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Abstract: We introduce a spatially-explicit sensitivity framework to uncover potential biases in urban 

delineation approaches. Our starting point is that there is no broadly shared agreement on how to 

define or delineate urban areas, neither in terms of methods nor in terms of thresholds or criteria. 

Deciding on delineation criteria thus inevitably involves making certain assumptions that may 

unwittingly reproduce urban realities experienced by those expressing them, and have spatially 

unequally distributed implications. Understanding how specific criterion choices shape our 

understanding of ‘the urban’ and how, why, and – especially – where a definition leads to specific 

sensitivities is therefore key, especially when the definition is utilised beyond its intended application. 

Our framework to uncover these sensitivities is spatially explicit in the sense that it does not rely on 

aggregate statistics but instead focuses on the sensitivity of the ‘urban’ classification of individual 

spatial units at the finest spatial granularity. Applying the framework to the definition of the Degree 

of Urbanisation reveals that sensitivity is indeed not equally distributed across the world. Certain 

regions (e.g., areas around Dallas – Fort Worth) and specific types of urbanisation (e.g., desakota 

regions in Pacific Asia) exhibit higher sensitivity than others. We discuss how these sensitivities may 

embody certain implicit assumptions in the definition, and examine their broader theoretical 

implications.  

Highlights:  

• We developed a framework to quantify variability in urban definitions in a spatially-explicit 

manner. 

• Results revealed that criteria tweaks in DEGURBA have spatially unequally distributed 

implications. 

• Certain large delta regions are disproportionally sensitive to changing a contiguity rule in 

DEGURBA. 

• DEGURBA includes a specific rule to delineate cities in North America, while no targeted rules 

exist for other world regions. 
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1 INTRODUCTION 

 

In recent years, there has been renewed interest in defining cities and classifying locations into urban 

and rural categories. Scholars have constructed urban delineations to answer questions about urban 

concentration (Uchida & Nelson, 2009), economic density (Henderson et al., 2021), and population 

dynamics (Moreno-Monroy et al., 2021). International organisations developed definitions in the 

context of development policies (Asian Development Bank, 2019) and to monitor the Sustainable 

Development Goals (SDGs; Eurostat, 2016; Melchiorri et al., 2019). However, there is no broadly 

shared agreement on how to define a city, neither in terms of methods nor in terms of thresholds to 

be used in these definitions (Cohen, 2004). This can have profound implications: different delineation 

approaches lead to varying numbers of cities and variable city boundaries, which in turn affects the 

quantitative analysis of issues ranging from economic development (Bosker et al., 2021; Wineman et 

al., 2020) to urban heat island effects (Yang et al., 2023). Variability in urban definitions also influences 

policies that target ‘urban’ areas, as underestimating their presence or size may limit financial aid and 

political attention (Wineman et al., 2020). 

Urban delineation algorithms typically group different spatial units based on their functional 

relationship (e.g., commuting flows) or their similarity in characteristics (e.g., population density). This 

often involves applying thresholds, such as enforcing a minimum amount of commuting, number of 

inhabitants, or night-time light emission for a location to be considered ‘urban’. There are no agreed-

upon ways of deciding the ‘best’ values for these thresholds as developing conceptual justifications 

with universal validity is challenging (Duranton, 2021). For example, Nigeria and Syria employ a 

minimum population size of 20,000 to define urban areas, while Canada and New Zealand already 

designate a settlement of 2,000 inhabitants as ‘urban’ (United Nations Population Division, 2019). 

Besides threshold values, there are also other implementation rules that influence the boundaries of 

urban areas: for instance, how to operationalise spatial contiguity (Statham et al., 2021) or how to 

cope with the presence of green spaces and water bodies intersecting urban areas (Eurostat, 2021).  

In this paper, we use the term criteria to refer to all implementation rules in delineation algorithms 

that may be at the root of variability in urban boundaries, including but not limited to threshold values, 

contiguity rules, and smoothing procedures. Deciding on these delineation criteria inevitably involves 

making explicit and implicit assumptions about the fundamental nature of ‘the urban’. These 

assumptions may – unwittingly – reproduce urban realities experienced and observed by those 

expressing them, potentially leading to spatially unequally distributed implications. For example, 

Statham et al. (2021) found that low-income countries are more sensitive to specific criteria in a 

delineation algorithm than high-income countries. This might suggest an implicit bias towards urban 

patterns that are abundant in certain high-income countries, and give rise to the question of whether 

consistent delineations are equally ‘fit’ to capture different types of urbanisation worldwide (Potts, 

2018). It is therefore key to understand how specific criterion choices shape our understanding of ‘the 

urban’ and assess how, why, and – especially – where a definition leads to specific sensitivities. 

However, conventional sensitivity analyses typically lack insight into this spatial dimension of 

sensitivity: which locations are most affected by variation in delineation criteria? There is a need for 

new approaches to quantify sensitivities tied to urban delineations in a spatially-explicit manner, not 

just at the regional or country level, but at finer spatial granularities. 

Against this backdrop, we introduce a spatially-explicit sensitivity framework that quantifies the 

sensitivity of a location’s ‘urban’ classification across various criteria settings. The framework is 

spatially explicit in the sense that it does not rely on aggregate statistics such as the urban population 

or number of cities per country or region but instead focuses on the sensitivity of the classification of 
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individual units at the finest possible spatial resolution (e.g., grid cells or statistical units). It is not 

designed to determine criterion settings in a more ‘robust’ manner, this would also be conceptually 

untenable. Rather, the framework aims to detail the spatial heterogeneities in the sensitivity. It 

consists of three consecutive steps. The first step involves the identification of criteria that may induce 

variability in a specific urban definition. Next, a set of alternative realisations of the definition is 

constructed by simultaneously varying the values of these criteria. Finally, the sensitivity of each 

spatial unit is quantified based on the dispersion in the classification across the set of alternative 

realisations. The framework thus quantifies the sensitivity of a spatial unit across different criteria 

choices, in contrast to conventional sensitivity analyses that typically quantify the total sensitivity of a 

specific criterion choice within a particular study area. 

To illustrate the potential of our framework, we apply it to the definition of the Degree of Urbanisation 

(DEGURBA), proposed by Dijkstra et al. (2021). DEGURBA identifies urban centres (i.e. cities), urban 

clusters (i.e. towns), and rural areas by clustering contiguous grid cells that meet a minimum 

population density, and collectively contain a minimum number of inhabitants. This definition was 

initially developed for settlements in the European Union but later applied to the rest of the world. 

