United States Patent and Trademark Office (USPTO) from 1975 to
2021 and covers four global patent-rich high technology sectors with very different
technological and socio-technological innovation profiles (Lim 2004; Geels et al.
2017). Semiconductors and pharmaceuticals are considered to be relatively mature
throughout the study period. Information technology and solar photovoltaics are
seen as emerging sectors which grow rapidly starting in the 1980s and 2000s,
respectively.

The research addresses the following questions:

1. How does innovation performance change over time, including global shifts?
2. How do cluster agglomeration and knowledge network characteristics

change over time?
3. How does the association between cluster innovation performance and

agglomeration and knowledge networks change over time?

The paper begins with a literature review related to the drivers and changes in
cluster innovation performance (section 2). This is followed by an outline of the
methodology (section 3) and a presentation and analysis of the results (section 4).
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The research findings are summarized in the concluding section, along with
research limitation (section 5)

2. LITERATURE REVIEW
In this review, perspectives and theories about the innovation performance of
clusters and the related cluster and sector life-cycle models are addressed. The
development of high technology research clusters and their innovation
performance are influenced by a diverse range of factors, including agglomeration
and knowledge networks. High technology clusters can be conceptualized as
“locational subsystems” of global (sectoral) innovation systems (Binz and Truffer
2017). The development of clusters is therefore seen to be influenced by economic
and technological changes that occur in the global sectoral innovation system
(Breschi and Malerba 1997).

Within the context of a global sectoral innovation system, cluster innovation
performance is also influenced by access to global knowledge networks (Bathelt,
Malmberg, and Maskell 2004; Gertler and Wolfe 2006) and by internal cluster
characteristics (agglomeration effects). Local agglomeration effects can include
scale, but also the presence of specific actors such as universities (Etzkowitz 2012),
trust, and social capital, and they can be both advantageous and disadvantageous to
the cluster (Capello 2009; Nooteboom 2013; de Vaan, Frenken, and Boschma 2019).
Especially in high-technology sectors, which tend to have a scientific knowledge
base, the presence of university and government research institutes tends to be an
important source of innovation through knowledge spillovers and by attracting
talent (Asheim and Coenen 2005; Davids and Frenken 2018; Florida 1999).

Although local agglomeration and global knowledge networks are very different in
their geographical reach, some of the advantages and disadvantages of
agglomeration (“spatial proximity”) also appear to exist in the external knowledge
networks of clusters, giving rise to the concept of “relational proximity”. Relational
proximity is a kind of non-spatial agglomeration effect that describes how
innovation actors are connected to partners outside the cluster in relationships
that involve the transfer and co-creation of knowledge (Boschma 2005).

Within social network theory, having a privileged position within a network confers
certain advantages, such as better access to knowledge being produced elsewhere

3



(Wasserman and Faust 1994). The centrality of a cluster within a knowledge network
can be defined in different ways. It can be defined as the number of direct
connections to other clusters (degree centrality, also referred to as network density
in this study), or based on its connectivity to other highly connected nodes
(eigenvector centrality), which takes into account the transitive influence that
knowledge transfers are likely to have. Especially from the perspective of
knowledge ownership (as secured through patents), having access to unique
knowledge may be more advantageous. A strong bridging position (betweenness
centrality) in a network with many structural holes (missing links between nodes)
may place a cluster in a privileged position with regards to the flow of knowledge.

Complementing the systems and proximity perspectives, are evolutionary
perspectives on cluster development, notably the related concepts of the sector
and cluster life cycle (Boschma 2007; Martin and Sunley 2011). A simplified life cycle
model is often presented in the literature, which identifies three or four phases. An
initial development stage, during which experimentation occurs (“path formation”).
A growth stage, during which knowledge is successfully exploited and expanded
(“path creation”). A mature or decline phase, during which growth stagnates, which
can lead to renewed experimentation and growth, or further decline and the
eventual destruction of a cluster or sector (“path following”, “path lock-in” or “path
breaking”) (Martin and Sunley 2011). A summary of how each phase influences the
cluster and the sectoral innovation system is presented in table 1, below.

Phase Sectoral Innovation System Cluster Dynamics

Emergence
(path
formation)

New industry emerges, but
still without agglomeration
advantages or institutional
support, creating a window of
opportunity for new cluster
creation (Boschma 2007).
During this period, the
innovation system is highly
unstable, which is reflected in
sectoral knowledge networks,
clustering patterns and
innovation performance (Ter
Wal and Boschma 2011).

Exogenous shock or event
(trigger) creates a cluster
(Maggioni 2004). Examples
include indigenous invention or
combination of knowledge at a
local university or research
institute, industrial
diversification, upgrading or
transplantation from elsewhere
(Martin and Simmie 2008).
There is a high degree of
uncertainty and
experimentation. Clusters can
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also quickly disappear (Martin
and Sunley 2011).

Growth
(path creation)

Technology reaches sufficient
maturity and a successful
development path is found
(Martin and Simmie 2008).
The sectoral innovation
system becomes more stable
in terms of knowledge
networks, and cluster
agglomeration increases (Ter
Wal and Boschma 2011).

Agglomeration advantages, such
as a labor market specialization,
supply of specialized
intermediate goods, knowledge
spillovers, etc. take hold, and
drive the growth of the cluster
(Maggioni 2004; McCann 2013).

Mature
(path following
or renewal)

Growth remains stable or
slows down, and the
importance of knowledge
networks and cluster
agglomeration decline as the
technological path becomes
stable, and firms compete by
optimizing their existing
knowledge (Ter Wal and
Boschma 2011; Martin and
Sunley 2011). The industry
survives until it is replaced by
an alternative technology
(Geels 2005).

Cluster achieves positive path
lock-in, whereby skills,
experience and institutional
advantages accumulate, creating
a sustainable competitive
advantage. Or, rising
competition from other clusters
(or industries), leads to the
cluster's eventual decline and
destruction (Martin and Simmie
2008; Maggioni 2004), unless
the cluster is able to find a
pathway for renewal (Menzel
and Fornahl 2010)

Table 1: Summary of theoretical perspectives on sector and cluster life cycle.