Since then, it has been widely used in academic circles (Moreno-Monroy et al., 2021) and policy 

reports (Eurostat, 2016). A handful of previous studies conducted sensitivity analyses of DEGURBA. In 

these analyses, a number of aggregated metrics are computed, such as the change in urban population 

and urban land cover per continent (Dijkstra et al., 2021) and country (Dorward et al., 2023; Statham 

et al., 2021). By applying our spatially-explicit sensitivity framework to DEGURBA, we expand on these 

existing analyses in three main ways. First, we explicitly focus on the sensitivity of spatial units at the 

finest spatial granularity – 1 km² grid cells – instead of relying on aggregate statistics. Second, our 

approach goes beyond the ‘obvious’ population density and size thresholds. Instead, we consider all 

criteria that may induce variability in the resulting delineations, including technical specifications such 

as contiguity rules and an additional built-up density threshold. Although these criteria may seem less 

impactful at first glance, they can have spatially unequally distributed implications. In the discussion 

of the results, we specifically focus on these ‘other’ criteria. Third, our framework facilitates adopting 

a critical perspective on DEGURBA. Because the definition was initially calibrated on European 

settlements, it is possible that the definition (unintentionally) incorporates a particular perspective on 

urbanisation (Dorward et al., 2023). Our analysis of the impact of criteria tweaks in DEGURBA offers 

insight into whether and how the urban delineations are influenced by or reflect implicit assumptions 

about the nature of ‘the urban’. This is particularly relevant to understand when the methodology is 

utilised beyond its intended application of monitoring the SDGs indicators. 

The remainder of this paper is structured as follows: Section 2 gives an overview of the current 

literature regarding urban definitions and spatially-explicit sensitivity analyses. Section 3 introduces 

the framework and elaborates on its empirical application on DEGURBA. Section 4 presents the results, 

focusing on the sensitivity in the Red River Delta (Vietnam), the urbanised area around Dallas, Fort 

Worth, and Arlington (Texas, USA), and Vienna (Austria). Section 5 raises the main discussion points, 

after which Section 6 concludes the paper. 

2 BACKGROUND 

 

2.1 Inconsistency in urban definitions  

 

There is no definite viewpoint or definition of what constitutes ‘the urban’ or ‘a city.’ Growing levels 

of urbanisation have gone hand in hand with new urban phenomena, implying that cities and their 

urban fabric are increasingly complex. Compare, for instance, the polycentric megalopolis around 
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Mexico City (Cohen, 2004) with the extended desakota zone† around Bangkok (McGee, 2013) and the 

suburban development in Los Angeles. All three regions can, and will likely, be considered ‘urban’. 

However, the urbanisation in and of these three regions reflects different processes, timings, and 

geographical circumstances. Differences that are subsequently manifested in heterogeneity in terms 

of function, shape, and size. The ‘urban’ nature of settlements of a certain size is also context-

dependent (Cohen, 2004). In some countries, settlements of a few thousand inhabitants may 

encompass typically ‘urban’ characteristics such as central place functions, while in other countries a 

similarly-sized settlement could still be perceived as ‘rural’ due to a limited employment rate in the 

non-agricultural sector (Wineman et al., 2020). 

There are, therefore, fundamental reasons for assuming that different definitions may apply in other 

parts of the world. The question then arises whether a globally consistent definition of urbanisation – 

that is, relying on globally consistent criteria – is feasible and even desirable (Potts, 2018; Statham et 

al., 2021). No single definition can capture the worldwide complexity of local urban conditions. For 

example, DEGURBA seems to be an accepted measure of global urbanisation as it is approved by all 

member states of the United Nations (Dijkstra et al., 2021). However, there is some controversy 

around its criteria. Urban areas are defined based on a minimum density threshold of 300 inhabitants 

per km² and a minimum total population of 5,000 (Dijkstra et al., 2021). Angel et al. (2018) argue that 

the density threshold is too low, as it classifies many predominantly agrarian regions (including large 

parts of Java, Indonesia) as ‘urban’. Similarly, Henderson et al. (2021) state that the density threshold 

should be increased to adequately capture urban areas in Sub-Saharan Africa. Potts (2018) argues that 

in the past, a minimum of 5,000 inhabitants for urban areas was appropriate to exclude settlements 

in Africa that are ‘rural’ in terms of their employment profile. However, these ‘rural’ settlements now 

exceed the population threshold of 5,000 due to recent population growth. They are classified as 

‘urban’, although they did not experience a shift from agricultural to industrial activities, as is often 

presumed in theories on urbanisation (Potts, 2018). More fundamentally, Dorward et al. (2023) raise 

concerns regarding the population thresholds in DEGURBA in African contexts, given that the 

thresholds were initially designed and calibrated on settlements in the European Union and only later 

applied to the rest of the world. 

These debates regarding the global suitability of criteria are not specific to population-based 

definitions such as DEGURBA, but arise in any urban delineation approach. There are, for example, 

similar disagreements about the minimum emission threshold when delineating urban areas based on 

night-time lights. Urban categories are generally constructed as contiguous areas with sufficiently 

large light emission, but some scholars rely on a single global emission threshold (Ch et al., 2021; 

Florida et al., 2008), while others argue that different types of urbanisation across the world require 

different threshold values (Henderson et al., 2003). 

Nonetheless, even though globally consistent urban definitions entail complexities and face 

arbitrariness, it is clear that scientific and policy praxis requires such definitions as part of its analytical 

toolkit (Duranton, 2021; United Nations Statistics Division, 2019). They are necessary to monitor, for 

example, the SDGs on a global scale (Melchiorri et al., 2019) and enable globally comparable urban 

research on pressing issues such as segregation and urban sprawl. It is nevertheless crucial to 

recognise the broader policy and theoretical implications that arise from sensitivities to their criterion 

settings. An example of a policy implication is that policy programmes often use urban delineations to 

produce broader sets of statistics (Eurostat, 2016) and/or determine eligibility for funding. As slightly 

 
† Desakota zones are extensive densely populated regions, often situated along the corridor between major 
cities in Pacific Asia, characterised by a mixture of both agricultural and non-agricultural activities (McGee, 2013).  
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changing a threshold value can determine whether a settlement is classified as ‘urban’ or not, this can 

affect its eligibility for financial aid and consequently have a substantial impact on its inhabitants.  

An example of a theoretical implication is rooted in the observation that deciding on operational 

criteria inevitably involves making certain explicit or implicit assumptions about what constitutes ‘the 

urban’. However, urban definitions are – to some degree – social constructs that part-represent 

realities that have been experienced, observed, and embodied by those articulating them (Cottineau 

et al., 2024). This leads to what in philosophy is called the analytical or conceptual circularity problem 

(Humberstone, 1997). This problem arises when a loop exists where a concept's operational and 

theoretical definitions co-constitute each other. One aspect of this circularity in urban studies is that 

urban globalisation research is mainly dominated and subsequently shaped by specific researchers, 

institutions, and cities (Kanai et al., 2018)‡. In light of DEGURBA’s roots, it cannot be ruled out that, 

say, a Eurocentric bias is inserted – even unwittingly – in the theoretical-operational loop of what is 

purportedly a global exercise. Taking these outcomes at face value would thus reinforce our skewed 

understanding of the nature of urbanisation itself (Roy, 2009). Another theoretical implication stems 

from the consideration that a definition’s circulation across academia and in policymaking may be 

affected by its contextual setting. In case of DEGURBA, the definition is utilised in diverse applications, 

in part because it is developed by the European Commission and endorsed by the United Nations 

(Dijkstra et al., 2021). However, when applying a definition to other use cases, it is important to 

consider the underlying assumptions stemming from the definition’s original purpose (Cottineau et 

al., 2024). The DEGURBA delineations were, for instance, constructed to facilitate international 

comparison of the SDG indicators, which explains why urban areas are predominantly operationalised 

based on population data (Dijkstra et al., 2021). However, the assumption that population 

concentration is the defining feature of urbanity might be suboptimal in applications beyond this 

particular use case. A spatially-explicit sensitivity analysis of choices in delineation algorithms may 

help grasp whether, and if so, how urban definitions shape, incorporate, reflect, and reproduce policy 

frameworks and implicit theoretical assumptions.  

2.2 Spatially-explicit sensitivity analysis 

 

Although spatial sensitivity analyses have been applied in myriad geographical applications (e.g., Chen 

et al., 2013; Kocabas & Dragicevic, 2006; Lilburne & Tarantola, 2009), there are only few studies 

conducting spatially-explicit analyses in which a sensitivity index is calculated for each individual 

spatial unit. Şalap-Ayça et al. (2018) performed a spatially-explicit sensitivity analysis of a cellular-

automata-based urban growth model, and employed a meta-modelling technique to approximate the 

model’s response to changes in input values. This meta-model was applied at the local level to 

estimate the sensitivity for each spatial unit independently. Ligmann-Zielinska & Jankowski (2014) and 

Tang et al. (2018) both used a similar approach to quantify spatially-explicit sensitivity of input weights 

in multi-criteria analyses (MCAs). More specifically, Ligmann-Zielinska & Jankowski (2014) developed 

an integrated spatially-explicit uncertainty and sensitivity analysis (iUSA) to (1) quantify the variability 

in the spatial outcome of MCAs and (2) identify which input weights contribute most to this variability. 

Their framework consisted of three different steps. First, Monte Carlo simulations are used to sample 

values from the probability density functions of the input weights. Each combination of weight values 

represents a possible realisation of the MCA. Second, the different realisations are summarised 

geographically by calculating the average and the standard deviation of the values for each spatial unit 

 
‡ Bunnell and Maringanti (2010) discussed an example of this, which they call ‘metrocentricity’: the often-
unwitting assumption that large cities in the Global North represent a norm against which other cities can or 
should be benchmarked. 
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in the study area. Third and finally, a variance-based global sensitivity analysis is conducted to 

determine the partial contribution of each input weight to the total output variability (Ligmann-

Zielinska & Jankowski, 2014). This involves determining both first-order and total effect sensitivity 

indices by integrating the model equation (Saltelli et al., 2010).  

The iUSA framework has proven valuable in several spatial MCAs, including land suitability evaluation 

(Ligmann-Zielinska & Jankowski, 2014; Şalap-Ayça & Jankowski, 2016), landslide susceptibility 

modelling (Feizizadeh et al., 2014), and flood vulnerability evaluation (Feizizadeh & Kienberger, 2017). 

However, it cannot readily be applied to quantify spatially-explicit sensitivities in urban delineations 

due to inherent differences between spatial MCAs and urban delineation algorithms. Urban 

delineation algorithms are typically rule-based and include topological relationships or complex 

procedures relying on the value of surrounding units. It is consequently not feasible to perform a 

variance-based global sensitivity analysis, as this requires algorithms that allow integral calculus. In 

addition, the sources of variability in urban delineations are more diverse than in spatial MCAs. They 

often include a large variety of criteria (e.g., density threshold, contiguity rule, smoothing rule, etc.) 

with different levels of measurement (e.g., logical, continuous, discrete, etc.). Therefore, a spatially-

explicit sensitivity framework for urban definitions needs to be revised to allow greater flexibility to 

accommodate more complex criteria beyond continuous weight values. 

3 FRAMEWORK 

 

3.1 Spatially-explicit sensitivity framework 

 

We propose a spatially-explicit sensitivity framework specifically designed to quantify spatial 

variability in urban definitions. It is developed to be generally applicable to a wide range of delineation 

methodologies, regardless of whether it is a morphological or functional approach or resulting in an 

urban-rural dichotomy or multi-level classification (e.g., city, town, rural). The framework examines 

variability in the classification of individual spatial units at the finest granularity and consists of three 

different steps (see Figure 1): 

STEP 1 – The first step of the framework involves identifying the main criteria in a specific delineation 

algorithm that may affect the resulting urban boundaries. These criteria can comprise threshold 

values, contiguity rules, or any other implementation rule for which it is hard to find a clear-cut 

conceptual justification. 

STEP 2 – Next, alternative values are determined for each criterion. These alternative values are 

systematically combined to create a large set of alternative realisations of the definition. For example, 

if there are four different criteria with five alternative values each, 54 or 625 alternative realisations 

can be constructed. The number of alternative values and their range should be chosen in the context 

of the specificities of the definition, its complexity, and the available computing resources, while 

ensuring compliance with theoretical considerations (e.g., a minimum population threshold of 5 

inhabitants is, of course, theoretically untenable).  

STEP 3 – Afterwards, the sensitivity 𝑆 of each spatial unit is computed based on a measure of 

dispersion. Consistent unit classification across all realisations results in a sensitivity index of zero. 

When there is high dispersion in the classification – for example, covering both urban and rural 

categories – then the sensitivity index should also reach a larger value. Many urban delineation 

algorithms result in an ordinal outcome: a classification in city, town, and rural implies that ‘town’ is 

the category between ‘city’ and ‘rural.’ A potential measure of dispersion of ordered categorical data 
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is the inverse of 𝑙2 proposed by Blair & Lacy (2000), although other measures might be chosen as well. 

The sensitivity index 𝑆 can consequently be computed as: 

𝑆 = 1 − 𝑙2   𝑤𝑖𝑡ℎ   𝑙2 = √
𝑑2

𝑑2
𝑚𝑎𝑥

 (1) 

In Equation 1, 𝑑2 is a measure of ordinal concentration calculated by Equation 2:  

𝑑2 = ∑(𝐹𝑖 − 0.5)2

𝑘−1

𝑖=1

 (2) 

with 𝑘 the number of categories and 𝐹𝑖 the cumulative frequency of the 𝑖th category. 𝑑2
𝑚𝑎𝑥 represents 

the maximum concentration for any given number of categories and is calculated by Equation 3 (Blair 

& Lacy, 2000) §: 

𝑑2
𝑚𝑎𝑥 = (𝑘 − 1) ∗ 0.25 (3) 

The resulting sensitivity index 𝑆 is a continuous variable ranging from 0 to 1. A value of 0 represents a 

minimum dispersion and occurs when a location is consistently classified across all realisations. For 

example, New York is likely classified as ‘urban’ and the center of Greenland as ‘rural’ regardless of 

the criterion settings. On the contrary, 𝑆 = 1 indicates extreme polarisation in the realisations. If a 

particular location is classified as ‘rural’ in half the realisations and as ‘urban’ in the other half, then 𝑆 

will reach its peak value of 1. Values between 0 and 1 represent the relative dispersion of a set of 

realisations, proportional to the maximum dispersion with a fixed number of ordinal categories. For 

example, a value of 0.4 signifies that the set of realisations has 40% of the maximal possible dispersion 

𝑑2
𝑚𝑎𝑥, given the number of possible categories. However, it is crucial to note that a single sensitivity 

value can correspond to various class distributions. For example, a unit’s classification varying 

between ‘city’ and ‘town’ or between ‘town’ and ‘rural’ may yield similar sensitivity values. To 

determine how the classification of a unit varies exactly, one should look at the separate realisations.  