Based on the theoretical understandings summarized in table 1, certain
expectations can be formulated about how sectors develop over time in terms of
their spatial distribution and knowledge networks, and whether these factors
influence1 cluster innovation performance. These expectations are summarized in
table 2.

1 “Influence” implies causality. While there is evidence suggesting that factors such as agglomeration and
knowledge networks have a causal influence on innovation performance, we recognize the possibility of
reverse-causality or mutual-causality, as has been noted in the R&D-patenting relationship (Baraldi,
Cantabene, and Perani 2014).
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The expectations encompass three development phases (path formation, creation
and following/renewal) and can be divided into two types: expectations regarding
the spatial distribution and knowledge network structure of high technology clusters
and expectations about the influence of agglomeration and knowledge network
factors on the innovation performance of clusters. The spatial distribution and
knowledge network structure are formulated in terms of the number of clusters,
clustering rate (share of innovation activities that takes place in clusters), and the
density of knowledge networks. The influence of agglomeration and knowledge
networks is expected to be similar: both weak during the path formation phase,
strong during path creation, and weakening once more during the path following or
renewal phase.

Phase Spatial distribution and
knowledge network structure

Influence of agglomeration and
knowledge network factors

Emergence
(path
formation)

Number of clusters: few
Clustering rate: low
University and government

patent share: high
Knowledge networks: sparse

Weak (no influence)

Growth
(path creation)

Number of clusters: increasing
Clustering rate: high
University and government

patent share: decreasing
Knowledge networks:

densifying

High

Mature
(path following
or renewal)

Number of clusters: stable
Clustering rate: stable or

decreasing
University and government

patent share: low
Knowledge networks: stable

Low

Table 2: Simplified model of sector and cluster development (expected trends).
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3. DATA, INDICATORS AND RESEARCH MODEL
This section provides an overview of the patenting data, patent location
(geocoding), time aspects, technical corrections, cluster identification process and
the calculation of innovation indicators. The empirical part of this research is based
on publicly available patent grant and patent citations data from the USPTO for the
years 1976-2021.2 Patent data for specific sectors is selected based on Cooperative
Patent Classification (CPC) codes based on the classifications by the World
Intellectual Property Organization (WIPO) (Schmoch 2008), or the CPC codes for
climate change mitigation technologies (Palumbo 2013; Leydesdorff et al. 2015).
Four research intensive sectors are chosen which produce a large number of
patents. Information technology and solar photovoltaics are considered to be
growth sectors, whereas semiconductors and pharmaceuticals are more mature
during the study period. An overview of the sectors and the number of patent
grants is shown in table 3.

Sector CPC codes Patent grants (1975-2019)

Information technology G06; G11C; G10L 170,321

Semiconductors H01L; B81 481,751

Pharmaceuticals A61K; A61P 309,354

Photovoltaics Y02E 10/5 33,539

Table 3: Overview of four sectors.

To identify the location of inventors and patent assignees (patent owners) their
address data is used (usually city, state and country). Although the patent database
provides coordinates for addresses, these appear to have limited accuracy,
especially outside of the United States. Therefore the open source Pelias Geocoder3

is used to geocode addresses from all countries and territories and all U.S. states
with an area of more than 20,000 km2. Countries, territories and states which are
smaller than 20,000 km2 are directly assigned standard coordinates. This approach
saves processing time and avoids geocoding errors related to place names.

3 See the official project website at https://pelias.io. Accessed 24 October 2022.

2 Downloaded from the USPTO's PatentsView website
(https://patentsview.org/download/data-download-tables). Data released on 7 March 2022. Data accessed
on 29 September 2022.
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Examples of directly-geocoded places are: Fiji, Jamaica, New Caledonia, Qatar and
Singapore, as well as the states of Massachusetts and Hawaii.

The dataset is divided into 41 periods of five years, from 1975-2019 based on the
patent application date. As patents take some time from application to grant, 2019 is
the latest application year for which relatively complete patent grant data is
available. All data is processed using R (R Core Team 2022) using a 5-year moving
average period for each year.

When using a national patent database such as the USPTO, the home bias effect
must always be considered (Bacchiocchi and Montobbio 2010). To gauge the degree
of over-representation of patents with American inventors in the USPTO patent
grant database, it is useful to compare patenting by Japanese and American
inventors at both the European Patent Office (EPO) and the USPTO. Japan provides
a useful comparison because it is regarded as the country with the greatest
technological similarity to the United States (Toivanen and Suominen 2015; Mancusi
2008). According to the OECD Patents Statistics database4, between 1977-2017,
Japanese inventors received 1,268,723 USPTO grants and 362,702 EPO grants (a ratio
of 3.50:1), whereas American inventors received 3,370,025 USPTO grants and
482,323 EPO grants (a ratio of 7:1). This suggests that relative to Japanese patents,
US patents are overrepresented in the USPTO database by a ratio of 2:1. Although
this ratio fluctuates between 1977-2017, the annual median value is 1.94, which
appears robust. Therefore, for each US location, the number of patents is divided by
2 to ensure a globally representative weighting. Other indicators are not adjusted,
but in the model estimations a US dummy variable is included to adjust for the
home bias effect.

Clusters are identified using the DBSCAN algorithm (Schubert et al. 2017) as
implemented in the dbscan library of R (Hahsler, Piekenbrock, and Doran 2019).
DBSCAN has been used by other researchers to identify clusters from patent data
(Bergquist, Fink, and Raffo 2017; Dutta et al. 2022). Clusters are identified using a
search radius of 0.2 degrees (approximately 22 km) with a minimum cluster size of
0.5% of the total patents in each period.5 These values give realistic results across

5 The Global Innovation Index (Dutta et al. 2022) also uses DBSCAN, with a search radius of 15 km and
minimum cluster size of 4,500 (0.1% of 4.5 million documents used). From this more than 230 clusters
are identified, which is possible because of the larger dataset.

4 See the OECD Statistics website at https://stats.oecd.org. Accessed 12 November 2022.
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all sectors in terms of the number of clusters identified and their minimum size.
Clusters must have a minimum of 10 inventors to be included in the analysis.
Cluster indicators, as shown in table 4, are calculated from the patent data
belonging to each cluster. Network indicators are calculated using the igraph
library of R (Csardi and Nepusz 2006).