 
§ The maximum concentration is achieved when all observations are in one class. The cumulative frequency of 
any class (𝐹𝑖) is then either 0 or 1. Both 𝐹𝑖 = 0 and 𝐹𝑖 = 1 result in (𝐹𝑖 − 0.5)2 = 0.25. The maximum value of 
𝑑2 for 𝑘 classes is accordingly (𝑘 − 1) ∗ 0.25. For more information, see Blair & Lacy (2000). 
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The final output of the spatially-explicit sensitivity 

framework is a map with 𝑆 calculated for each spatial 

unit. This map serves as a starting point for an in-

depth examination of spatial sensitivity and 

geographical biases within the definition. The 

user/researcher can zoom in on specific areas with 

high levels of sensitivity and study the implications of 

changing a specific criterion in this area by reviewing 

a selection of alternative realisations**.   

While we take inspiration from the iUSA proposed by 

Ligmann-Zielinska & Jankowski (2014), there are 

three crucial differences to ensure compatibility with 

urban definitions. First, the iUSA framework relies on 

Monte Carlo simulations to vary the input criteria, 

while the framework proposed in this paper uses a 

systematic combination of user-determined 

alternative values. We choose this approach because 

it shares strong methodological parallels with other 

sensitivity analyses in the field of urban studies (see, 

for example, Cottineau et al., 2017; Dijkstra et al., 

2021; Statham et al., 2021; Taubenböck et al., 2022). 

Second, we measure sensitivity using an indicator of 

ordinal dispersion as the outcomes of urban delineations are typically ordered categories. The iUSA 

framework uses the standard deviation since MCAs generate continuous outcome values. The third 

and most significant difference is the absence of decomposing the total variability into the partial 

contribution of each input criterion. The proposed framework aims to uncover potential regional 

biases in urban definitions. This requires identifying the spatial units that are most sensitive to criteria 

tweaks, but does not demand the exact calculation of how much each criterion contributes to the 

outcome variability. The individual contribution of variation in each criterion to the sensitivity of a 

region is instead assessed by exploring a set of individual realisations (see Section 4 for concrete 

examples). 

3.2 Empirical application to DEGURBA  

 

To illustrate the potential of the spatially-explicit sensitivity framework, we apply it to the grid cell 

classification of DEGURBA (Dijkstra et al., 2021). It is important to emphasise that we do not want to 

criticise the specific criterion choices in this definition, but rather demonstrate how our proposed 

framework can uncover consequences of inherent assumptions and technical choices. The DEGURBA 

methodology classifies the cells of a 1 km² grid into three distinct categories based on the rules 

 
** Sensitivity analyses generally determine how variability in the output of the model can be apportioned to 
variation in model inputs (Saltelli et al., 2010). We do not aim to exactly apportion the variability in urban 
delineations (cf. output) to specific criteria (cf. model inputs). Instead, we explore the contribution of each 
criterion by exploring a set of alternative realisations. This type of analysis where the total variability is 
quantified, without exact determination of partial contribution of individual inputs is sometimes referred to as 
uncertainty analysis instead of sensitivity analysis (Saltelli et al., 2010). However, we opted for term sensitivity 
analysis in this context, as we are examining the contribution of individual criteria, just not by quantifying it, but 
by exploring a set of alternative realisations. 

Figure 1: Schematic representation of the spatially-
explicit sensitivity framework. 
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summarised below (see Figure 2). For more details about the DEGURBA methodology, readers can 

consult the official documentation (Dijkstra et al., 2021; European Commission, 2023; Eurostat, 2021). 

• Urban centres are clusters of cells (rook contiguity) with a minimum population density of  

1,500 inhabitants per km² of permanent land, and cells with a built-up density above a certain 

threshold. In addition, the total population in these clusters should be at least 50,000. Gaps 

in the urban centres are filled, and edges are smoothed with a majority rule. 

• Urban clusters are clusters of cells (queen contiguity) with a minimum population density of 

300 inhabitants per km² of permanent land and a minimum total population of 5,000 

inhabitants. Cells that belong to urban centres are removed from urban clusters. 

• Rural grid cells neither belong to an urban centre nor an urban cluster.  

Three different data sources are required to construct the grid cell classification: (1) a population grid, 

(2) a grid with built-up density, and (3) a grid representing the proportion of permanent land 

(European Commission, 2023). For the three data sources, we use the data products GHS-POP, GHS-

BUILT-S, and GHS-LAND with the estimates for 2020, respectively†† (European Commission, 2023). In 

this sense, we create a reconstruction of the level 1 grid classification, available under the SMOD layer 

on website of the Global Human Settlement Layer.  

3.2.1 Step 1: Identifying the criteria that may induce variability 

 

We identified five criteria in DEGURBA’s definition that are (to some extent) difficult to justify: (1) the 

minimum population density thresholds, (2) the minimum population size thresholds, (3) the built-up 

density threshold for urban centres, (4) the contiguity rules and (5) the smoothing procedure for urban 

centres. The minimum population density and size thresholds are the most apparent criteria in 

DEGURBA. Although these thresholds were determined as a trade-off between national urban 

definitions (Dijkstra et al., 2021), they are hard to conceptually justify from a global point of view, as 

exemplified by the controversies in the recent literature (see Section 2.1). There is also room for 

discussion regarding the urban centres’ built-up density threshold (Balk et al., 2021). The logic behind 

this threshold has, for example, been altered in the most recent versions of the DEGURBA 

methodology‡‡. Furthermore, urban centres are identified with rook contiguity, while urban clusters 

are identified with queen contiguity. The reason for this distinction is not clear (Statham et al., 2021). 

Gaps in urban centres are filled, and edges are smoothed using an iterative majority rule (Eurostat, 

2021). This smoothing procedure is hard to justify, as other algorithms exist to achieve similar 

objectives. 

 

 
†† We employed the most recent version of this data, published under the release ‘GHSL Data Package 2023’. All 
data sets are open-source and freely available at https://ghsl.jrc.ec.europa.eu/. For the land grid, data of 2018 
is employed, as this is the only available data on the GHSL data website. 
‡‡ In GHSL Data Package 2022, DEGURBA included a fixed minimum built-up density threshold of 50% (Schiavina 
et al., 2022). However, in GHSL Data Package 2023, a dynamically identified ‘optimal’ built-up density threshold 
is employed. This ‘optimal’ threshold corresponds to a minimum of 20% built-up density when employing the 
data products of epoch 2020 (Van Migerode et al., 2024). The ‘optimal’ built-up density threshold, as defined in 
GHSL Data Package 2023, is determined as the global average built-up density in clusters of cells (rooks 
contiguity) with at least 1,500 inhabitants per km² of permanent land and a minimum total population of 5,000 
inhabitants (for more information, see GHSL Data Package 2023, footnote 30 on page 51; European Commission, 
2023). 

https://human-settlement.emergency.copernicus.eu/ghs_smod2023.php
https://ghsl.jrc.ec.europa.eu/
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Figure 2: Workflow of DEGURBA’s grid classification (based upon the implementation rules in GHSL Data Package 2023; 
European Commission, 2023). 