Indicator Unit Measurement definition

Innovation
Performance (IVP)

Citations
per
inventor

Dependent variable. IVP = CIT/INV, where CIT is
the number of citations received by cluster
patents (inventor weighted) and INV is defined
below (Stek 2018; 2022).

Inventors (INV) Inventor
number

INV is the number of unique inventor names with
addresses inside the cluster.

University and
government
research (UGR)

% Share of patents in the cluster with at least one
assignee identified as a university6 or government
institution (Stek 2018; 2022).

Co-inventor
network density
(CND)

Links per
inventor

Co-invention network simple degree centrality.
Network is derived from patents with inventors in
two or more clusters.

Co-inventor
network con-
nectivity (CNC)

Weighted
links

Co-invention network eigenvector centrality.
Network is derived from patents with inventors in
two or more clusters.

Inventor-assignee
network bridging
(IAB)

Weighted
links

Inventor-assignee network betweenness
centrality. Directed network is derived from
patents with inventors in one cluster and
assignees in one or more other clusters.

Table 4: Cluster indicators.

Overall, the indicators are both descriptive cluster characteristics, whose changes
can be observed over time, and explanatory variables in the estimation of a simple
cluster innovation performance model. The model consists of the abovementioned
dependent variable (IVP), five independent variables and two dummy variables. A

6 Government ownership of patents is indicated in the USPTO database. To identify universities a list of
words (or word-parts) is used, see appendix A.
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dummy for US clusters (DUS) is included to account for the home bias effect
(Bacchiocchi and Montobbio 2010) and a sector dummy (DSEC) is included to account
for sectoral differences in citation and inventor patterns. The error term in the
models is marked by ε.

IVP = DSEC(α + β1INV + β2UGR + β3CND + β4CNE + β5ANB + β6DUS) + ε

The model is evaluated for five different periods (the identification of these periods
is discussed in section 4) using ordinary least squares (OLS) estimation. The models
do not have any multicollinearity issues (VIF < 2.5), model residuals appear to be
normally distributed (Shapiro Wilk p < 0.01) and there is no indication of
heteroscedasticity (Breusch Pagan p < 0.01). The model estimations have good
predictive power, adjusted R2 varies from 0.671 to 0.865. The complete model
estimation results, together with basic model diagnostics, are shown in table 5, and
are discussed in section 5.

4. RESULTS AND ANALYSIS
The results and analysis are presented in three parts. First, the changing spatial
distribution of innovation output and performance are explored (section 4.1). This is
followed by an analysis of shifts in university-government research and knowledge
network structure (section 4.2). Finally, the model estimation results are presented,
showing changes in the influence of different factors over time (section 4.3).

4.1 Spatial Distribution of Innovation Output and Performance
Innovation output, as measured by the number of patent grants, shows clear
differences in the growth trajectories of the four sectors (figure 1). The
pharmaceuticals and semiconductor sectors appear as mature sectors throughout
the study period, showing sustained growth. However, the growth rate appears to
slow after 2000. The other two sectors, information technology and photovoltaics,
appear to be emerging from 1977-1990 (period I), producing less than 300 patent
grants per year. From 1991-1998 (period II) the information technology sector
experienced accelerated growth, while patent output for the photovoltaics sector
lagged. From 1999-2004 (period III) growth in the information technology sector
decelerated, however from 2005-2012 (period IV) the photovoltaics sector
experienced accelerating growth, which decelerated from 2013-2017 (period V).
Thus, the information technology sector appears to experience an exploration
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phase (1977-1990; period I), a growth phase (1991-1998; period II) and a mature phase
(1999-2017; periods III-V). Similarly, the photovoltaics sector appears to experience
an exploration phase (1977-2004; periods I-III), a growth phase (2005-2012; period
IV) and a mature phase (2013-2017; period IV). A summary of these periods and the
growth phases of information technology and photovoltaics is provided in table 5,
and are also used for the model estimations (table 7).

Figure 1: Innovation output (patent grants, five-year moving average).

Sector Period I
(1977-1990,
14 years)

Period II
(1991-1998,

8 years)

Period III
(1999-2004,

6 years)

Period IV
(2005-2012,

8 years)

Period V
(2013-2017,

5 years)

Information
Technology

Emergence
phase

Growth
phase

Mature
phase

Photo-
voltaics

Emergence
phase

Growth
phase

Mature
phase

Table 5: Periods reflecting the respective growth phases of the information
technology and photovoltaics sectors.

Coinciding with the growth of patent output is an increasing number of clusters for
the information technology and photovoltaics sectors (figure 2). The number of
clusters appears to increase as a prelude to the high growth phase of the sectors
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observed in 1991-1998 (period II; information technology) and 2005-2012 (period IV;
photovoltaics). For photovoltaics, the number of clusters varies considerably,
reaching as high as 17 and as low as 9 before the growth phase starting in 2005.

The total number of clusters detected for all sectors at the end of the study period
is relatively similar, and falls within the 20-30 range. Although the number of
clusters detected is influenced by the use of the DBSCAN algorithm and the cut-off
of 10 inventors per cluster and 0.5% of global patent output, the spatial distribution
of the four sectors seems to evolve towards an equilibrium of 25 ±5 globally
significant clusters in each sector. Such an outcome could be due to clusters
reaching certain limits in terms of the benefits of spatial and relational proximity.
The growth of individual clusters could be limited by diseconomies of scale. Smaller
clusters may lack the scale needed to maintain a strong position within global
knowledge networks.

Figure 2: Number of clusters (calculated over moving five-year periods).

The four sectors show notable differences in terms of the cluster share of patent
output (figure 3). For semiconductors this share remains consistent and high at
approximately 70%, while for photovoltaics it varies across a broader range,
between 52-66%. Yet information technology shows a clear path of increased
concentration until the start of its high-growth period around 1991; the number of
clusters appears to be closely correlated to the cluster share. For pharmaceuticals
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the trajectory differs again: the number of patents produced from clusters sees a
sustained decline from 65% in the late 1970s to 41% in the mid 2010s.

In some cases, the clustering rates observed seem to be related to the number of
clusters, and thus the development phase of the sector. This seems to be the case
for information technology and semiconductors, and follows the expectations
outlined in table 2. The sustained decline in the clustering rate of pharmaceuticals
could be partly driven by diseconomies of scale (Ter Wal and Boschma 2011), but
also by the highly codified nature of the pharmaceuticals knowledge base which
facilitates knowledge transfers over long distances (C. Park 2022; Gertler and Wolfe
2006). A further possible reason for the declining clustering rate is the increasing
participation of university and government research institutions in pharmaceutical
research (see figure 6). These institutions may be located outside of major clusters,
and their research is commercialized in other locations (Buenstorf and Schacht
2013).

The clustering rate observed for solar photovoltaics is more difficult to comment
on, except that it does not follow the observations for the other growth sector,
information technology. The sector shares some of its technological base with
semiconductors, and as shown in figure 6, also has a higher involvement from
university and government research as compared to information technology and
semiconductors.
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Figure 3: Share of patent output in clusters (clustering rate, calculated over moving
five-year periods).

Global shifts in innovation performance can be observed based on the location of
each sector’s 10 largest clusters (table 6). All sectors appear to show an increase in
top-10 clusters located in Asia (outside Japan) and a decline in top-10 clusters from
Europe and Japan, and to a lesser extent, the United States. The United States is
especially interesting, because it sees both declining clusters (such as
Ploughkeepsie in semiconductors, a town located north of New York City) and
rising clusters (such as Boston in pharmaceuticals). Seoul, Korea is illustrative of the
rise of Asian clusters. During period I (1977-1990) it is not among the top-10 clusters
in a single sector. By period V (2013-2017) it is among the top-10 clusters in all four
sectors included in this research. Paris, France is illustrative of the decline of
European clusters. During period I (1977-1990) it was among the top-10 clusters in
all sectors. By period III (1999-2004) and later periods, Paris was only a top-10
cluster in one sector, pharmaceuticals. In fact, Paris, Frankfurt, Munich and London
all held high positions in one or two sectors during period I, and have disappeared
from the top-ten clusters in the most recent period.

Aside from Seoul, Hsinchu, Taiwan and Tel Aviv, Israel also gained ground in more
than one sector even though they do not appear in the top-10 during period I
(1977-1990). During the most recent period (V, 2013-2017), a number of new clusters
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from emerging economies entered the top 10, including Bangalore, India
(information technology) and Beijing, China (semiconductors and photovoltaics).

Although there are changes in the rank of clusters between periods, the top-10
generally sees a change of 2 or 3 clusters from period to period. The exception is
the photovoltaics sector, which sees around 4 clusters change during each period,
suggesting a much more dynamic spatial distribution. This observation aligns with
the expectations for an emerging sector (see also table 2).

A number of cluster shifts can be linked to the performance of key corporations. In
information technology, the rise of Seattle, United States is closely connected to
the growth of Microsoft and later, Amazon. In semiconductors, the decline of
Poughkeepsie, United States is connected to IBM shifting activities elsewhere
whereas the rise of Hsinchu, Taiwan (TSMC, United Microelectronics, Realtek, etc.),
Dallas, United States (Texas Instruments) and Gyeonggi, Korea (Samsung, Hynix) are
likely connected to the success of anchor firms in these clusters, which also
support a large local supplier ecosystem.

When comparing the cluster rankings for the most recent period (V, 2013-2017) to
the Global Innovation Index clusters (Dutta et al. 2022), the results are similar in the
sense that the top-10 clusters are mainly found in Japan, Korea, China and the
United States. Some cities, such as Bangalore, Basel and Tel Aviv, do not appear in
the top-20 of the Global Innovation Index cluster list, which is likely due to the high
degree of specialization of those clusters in specific sectors such as information
technology or pharmaceuticals. On the other hand, Chinese clusters such as
Shenzhen and Shanghai are among the top-10 clusters in the Global Innovation
Index, but they do not feature among the top-10 in this study. A likely reason for
this is that Dutta et al. (2022) combine Shenzhen with Guangzhou and Shanghai
with Suzhou (cities which are 80-100 km apart, approximately 20-30 minutes travel
time by high speed train). Furthermore, the Global Innovation Index uses patent
and scientific publication data, whereas the present study uses only patent data.
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Period Rank Information Technology Semiconductors Pharmaceuticals Photovoltaics

I (1977-
1990)

1
2
3
4
5
6
7
8
9
10

Tokyo JPN (17)
Nara JPN (10)
New York USA (6.1)
Paris FRA (4.3)
Nagoya JPN (2.3)
Boston USA (2.2)
San Jose USA (2.0)
Chicago USA (2.0)
Dallas USA (1.9)
Los Angeles USA (1.6)

Tokyo JPN (26)
Osaka JPN (6.4)
San Jose USA (4.3)
Princeton USA (3.2)
Munich DEU (2.8)
Poughkeepsie USA (2.4)
Dallas USA (2.3)
Paris FRA (2.1)
Kobe JPN (1.9)
Los Angeles USA (1.8)

New York USA (9.0)
Tokyo JPN (7.0)
Osaka JPN (5.2)
Paris FRA (5.1)
Frankfurt DEU (4.2)
London GBR (4.1)
Cologne DEU (2.8)
Milan ITA (2.8)
Basel CHE (2.5)
San Francisco USA (2.2)

Tokyo JPN (20)
Osaka JPN (9.7)
Los Angeles USA (6.5)
Princeton USA (5.6)
Boston USA (3.7)
Munich DEU (3.0)
Washington USA (2.6)
Detroit USA (2.6)
Paris FRA (1.9)
San Jose USA (1.8)

II
(1991-
1998)

1
2
3
4
5
6
7
8
9
10

Tokyo JPN (15.3)
New York USA (9.7)
San Jose USA (7.3)
Dallas USA (3.1)
Boston USA (2.8)
Chicago USA (2.2)
Washington USA (2.1)
Paris FRA (2.0)
Seattle USA (1.8)
Osaka JPN (1.7)

Tokyo JPN (26)
Osaka JPN (7.2)
San Jose USA (6.4)
Hsinchu TWN (5.3)
Seoul KOR (2.7)
Kobe JPN (2.4)
Dallas USA (2.4)
Boise USA (2.3)
Taipei TWN (1.7)
Poughkeepsie USA (1.7)