3.2.2 Step 2: Constructing a set of alternative realisations 

 

For each criterion identified in Step 1, different alternative values are determined (see Table 1). The 

alternative values for the population thresholds are generated by multiplying the standard values with 

the following range [
1

2
,

1

1.75
,

1

1.5
,

1

1.25
, 1, 1.25, 1.5, 1.75, 2]. For the built-up density threshold, three 

values are considered: (1) the dynamically identified ‘optimal’ threshold§§, (2) a fixed threshold of 20% 

(‘optimal’ threshold in GHSL Data Package 2023), and (3) a fixed value of 50% (threshold used in GHSL 

Data Package 2022). All combinations of rook and queen contiguity are considered for the contiguity 

rules, ensuring that the rule for urban centres is at least as strict as the rule for urban clusters. In 

addition to the standard edge smoothing algorithm, one alternative smoothing rule is included, which 

entails applying an average moving window on the population grid (Henderson et al., 2021).   

Systematically combining the alternative values for the criteria yields 9 x 9 x 3 x 3 x 2 = 1458 alternative 

realisations of DEGURBA. The alternative realisations are computed on a global scale by using the 

 
§§ The ‘optimal’ built-up density threshold, as defined in GHSL Data Package 2023, is determined as the global 
average built-up density in clusters of cells (rooks contiguity) with at least 1,500 inhabitants per km² of 
permanent land and a minimum total population of 5,000 inhabitants (see GHSL Data Package 2023, footnote 
30 on page 51; European Commission, 2023). According to this official definition, the threshold is identified 
based on the population density of urban centres (UC_DEN = 1,500 inhabitants/km²), the population size of 
urban clusters (UCL_SIZ = 5,000) and the contiguity rule for urban centres (UC_CONT = rook). In the sensitivity 
calculations, we employ the same implementation, but dynamically identify the built-up threshold based on the 
combination of alternative UC_DEN, UCL_SIZ and UC_CONT values. The ‘optimal’ threshold is thus calculated as 
the global average built-up density in clusters of cells (with UC_CONT contiguity) with at least UC_DEN 
inhabitants per km² of permanent land and a minimum total population of UCL_SIZ inhabitants. 
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flexurba package, an open-source R package that allows reconstructing the classification of DEGURBA 

with customised criteria (Van Migerode et al., 2024). The computations are performed on a server 

with 32 cores and 256 GB RAM. The code for the analyses in this paper is available under: 

https://doi.org/10.48804/VFAGOQ. 

Table 1: Alternative values for the criteria in DEGURBA. 

Criterion Alternative values #  

DENSITY 
THRESHOLD 

Urban 
centre 

750 857 1000 1200 1500 1875 2250 2625 3000 

9 
Urban 
cluster 

150 171 200 240 300 375 450 525 600 

SIZE 
THRESHOLD 

Urban 
centre 

25000 28571 33333 40000 50000 62500 75000 87500 100000 

9 
Urban 
cluster 

2500 2857 33333 4000 5000 6250 7500 8750 10000 

BUILT-UP 
THRESHOLD 

dynamically identified 
“optimal” threshold 

fixed value of 20% fixed value of 50% 3 

CONTIGUITY 
RULES 

rook contiguity for both 
urban centres  

and urban clusters 

rook contiguity for  
urban centres and 

queen contiguity for  
urban clusters 

queen contiguity for both  
urban centres  

and urban clusters 
3 

SMOOTHING 
PROCEDURES 

After classification: gaps > 15 km² 
are filled, edges are smoothed  

by a 3x3 majority rule 

Before classification: smooth 
population grid with an  

7x7km average moving window 
2 

The standard criterion values in DEGURBA are underlined. 

3.2.3 Step 3: Quantifying the sensitivity of each spatial unit 

 

The last step of the framework involves 

calculating the sensitivity for each spatial 

unit, which in DEGURBA’s grid classification 

implies the 1 km² grid cells. The sensitivity 

of a grid cell is quantified by the indicator 

of ordinal dispersion (as described in 

Section 3.1). Figure 3 illustrates the value 

of 𝑆 for several class distributions of 

DEGURBA. For example, if a cell is classified 

as urban centre in 60% of the realisations, 

as urban cluster in 30% of the realisations, 

and as rural cell in the remaining 10% 

(example 4 in Figure 3), then 𝑆 is calculated 

as follows.  

𝑑2 = ∑(𝐹𝑖 − 0.5)2

3−1

𝑖=1

= (0.60 − 0.50)2 + ((0.60 + 0.30) − 0.50)
2

= 0.17 (4) 

𝑑2
𝑚𝑎𝑥 = (3 − 1) ∗ 0.25 = 0.5 (5)   

Figure 3: Illustration of sensitivity value for different class distributions. 

https://doi.org/10.48804/VFAGOQ
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𝑆 = 1 − √
0.17

0.5
= 0.4169  (6) 

The value of 0.4169 signifies that the dispersion of the grid cell in the set of alternative realisations is 

41.69% of the maximal dispersion possible with three ordinal categories. The maximum dispersion is 

achieved when a cell is classified as urban centre in 50% of the classifications, and as rural cell in 50% 

of the classification (example 7 in Figure 3). The sensitivity index should thus be interpreted in relative 

terms. Example 2 and 3 in Figure 3 illustrate the fact that different class distributions can have the 

same sensitivity value. In interpreting the results, it is thus relevant to complement the final sensitivity 

map with a set of alternative realisations, and class distribution histograms, as shown in Figure 3.  

4 RESULTS 

 

We applied the spatially-explicit sensitivity 

framework to the definition of DEGURBA and 

computed the sensitivity of each grid cell on 

a global scale based on the 1458 different 

realisations. More than 93% of informative 

cells*** have 𝑆 ≤  0.1. These relatively low-

sensitive cells are mainly located in sparsely 

populated areas or the core of large cities 

with high population densities. 

Unsurprisingly, cells with larger sensitivities 

are generally located at the urban fringe and 

in regions with average population densities. 

These more highly sensitive cells are, 

however, not equally distributed across the 

world (see Figure 4). Sensitive cells are 

clustered in certain regions and specific types 

of urbanisation patterns. For a more detailed 

exploration of the sensitivity map, the 1458 

alternative realisations, and the class distribution histograms of all individual grid cells at a world scale: 

https://platform-dou.snl.ees.kuleuven.be. 

In the following sections, we focus on three specific case studies to illustrate how the observed 

sensitivity in a region relates to underlying urbanisation processes. We also reveal what specific 

criteria might be at the root of this sensitivity by exploring a set of alternative realisations. In Section 

4.1 and 4.2, we discuss two regions with a relatively high sensitivity: the Red River Delta (RRD; 

Vietnam) and the urbanised area around Dallas, Fort Worth, and Arlington (DFWA; Texas, USA), 

respectively. In Section 4.3, we focus on Vienna (Austria), a city with comparatively less sensitivity. 

Figure 5 visualises the sensitivity maps and three alternative realisations of DEGURBA in the three case 

studies. There are notable differences in the urban delineations in the RRD and the area around DFWA 

when varying criterion settings in DEGURBA, while delineations around Vienna are more robust to 

small changes.  

 
*** Non-informative cells are cells with no population in a window of two cells around it and cells that are 
classified as water in all realisations. This ensures oceans and uninhabited mountainous areas, large forest, 
deserts, etc. are not included in our results.  