New York USA (5.0)
San Francisco USA (4.6)
Tokyo JPN (3.9)
Boston USA (3.8)
Paris FRA (3.7)
Philadelphia USA (3.1)
Osaka JPN (2.6)
London GBR (2.3)
Washington USA (2.0)
Frankfurt DEU (1.5)

Tokyo JPN (21)
Osaka JPN (16)
Nagahama JPN (4.1)
Kyoto JPN (3.1)
Boston USA (2.4)
Munich DEU (2.4)
Nara JPN (1.7)
Denver USA (1.6)
Los Angeles USA (1.4)
Detroit USA (1.2)
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III
(1999-
2004)

1
2
3
4
5
6
7
8
9
10

Tokyo JPN (11)
San Francisco USA (9.1)
New York USA (6.8)
Seattle USA (3.3)
Los Angeles USA (2.7)
Washington USA (2.5)
Boston USA (2.3)
Atlanta USA (2.0)
Dallas USA (1.9)
Austin USA (1.6)

Tokyo JPN (21)
Hsinchu TWN (8.4)
San Jose USA (7.0)
Kyoto JPN (4.9)
Seoul KOR (4.2)
Boise USA (2.9)
Nagano JPN (2.1)
New York USA (1.6)
Singapore SGP (1.5)
Chiba JPN (1.4)

San Francisco USA (4.5)
New York USA (4.3)
Tokyo JPN (3.6)
Boston USA (3.6)
Paris FRA (2.9)
Osaka JPN (2.6)
Philadelphia USA (2.5)
London GBR (2.2)
Washington USA (1.6)
Tel Aviv ISR (1.4)

Tokyo JPN (16)
Osaka JPN (12)
Kyoto JPN (4.2)
San Jose USA (3.2)
Los Angeles USA (2.3)
Boston USA (1.7)
Kobe JPN (1.3)
Frankfurt DEU (1.1)
Princeton USA (1.1)
Tsukuba JPN (1.1)

IV
(2005-
2012)

1
2
3
4
5
6
7
8
9
10

San Francisco USA (12.8)
New York USA (5.7)
Tokyo JPN (5.6)
Seattle USA (5.1)
Los Angeles USA (3.2)
Chicago USA (2.5)
Boston USA (2.4)
Washington USA (1.8)
Atlanta USA (1.7)
Heidelberg DEU (1.6)

Tokyo JPN (20)
Seoul KOR (10)
Hsinchu TWN (7.8)
San Jose USA (4.8)
Osaka JPN (3.9)
Nagano JPN (2.6)
Gyeonggi KOR (2.5)
New York USA (1.9)
Singapore SGP (1.6)
Nagoya JPN (1.3)

San Francisco USA (4.4)
New York USA (4.0)
Boston USA (3.9)
Tokyo JPN (3.7)
Paris FRA (2.2)
Basel CHE (1.9)
Tel Aviv ISR (1.9)
Philadelphia USA (1.7)
Osaka JPN (1.6)
Seoul KOR (1.5)

Tokyo JPN (11.3)
Seoul KOR (8.9)
San Jose USA (7.8)
Osaka JPN (5.9)
Hsinchu TWN (4.1)
Frankfurt DEU (2.0)
Daejeon KOR (1.4)
Boston USA (1.4)
Los Angeles USA (1.1)
Tsukuba JPN (1.1)

V
(2013-
2017)

1
2
3
4
5
6
7
8
9
10

San Francisco USA (16)
Tokyo JPN (5.1)
Seattle USA (4.5)
New York USA (3.4)
Los Angeles USA (2.9)
Seoul KOR (2.3)
Boston USA (2.1)
Bangalore IND (2.0)
Tel Aviv ISR (1.9)
Chicago USA (1.8)

Tokyo JPN (15)
Seoul KOR (12)
Hsinchu TWN (10.6)
San Jose USA (4.2)
Osaka JPN (3.9)
Beijing CHN (3.0)
Nagoya JPN (2.1)
Albany USA (1.9)
New York USA (1.6)
Gyeonggi KOR (1.5)

Boston USA (5.2)
San Francisco USA (4.4)
New York USA (3.7)
Tokyo JPN (3.0)
Seoul KOR (2.3)
Philadelphia USA (1.7)
Tel Aviv ISR (1.6)
San Diego USA (1.6)
Paris FRA (1.5)
Basel CHE (1.4)

Seoul KOR (13.2)
Tokyo JPN (11.1)
San Jose USA (5.5)
Osaka JPN (4.4)
Daejeon KOR (2.6)
Beijing CHN (2.5)
Hsinchu TWN (2.2)
Frankfurt DEU (1.3)
New York USA (1.2)
Tel Aviv ISR (1.0)

Table 6: 10 largest clusters by sector and period (patent share).
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In addition to the spatial distribution of innovation output, the overall decline in
innovation performance, as measured by the number of citations per inventor
(figure 4), should also be noted. Although inter-temporal changes in citation
behavior is an area of scientific debate, and citations take time to accumulate
(Sampat, Mowery, and Ziedonis 2003), the decline in observed citation rates
appears to be more structural. All sectors see relatively stable innovation
performance until approximately 1995-2000, when a rapid decline begins. This
observation may be due to an overall decline in disruptive research findings in
recent decades, a phenomenon that is observed across different fields of science,
both in patents and scientific papers (M. Park, Leahey, and Funk 2023).

Figure 4: Innovation performance (five-year moving average).

4.2 University-Government Research and Knowledge Network Structure
Moving from the spatial analysis of clusters and cluster innovation performance,
now some of the factors influencing cluster creation and cluster innovation
performance are addressed, namely university-government research and the
structure of knowledge networks.

As noted in the previous section, university-government research may partially
influence the spatial distribution of innovation in the pharmaceuticals sector.
Pharmaceuticals has the largest share of university-government research, rising to
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around 25% in 2015 (figure 6). Interestingly, the share of university-government
patenting in pharmaceuticals was below 10% in the late 1970s, but shows a growing
interest in research commercialization by universities over time. This change is
likely driven in part by regulatory changes, including the 1980 Bayh-Dole Act in the
United States (Sampat, Mowery, and Ziedonis 2003) and the fact that the knowledge
base of pharmaceuticals is heavily science-based (Tidd and Bessant 2014; Asheim
and Coenen 2005).

The solar photovoltaic sector shows a different path, with relatively high initial
participation by government and universities (more than 15% in the late 1970s)
which then falls back until 1997, when the Kyoto Protocol is signed and public
interest and investment again increase (Popp, Hascic, and Medhi 2011). This
increase lasts until around 2005, when the sector begins its high-growth stage and
government and university research continues to grow in absolute terms, but falls
in relative terms due to increased private sector participation. In this way the
photovoltaics sector behaves as assumed in table 2.

Figure 6: Changes in university-government patenting rate as a percentage of total
patenting (calculated over moving five-year periods).

The development of knowledge network structure also follows a notable path, with
the density of networks increasing over time (figure 7). Especially after 1990,
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following the widespread adoption of the internet, there appears to be an
acceleration in the density of inter-cluster networks. For example, the average
number of unique connections of pharmaceutical clusters rose from 12 in 1990, to
23 in 1995.

The networks of the other sectors appear to grow at a slower rate. For the
information technology sector this can be explained by its low number of clusters
before 1990, and the lag that is often observed between cluster formation and the
creation of network linkages (see also table 1 and 2) (He and Fallah 2009; Ter Wal
and Boschma 2011). In the semiconductor sector, the slower network growth and a
less dense network overall, are likely related to specific sectoral characteristics,
including the higher clustering rate (see figure 3). In general, the growth of cluster
networks since 1990 is attributed to a both technological developments and a shift
towards greater technological specialization (Turkina, Van Assche, and Kali 2016)

The delayed growth of the photovoltaics network could be due to the relative
newness of the sector and its smaller size, as a certain number of inventors and
absorptive capacity is needed to sustain and benefit from network linkages (see also
table 3) (Abreu 2011; Belso-Martínez, Expósito-Langa, and Tomás-Miquel 2016). The
slow growth of inter-cluster linkages in renewable energy has also been noted in
earlier research, and is partly attributed to a lack of suitable institutional support
(Negro, Alkemade, and Hekkert 2012).
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Figure 7: Changes in average network density (links per cluster, calculated over
moving five-year periods).

The increase in knowledge network density (CND) mirrors the expansion in average
network connectivity (CNC). However, the inventor-assignee network bridging (IAB)
indicator does not show a clear trend for any of the sectors. This suggests that
certain clusters retain a relatively strong position as research investors in other
clusters, for example in the case of multinational corporations maintaining remote
labs (Montobbio and Sterzi 2013).

4.3 Cluster Innovation Performance Model
After the descriptive analysis of the previous two subsections, the explanatory
analysis is now presented. The cluster innovation performance model is used to
clarify the relationships between cluster innovation performance and various
agglomeration and knowledge network factors (see also section 3). The model is
estimated for five periods, which were used earlier in this section (see table 5). The
model diagnostics suggest that the assumptions of OLS regression are met, and
therefore the results are robust  (table 7). The results are discussed by sector,
beginning with the mature pharmaceuticals and semiconductor sectors.

The agglomeration and knowledge network factors in the pharmaceuticals and
semiconductor sectors tend to show statistically significant correlations for a
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smaller number of indicators. This result is expected given the mature development
phase of these sectors. However, there are some notable correlations which appear
related to long-term trends taking place within the sectors, related to the growth of
networks in the pharmaceuticals sector, and the consistently high rate of clustering
in the semiconductor sector.

The pharmaceutical sector shows a positive and statistically significant influence of
knowledge network density (CND), starting in period II (1991-1998), and a negative
influence of university government research, starting in period IV (2005-2012). The
importance of network factors in cluster innovation performance seems to mirror
the growth of knowledge networks in the sector (see figure 7). Taken together with
the decline in the clustering rate (see figure 3), it appears that the importance of
spatial proximity is gradually being replaced by the growing importance of
relational proximity (Boschma 2005).

In a similar way, the negative correlation of the share of university-government
research (UGR) with cluster innovation performance mirrors the growth in
pharmaceutical patents held by university and government research institutions
(see figure 6). The negative correlation can be understood if one considers how
universities and corporate research funders tend to collaborate. Many
university-owned patents are of lower quality compared to corporate patents,
because corporations funding research tend to have the first right to patent. This
means that the most commercially promising technologies, although they may be
invented at a university, are often owned by corporations (Gautam, Kodama, and
Enomoto 2014). A cluster with a large share of university and government-owned
patents may therefore have universities and government research institutions that
are actively patenting less valuable inventions, which receive fewer citations, and
therefore lower the innovation performance of the cluster, as it is being measured
in this study.

The semiconductor sector shows a statistically significant influence of knowledge
network connectivity (CNC), starting in period III (1999-2004). The connectivity
indicator differs from the network density indicator. The connectivity indicator
incorporates the transmissivity of knowledge: a researcher who learns from a
collaboration with cluster A can transfer that knowledge onward through a
collaboration with cluster B. The importance of connectivity coincides with a
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growing inter-cluster knowledge network (see figure 7) but also a consistently high
clustering rate (see figure 3), suggesting that in the semiconductor sector, clusters
function as “hubs” for the combination and generation of new knowledge (Bathelt,
Malmberg, and Maskell 2004)

The information technology and solar photovoltaics sectors both undergo a period
of rapid growth during the study period (period II, 1991-1998, and period IV,
2005-2012, respectively), and there appear to be consistent influences or
correlations before, during and after these growth periods.

Scale-based agglomeration (INV) has a statistically significant negative correlation
with cluster innovation performance in both sectors during their high-growth
periods, and the negative correlation persists in the information technology sector
for the two periods thereafter (1999-2012). It is likely that during the high-growth
phase, intensifying competition for talent and resources needed to rapidly grow
R&D output, leads to negative economies of scale in clusters.

The two emerging sectors differ in terms of the influence of university-government
research (UGR). There is a positive association in the information technology sector
before, during and right after the high-growth phase, but a negative association in
the photovoltaic sector before the high-growth phase. This suggests that the
information technology sector sees positive effects from local university knowledge
spillovers or the ability of universities to attract talent (Wolfe 2005; Etzkowitz 2012;
Florida 1999). The negative association in the photovoltaic sector could be due to a
policy-push towards renewable energy research following the signing of the Kyoto
Protocol, as noted earlier in this section. The Kyoto Protocol led to an increase in
the number of university and government-owned patents (see figure 6) (Popp,
Hascic, and Medhi 2011).