Figure 4: (A) Global distribution of sensitivity and (B) Histogram of 
sensitivity values of informative cells. 

https://platform-dou.snl.ees.kuleuven.be/
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 Figure 5: Sensitivity and three grid classifications in the Red River Delta, the urbanised area of Dallas – Fort Worth – Arlington and 
the city of Vienna. Grid classification D-E-F with density thresholds 1,000 and 200, and size thresholds 33,333 and 3,333, G-H-I with 
density thresholds 1,500 and 300, and size thresholds 50,000 and 5,000, and J-K-L with density thresholds 2,250 and 450, and size 
thresholds 75,000 and 7,500 for urban centres and urban clusters, respectively. For grid classifications D to L, other criteria were 
kept constant as follows: rook contiguity for urban centres and queen contiguity for urban clusters, the standard smoothing 
procedure of DEGURBA, and a fixed built-up threshold of 20%.  
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4.1 Sensitivity in the Red River Delta (Vietnam) 

 

The RRD, consisting of the low-lying fertile plains around Hanoi, is among the regions with the highest 

sensitivity across the world: the average and median value of 𝑆 in this area††† is 0.26 and 0.25, 

respectively. More than 22% of the cells have 𝑆 > 0.3, housing approximately 1 million people or 4% 

of the total population in the entire RRD. The classification of the grid cells varies across all categories, 

with some cells changing directly between urban centre and rural cell, thus skipping the middle 

category of urban cluster. This sensitivity pattern can be understood based on the morphological 

character and geohistorical context of this region. After the introduction of Doi Moi policies in Vietnam 

in 1986, the RRD transformed from predominantly agriculturally-oriented into densely populated with 

mixed-use development (van Horen, 2005). These policies aimed to transform Vietnam into an open, 

market-oriented economy and had significant effects on the RRD – especially along the Hanoi-

Haiphong axis – with the emergence of small industries and craft villages, diversification in 

employment, and seasonal migration to the major cities (Labbé, 2016). The in situ urbanisation of the 

previous agrarian society led to a desakota landscape of heavily populated cores surrounded by 

intensively cultivated agricultural land (McGee, 2000, 2013). This landscape, containing both urban 

and rural elements (Cohen, 2004), is sensitive to minor variations in population thresholds, as can be 

seen in Figure 5D, G and J.  

Apart from the population thresholds, the classification of the desakota landscape is also sensitive to 

other criteria. For instance, adapting the contiguity rule for urban centres significantly increases the 

extent of and population in urban centres (see Figure 6A and B). With rook contiguity, approximately 

10 million people live in urban centres, while with queen contiguity, this becomes more than 12.5 

million. This sensitivity can again be explained by the morphological patterns in the RRD. The region 

has significant local variations in population density with densely populated cores and sparsely 

populated agricultural lands. As a result, neighbouring high-density cells might only share a corner and 

no full edge and are consequently only considered contiguous when using the queen’s contiguity rule. 

Interestingly, this sensitivity to the urban centres’ contiguity rule occurs in the RRD and other large 

delta areas, such as the Ganges River Delta (India/Bangladesh) and the Nile Delta (Egypt; see Figure 

6C). It appears that the specific morphological pattern that is abundant in river deltas with fertile lands 

in combination with recent population growth is disproportionally affected by changing this seemingly 

minor criterion in DEGURBA.  

 
††† Boundary of the RRD according to General Statistics Office Vietnam (2021). Quảng Ninh Province and Cát Bà 
Island were excluded because these areas are occasionally considered to be part of the North-eastern region of 
Vietnam.  
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Figure 6: Grid classification in the RRD with (A) rook contiguity for urban centres and queen contiguity for urban clusters and 
(B) queen contiguity for both urban centres and urban clusters. Other criteria were kept constant as follows: density 
thresholds 1,500 and 300, and size thresholds 50,000 and 5,000 for urban centres and urban clusters, respectively, the 
standard smoothing procedure of DEGURBA, and a fixed built-up threshold of 20%. (C) Global sensitivity to changing the 
contiguity rule for urban centres from rook to queen. 

4.2 Sensitivity in the urbanised area of DFWA (USA) 

 

There is also significant variation in urban delineations in the urbanised area of DFWA‡‡‡, with an 

average and median 𝑆 of 0.24 and 0.23. More than 16% of the cells have 𝑆 > 0.3, collectively 

containing more than 200,000 inhabitants or 3% of the total population in the DFWA area. The region’s 

morphology is mainly dominated by highways and suburbanisation (Liu et al., 2019) and has a strong 

decentralised and polycentric character (McMillen, 2001). Apart from the Central Business Districts of 

Dallas and Fort Worth, there are numerous other high-density centres, including the technological 

business district of Richardson and the Stemmons industrial corridor (Shukla & Waddell, 1991). This 

polycentric development results in significant fragmentation of the urban landscape when employing 

high population thresholds in DEGURBA. For example, Arlington and Fort Worth are considered part 

of a single urban centre in Figure 5E, while they are separated in H and K. 

Not only the population thresholds but also the built-up density threshold in DEGURBA is critical in 

the DFWA area. Its value determines the degree to which urban centres are fragmented. For example, 

the large commercial and industrial area between Irving and Dallas contains many buildings but almost 

no residential population. With a relatively low built-up density threshold of 20% (Figure 7A), the site 

 
‡‡‡ Boundary according to the US Census Bureau (2022). 
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is included when identifying urban centres, thus connecting the cores of Irving and Dallas. However, 

an increased built-up density threshold of 50% (Figure 7B) no longer sees this site added to urban 

centres and generates smaller and more fragmented urban centres. This effect of the built-up density 

threshold occurs not only in the DFWA area but in most cities in the United States (see Figure 7C). In 

Tulsa and Jacksonville, the population in urban centres decreases with more than 60% when 

employing a built-up density threshold of 50% in comparison to 20%. Nevertheless, the effect of 

changing the threshold is almost negligible in other parts of the world. North American cities – 

generally containing more low-density development – are thus disproportionally sensitive to this 

criterion in DEGURBA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Grid classification in the DFWA area with (A) a fixed built-up density threshold of 20% and (B) a fixed built-up density 
threshold of 50% for urban centres. Other criteria were kept constant as follows: density thresholds 1,500 and 300, and size 
thresholds 50,000 and 5,000 for urban centres and urban clusters, respectively, the standard smoothing procedure of 
DEGURBA, and rook contiguity for urban centres and queen contiguity for urban clusters. (C) Global sensitivity to changing 
the built-up density threshold from 20% to 50%. 

4.3 Sensitivity in the city of Vienna 

 

The city of Vienna, with a mean and median 𝑆 of 0.11 and 0, respectively, exhibits less sensitivity to 

criteria variation in DEGURBA compared to the RRD and the area of DFWA. Despite the remarkable 

median value of 𝑆 equal to zero, 12% of the cells in the city proper have 𝑆 > 0.3. These cells are mainly 

situated along the green belt at the edge of the city and house only 0.6% of Vienna’s population. This 

implies that few inhabitants would be affected by potential variation in the delineation. The sensitivity 

of these cells can be attributed to the variation in the smoothing procedure: the cells may not belong 
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to an urban centre with standard edge smoothing, while they are included with the alternative 

population smoothing procedure. 

The relatively low sensitivity of Vienna can be understood through the physical surroundings of the 

city – the west side of the city is delimited by green and hilly areas, serving as a natural frontier –, and 

its historical urban development. With the fall of the Iron Curtain in 1989, Vienna experienced a 

population growth and drastic shift in planning culture. There was a strong focus on inner-city 

development and reutilisation of abandoned land, and new office complexes were constructed at the 

edge of the city – but within the city proper. The efficiency of the comprehensive inner-city 

development policy was eased by the fact that Vienna has its own politically autonomous region 

(European Investment Bank, 2018; Hatz, 2008). 

Vienna is not the only city exhibiting relatively low sensitivity. Other examples are the agglomeration 

of São Paulo (Brazil), Tehran (Iran) and Kinshasa–Brazzaville (DRC – Congo Brazzaville). The periphery 

of these urban areas is sensitive to changes, which is logical and perhaps almost inevitable. However, 

apart from this, the DEGURBA methodology performs generally well in these regions (see Figure 8).   

Figure 8: Sensitivity map in the agglomeration of (A) São Paulo, (B) Tehran and (C) Kinshasa–Brazzaville.  

5 DISCUSSION 

 

We proposed a spatially-explicit sensitivity framework to examine potential regional bias in urban 

delineation algorithms and employed it to analyse the implications tied to specific criterion choices in 

DEGURBA at a fine spatial granularity. The resulting sensitivity map gives an overview of the set of 

alternative realisations and serves as exploration tool; it guides us to potentially interesting regions. 

By zooming in on these regions and exploring a set of alternative realisations, we can assess the link 

between sensitivity and the underlying urban morphological pattern and its drivers. In that way, we 

gain a deeper understanding of the implications of (explicit and implicit) assumptions tied to certain 

criterion choices. Many of these assumptions in DEGURBA are inherently linked to its intended 

purpose to facilitate international comparison of the SDG indicators. Nonetheless, it is crucial to bear 

in mind these assumptions when employing the DEGURBA delineations for other applications, for 

example when computing accessibility to ‘urban’ services (Weiss et al., 2018).   

The results demonstrated that different regions in the world are indeed sensitive to (different types 

of) small changes in DEGURBA’s algorithm and that the distribution of highly sensitive cells is not 

equally distributed across the world. Certain regions and specific types of urbanisation exhibit higher 

sensitivity than others, potentially pointing to geographical skewness in the definition. For instance, 

the results showed that changing the contiguity rule for urban centres in DEGURBA disproportionally 

affects certain regions, specifically large delta regions including the Ganges River Delta, Nile Delta, and 
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Red River Delta. In other parts of the world – including Europe – the effect of changing the contiguity 

rule is rather limited. However, this contiguity rule is actually a practical consequence of working with 

rectangular grid cells rather than an inherent aspect of urbanisation. The developers of DEGURBA 

might not have been aware of the implications of this rather technical criterion, because the definition 

was initially developed in the European context – where the choice of contiguity is less impactful. This, 

in a way, demonstrates that knowledge production about ‘the urban’ may be partly shaped by specific 

urban realities experienced by those producing the knowledge. 

The results also revealed that cities in North America are disproportionally influenced by changing the 

built-up density threshold for urban centres. According to DEGURBA’s documentation, the built-up 

criterion is introduced to reduce fragmentation and avoid generating multiple urban centres for a 

single ‘city’. The European Commission (2023, p. 51, footnote 30) specify that the rule is explicitly 

established for “a few countries with relatively low-density urban development and a strong 

separation of land use functions”. It thus appears that DEGURBA incorporates the specific urbanisation 

pattern that is abundant in North American cities, as the definition contains a rule to ‘better’ delineate 

these types of urban agglomerations. The fact that DEGURBA does not include such a targeted rule 

for urbanisation patterns in other parts of the world – although this would be possible theoretically 

speaking§§§ – might point to an implicit bias towards North American urbanisation patterns.  

The point here is not to criticise the specific definition of DEGURBA. Instead, DEGURBA serves as an 

example to illustrate that, because there is no single ‘true’ definition of urbanisation, every urban 

definition inevitably requires making specific choices and assumptions about the outlook of ‘the 

urban’, which may, unwittingly, reflect specific types of urban patterns more effectively than others. 

Given the challenging task of developing globally consistent urban delineations, the DEGURBA method 

is, in fact, well-conceived and contributed significantly to the field of urban studies. There are also 

strong theoretical arguments to be made for the implementation choices in DEGURBA in light of its 

objective of monitoring the SDGs. However, it is important to keep in mind the spatial sensitivities tied 

to its delineation criteria, especially when employing DEGURBA beyond its intended application. 

Applying the spatially-explicit sensitivity framework to other urban definitions is an interesting avenue 

for future research. The framework is designed generically and can thus be applied to reveal implicit 

assumptions in other definitions and their potential implications. Furthermore, future studies might 

extend the framework by integrating the decomposition of sensitivity into the partial contribution of 

each criterion. Currently, we do not quantify the exact individual contribution of each, as is often done 

in other sensitivity analyses. Variance-based global sensitivity analyses can be employed to achieve 

this (Saltelli et al., 2010), but these generally require integral calculus, which is not feasible for rule-

based urban delineation approaches that include topological relationships or complex smoothing 

procedures. However, future work may develop innovative and clever ways to tackle this issue. 

6 CONCLUSION 

 

There is no broadly shared agreement on how to define or delineate urban areas. As a consequence, 

every urban definition inevitably requires making certain decisions and assumptions that are 

challenging to justify from a global point of view. These may lead to spatially heterogeneous 

sensitivities that embody regional skewness in the definition. Against this backdrop, we developed a 

spatially-explicit sensitivity framework to make the implications of certain criterion choices both 

 
§§§ We do not suggest that DEGURBA should be altered in any way. We realise that introducing other rules such 
as a maximum employment in the agricultural sector may not be feasible due to data availability issues, neither 
desirable as it can lead to interference when monitoring certain SDG indicators (Dijkstra et al., 2021). 
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legible and visible, and uncover potential geographical biases in urban delineation approaches. 

Applying the framework to the definition of DEGURBA revealed two specific points. First, implications 

tied to the contiguity criterion for urban centres are most pronounced in specific delta regions 

including the Ganges River Delta, Nile Delta, and Red River Delta. The developers of DEGURBA may 

not have been aware of these implications as the definition is initially designed for settlements in the 

European Union, where the influence of varying the contiguity rule is rather limited. Second, DEGURBA 

includes a specific rule to reduce fragmentation in regions with low-density urban development, a 

pattern that is abundant in the North American context. As such, the definition explicitly incorporates 

North American urbanisation pattern, while no targeted rules exist for urbanisation patterns that are 

common in other world regions. Both findings demonstrate, in a way, that urban definitions inevitably 

reflect and are shaped by the urban context and situated knowledge of those articulating them, even 

though this is likely not intentional. Essentially, this reiterates the broader conceptual circularity 

problem, where the definition of a theoretical concept (the ‘urban’) and its operationalisation 

(DEGURBA) are intertwined and might even reenforce one another. 

7 DATA AVAILABILITY  

 

The code and data needed to replicate the analysis are published under the following doi: 

https://doi.org/10.48804/VFAGOQ. Interactive visualisation of the results is provided on the following 

platform: https://platform-dou.snl.ees.kuleuven.be. 