Knowledge networks are strongly associated with cluster innovation performance
in the two emerging sectors, with all three network indicators (CND, CNC, IAB)
having a positive and statistically significant correlation during the study period.
The network influence in information technology appears to be most consistent,
although during the high-growth period (II, 1991-1998) and final period (V,
2013-2017) only one network indicator is statistically significant. In the
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photovoltaics sector all knowledge network indicators are statistically significant
during its high-growth period (IV, 2005-2012).

It is also important to not over-interpret the declining values of the β-coefficients
for some of the sectoral indicators, for example for network connectivity (CNC) and
network bridging (IAB) in the information technology sector. During the early
periods CNC and IAB tend to have low values as there are few clusters. This leads to
higher β-coefficients. Furthermore, the innovation performance (IVP, dependent
variable) is also higher during the early periods, further raising the β-coefficients
(see also figure 4).

The above analysis suggests that, while there are negative economies of scale
during the high-growth phase of each emerging sector, there tends to be a positive
correlation with one or more knowledge network indicators. It is also notable that
network bridging (IAB) is only statistically significant (and positive) in the emerging
sectors, suggesting that dominant firms in these sectors influence knowledge flows
in ways that benefit the cluster containing their headquarters and main R&D
facilities.
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Periods I (1977-1990) II (1991-1998) III (1999-2004) IV (2005-2012) V (2013-2017)

Agglomeration
Inventors (INV)
- Pharmaceuticals
- Information Tech.
- Semiconductors
- Photovoltaics
Univ. gov. res. (UGR)
- Pharmaceuticals
- Information Tech.
- Semiconductors
- Photovoltaics

-10.5 (0.684)
130 (1.18)

4.89 (0.538)
-5.40 (0.038)

2.24 (0.176)
181 (7.29)***
-12.1 (0.546)

-4.35 (0.426)

-1.57 (0.195)
-65.4 (4.26)***
-0.138 (0.062)
-34.9 (0.398)

0.425 (0.051)
75.0 (2.27)**
-2.67 (0.104)
2.48 (0.198)

4.80 (1.10)
-17.3 (4.95)***
-0.410 (0.652)

8.57 (0.287)

3.26 (0.561)
99.6 (2.56)**

1.89 (0.120)
-9.38 (1.69)*

6.62 (0.519)
-14.5 (2.64)***
-0.331 (0.002)
-6.31 (2.42)**

-3.37 (1.68)*
-16.5 (1.37)
-4.42 (1.42)
1.04 (0.522)

0.507 (1.61)
0.000230 (0.002)

0.0259 (0.522)
-0.164 (0.212)

-1.49 (2.53)**
2.94 (0.517)

0.708 (0.462)
0.886 (1.01)

Networks
Density (CND)
- Pharmaceuticals
- Information Tech.
- Semiconductors
- Photovoltaics
Connectivity (CNC)
- Pharmaceuticals
- Information Tech.
- Semiconductors
- Photovoltaics
Bridging (IAB)
- Pharmaceuticals
- Information Tech.
- Semiconductors
- Photovoltaics

131 (1.45)
23.5 (4.78)***

-0.800 (0.009)
0.968 (0.141)

26.9 (1.06)
35.3 (2.65)***
-6.95 (0.267)
0.117 (0.006)

35.9 (0.626)
170 (3.86)***

7.40 (0.133)
-26.4 (0.555)

143 (1.67)*
4.81 (0.269)
6.01 (0.516)

-4.15 (0.474)

30.6 (0.830)
102 (4.75)***

10.8 (0.471)
11.7 (1.03)

-21.2 (0.357)
42.1 (0.623)

-12.9 (0.304)
-39.3 (0.457)

81.0 (1.86)*
11.7 (3.16)***
44.4 (0.686)
-9.23 (1.02)

-19.0 (0.715)
65.4 (4.54)***

22.5 (1.95)*
13.1 (2.01)**

4.90 (0.137)
9.53 (0.224)

-6.89 (0.368)
-29.4 (1.42)

27.5 (2.32)**
45.3 (3.30)***

64.8 (1.59)
14.3 (2.82)***

-4.45 (0.543)
12.0 (2.66)***

6.88 (1.65)*
6.92 (1.71)*

-15.3 (1.54)
5.00 (0.403)

8.93 (1.36)
12.0 (1.71)*

23.2 (3.91)***
28.1 (0.449)

26.9 (1.47)
-3.02 (0.941)

0.360 (0.149)
0.475 (0.254)

3.13 (2.63)***
1.49 (0.918)

-3.28 (0.858)
11.2 (3.10)***

2.15 (0.822)
-3.36 (0.149)
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Sector Dummy (DSEC)
- Pharmaceuticals
- Information Tech.
- Semiconductors
- Photovoltaics
USA Dummy (DUSA)
- Pharmaceuticals
- Information Tech.
- Semiconductors
- Photovoltaics

4.08 (0.58)
44.7 (17.6)***
19.4 (3.14)***
22.5 (4.27)***

18.7 (3.49)***
74.1 (3.46)***
12.5 (2.45)**

15.1 (4.04)***

6.59 (0.735)
65.7 (12.7)***
22.7 (4.27)***
34.5 (7.45)***

10.5 (2.45)**
96.8 (17.7)***

15.0 (3.05)***
12.8 (2.76)***

4.62 (1.13)
28.5 (11.5)***
12.1 (5.10)***
18.5 (7.68)***

7.39 (2.91)***
20.4 (7.59)***

5.76 (2.34)**
22.2 (9.11)***

3.25 (2.69)***
5.15 (4.14)***
2.71 (2.50)**

3.63 (4.41)***

5.48 (4.97)***
7.29 (8.52)***
4.59 (4.89)***
4.95 (5.52)***

0.348 (0.812)
1.68 (4.03)***
0.267 (0.739)

0.855 (2.94)***

1.42 (4.03)***
2.35 (7.42)***
1.84 (5.33)***
1.39 (3.45)***

Model information
n
adjusted R2

VIF
Breusch-Pagan p
Shapiro-Wilk W, p

2090
0.671

1.67
2.2×10-16

0.74, 2.2×10-16

901
0.865

1.98
6.1×10-14

0.71, 2.2×10-16

693
0.826

2.13
5.8×10-21

0.86, 2.2×10-16

913
0.762
2.38

6.77×10-8

0.84, 2.2×10-16

541
0.745
2.38

0.00134
0.86, 2.2×10-16

Table 7: Cluster innovation performance model estimation results, β-coefficients with (z-score) and statistical
significance at 99% (*), 95% (**) and 90% (*) level, unless otherwise indicated.
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6. CONCLUSION, IMPLICATIONS AND LIMITATIONS
The research results presented in this paper provide an enhanced perspective on
the theory of sector and cluster life cycles as it relates to cluster spatial
agglomeration, knowledge networks and innovation performance patterns, as well
as global shifts. The empirical results generally conform to the assumptions, but
they also show that other factors may influence the development of sectors, that
mature sectors are influenced by long-term changes, and that there are global
shifts in cluster location towards specific countries in Asia.

First, the sectoral development phases are not as distinct as the theory might
suggest, making them difficult to define, but perhaps also making it possible to
detect sectors that are primed for rapid development in future. For example, in the
information technology sector, the initial exploration phase sees an increase in the
number of clusters and a gradual rise in patent output. This is followed by a period
of high-growth in patent output, after which the sector’s growth slows, but
knowledge networks continue to expand, and remain influential throughout the
three stages just described. Hence, there seems to be a sequence of development:
(1) increasing number of clusters, (2) rapid growth in patents and networks, but not
in the number of clusters, and (3) slowing growth in the number of clusters and
patents, but continued network growth. In this sense there is a pre-growth, growth
and post-growth stage of development. Furthermore, agglomeration and
knowledge network factors appear to influence cluster innovation performance
during the high-growth period, but sometimes also during the pre-growth and
post-growth stages. The photovoltaic sector is mostly similar to the information
technology sector in this regard, although its development also appears to be
influenced by policy-driven research.

Second, mature sectors also undergo changes which appear to be at least partially
driven by cluster innovation performance. The mature pharmaceutical sector
experienced a rapid increase in knowledge network density and a steady decline in
clustering rate during the study period. This suggests that knowledge networks,
rather than cluster-based spatial agglomeration, positively influence cluster
innovation performance in the sector, and that these factors influence the sector’s
changing knowledge network and clustering rate.
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In contrast, the semiconductor sector has maintained a high clustering rate and a
positive correlation with network connectivity. Network connectivity assumes that
knowledge is transitive (Wasserman and Faust 1994): cluster A gains knowledge
from cluster B in the network, and passes it on to cluster C, creating additional
value for cluster C, as it gains knowledge from cluster A and also (some) knowledge
from cluster B (with which cluster C is not directly connected). Knowledge
transitivity suggests that other actors within the cluster benefit from access to
global knowledge networks through local knowledge spillovers. This observation
supports the cluster conceptualization of Bathelt et al. (2004), who see a cluster as
being connected to global knowledge networks through “pipelines” and also
generating local knowledge spillover “buzz” (Bathelt, Malmberg, and Maskell 2004).
In the pharmaceuticals sector, it appears that the importance of such local
knowledge spillovers have declined, as is evident from the steadily falling clustering
rate.

Third, there is a clear shift to Asia in terms of the location of large clusters. This is
evident in specific countries, including China, India, Israel, South Korea and Taiwan.
The global shifts appear to have accelerated in step with the growth of knowledge
networks, a phenomenon that is partly facilitated by advances in communication
technology (Dicken 1998; Arkolakis et al. 2018). The trend of specific East Asian
clusters “catching up” has been widely noted in other research as well (Kim and Lee
2022; Dutta et al. 2022). National innovation systems are often cited as a factor in
the development of East Asian clusters, and are a factor that could be incorporated
into future studies.

The research is also limited by the use of patent data as a research and innovation
indicator. Patent data is used because it provides a long time series and global
coverage, but at the same time it is only a “paper trail” of innovation output (Jaffe,
Trajtenberg, and Fogarty 2000), and serves as a proxy measure of a much more
complicated process. Nevertheless, patent data can provide global insight into the
development of clusters, including at the level of specific sectors and over long time
periods, as this study demonstrates.

From a policy and strategic management perspective, the high-growth period is
often seen as an opportunity for new firms and clusters to enter a sector, while it
poses a risk for incumbents, who may be unable to adapt successfully to sudden
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changes in the economic and technological landscape (Lee and Lim 2001; Martin
and Sunley 2011). The present research shows that mature sectors also experience
notable changes, such as the growth of global knowledge networks and global shifts
in the location of top clusters. This suggests that even during a mature phase of
development, significant spatial and network changes can and do occur, creating
both opportunities and threats for existing high technology clusters. In the United
States there appears to be a growing spatial concentration of patenting, which
could be driven by growing technological complexity (Balland et al. 2020;
Chattergoon and Kerr 2022). However, as shown in this study, which is at a global
level, the growth of clusters may be more dynamic and can be influenced by large
investments in areas like higher education, whereby universities are able to anchor
smaller clusters in certain sectors, such as pharmaceuticals (Wolfe 2005;
Chattergoon and Kerr 2022).

APPENDIX A
List of words or word-parts used to identify universities:
ecole, polytechn, universit, hochschule, universid, institute of technology, school, college,
georgia tech, academ, penn state, k.u. leuven, politec, higher education, univ., rwth aachen, eth
z, kitasato, institute of medical, k.u.leuven, cornell, purdue, institute for cancer, institute of
cancer, acadaem, univerz, karlsruher institut, technion, cancer institut, des sciences appliq,
alumni, educational fund, hoger onderwijs, postech, politechn, institute of science, virginia tech,
eth-z, yeda research, hadasit, board of regents, instituto cientifico, ntnu technology,
tudomanyegyetem, uceni technick, universt, alumini, suny, ucla, yliopisto, doshisha, insitute of
technology, univsers, kaist, szkola, egyetem, univerc, skola, korkeakoulu, unversit, instituto
superior
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