8 FUNDING ACKNOWLEDGEMENT 

 

The research for this paper was supported by Research Foundation Flanders (FWO) under PhD number 

11P4224N; by patronage funding provided to KU Leuven for carrying out scientific research into urban 

processes and change; and partly by Internal Funds KU Leuven grant number STG/20/021. 

9 REFERENCES 

 

 Angel, S., Lamson-Hall, P., Galarza, N., & Blei, A. (2018). Our Not-So-Urban World. The Marron Institute 

of Urban Management. https://marroninstitute.nyu.edu/papers/our-not-so-urban-world 

Asian Development Bank. (2019). Fostering Growth and Inclusion in Asia’s Cities. 

https://doi.org/10.22617/FLS190070-3 

Balk, D., Leyk, S., Montgomery, M. R., & Engin, H. (2021). Global Harmonization of Urbanization 

Measures: Proceed with Care. Remote Sensing, 13(24), 4973. 

https://doi.org/10.3390/rs13244973 

Blair, J., & Lacy, M. G. (2000). Statistics of Ordinal Variation. Sociological Methods & Research, 28(3), 

251–280. https://doi.org/10.1177/0049124100028003001 

Bosker, M., Park, J., & Roberts, M. (2021). Definition matters. Metropolitan areas and agglomeration 

economies in a large-developing country. Journal of Urban Economics, 125, 103275. 

https://doi.org/10.1016/j.jue.2020.103275 

https://doi.org/10.48804/VFAGOQ
https://platform-dou.snl.ees.kuleuven.be/


 20 

Bunnell, T., & Maringanti, A. (2010). Practising Urban and Regional Research beyond Metrocentricity. 

International Journal of Urban and Regional Research, 34(2), 415–420. 

https://doi.org/10.1111/j.1468-2427.2010.00988.x 

Ch, R., Martin, D. A., & Vargas, J. F. (2021). Measuring the size and growth of cities using nighttime 

light. Journal of Urban Economics, 125, 103254. https://doi.org/10.1016/j.jue.2020.103254 

Chen, Y., Yu, J., & Khan, S. (2013). The spatial framework for weight sensitivity analysis in AHP-based 

multi-criteria decision making. Environmental Modelling & Software, 48, 129–140. 

https://doi.org/10.1016/j.envsoft.2013.06.010 

Cohen, B. (2004). Urban Growth in Developing Countries: A Review of Current Trends and a Caution 

Regarding Existing Forecasts. World Development, 32(1), 23–51. 

https://doi.org/10.1016/j.worlddev.2003.04.008 

Cottineau, C., Batty, M., Benenson, I., Delloye, J., Hatna, E., Pumain, D., Sarkar, S., Tannier, C., & 

Ubarevičienė, R. (2024). The role of analytical models and their circulation in urban studies 

and policy. Urban Studies, 00420980241237410. 

https://doi.org/10.1177/00420980241237410 

Cottineau, C., Hatna, E., Arcaute, E., & Batty, M. (2017). Diverse cities or the systematic paradox of 

Urban Scaling Laws. Computers, Environment and Urban Systems, 63, 80–94. 

https://doi.org/10.1016/j.compenvurbsys.2016.04.006 

Dijkstra, L., Florczyk, A. J., Freire, S., Kemper, T., Melchiorri, M., Pesaresi, M., & Schiavina, M. (2021). 

Applying the Degree of Urbanisation to the globe: A new harmonised definition reveals a 

different picture of global urbanisation. Journal of Urban Economics, 125, 103312. 

https://doi.org/10.1016/j.jue.2020.103312 

Dorward, N., Fox, S., Statham, T., & Wolf, L. J. (2023). A spatial-demographic analysis of Africa’s 

emerging urban geography. Environment and Urbanization, 35(2), 310–327. 

https://doi.org/10.1177/09562478231190735 

Duranton, G. (2021). Classifying locations and delineating space: An introduction. Journal of Urban 

Economics, 125, 103353. https://doi.org/10.1016/j.jue.2021.103353 

European Commission. (2023). GHSL Data Package 2023 (JRC133256; Publications Office of the 

European Union). https://ghsl.jrc.ec.europa.eu/documents/GHSL_Data_Package_2023.pdf 

European Investment Bank. (2018). Why Vienna gets high marks. https://doi.org/10.2867/9448 

Eurostat. (2016). Urban Europe—Statistics on cities, towns and suburbs. 

https://ec.europa.eu/eurostat/web/products-statistical-books/-/ks-01-16-691 

Eurostat. (2021). Applying the Degree of Urbanisation—A methodological manual to define cities, 

towns and rural areas for international comparisons—2021 edition. 

https://ec.europa.eu/eurostat/web/products-manuals-and-guidelines/-/ks-02-20-499 



 21 

Feizizadeh, B., Jankowski, P., & Blaschke, T. (2014). A GIS based spatially-explicit sensitivity and 

uncertainty analysis approach for multi-criteria decision analysis. Computers & Geosciences, 

64, 81–95. https://doi.org/10.1016/j.cageo.2013.11.009 

Feizizadeh, B., & Kienberger, S. (2017). Spatially explicit sensitivity and uncertainty analysis for 

multicriteria-based vulnerability assessment. Journal of Environmental Planning and 

Management, 60(11), 2013–2035. https://doi.org/10.1080/09640568.2016.1269643 

Florida, R., Gulden, T., & Mellander, C. (2008). The rise of the mega-region. Cambridge Journal of 

Regions, Economy and Society, 1(3), 459–476. https://doi.org/10.1093/cjres/rsn018 

General Statistics Office Vietnam. (2021). Statistical Yearbook of 2020. 

Hatz, G. (2008). Vienna. Cities, 25(5), 310–322. https://doi.org/10.1016/j.cities.2008.02.002 

Henderson, J. V., Nigmatulina, D., & Kriticos, S. (2021). Measuring urban economic density. Journal of 

Urban Economics, 125, 103188. https://doi.org/10.1016/j.jue.2019.103188 

Henderson, M., Yeh, E. T., Gong, P., Elvidge, C., & Baugh, K. (2003). Validation of urban boundaries 

derived from global night-time satellite imagery. International Journal of Remote Sensing, 

24(3), 595–609. https://doi.org/10.1080/01431160304982 

Humberstone, I. L. (1997). Two Types of Circularity. Philosophy and Phenomenological Research, 57(2), 

249–280. https://doi.org/10.2307/2953718 

Kanai, J. M., Grant, R., & Jianu, R. (2018). Cities on and off the map: A bibliometric assessment of urban 

globalisation research. Urban Studies, 55(12), 2569–2585. 

https://doi.org/10.1177/0042098017720385 

Kocabas, V., & Dragicevic, S. (2006). Assessing cellular automata model behaviour using a sensitivity 

analysis approach. Computers, Environment and Urban Systems, 30(6), 921–953. 

https://doi.org/10.1016/j.compenvurbsys.2006.01.001 

Labbé, D. (2016). Critical reflections on land appropriation and alternative urbanization trajectories in 

periurban Vietnam. Cities, 53, 150–155. https://doi.org/10.1016/j.cities.2015.11.003 

Ligmann-Zielinska, A., & Jankowski, P. (2014). Spatially-explicit integrated uncertainty and sensitivity 

analysis of criteria weights in multicriteria land suitability evaluation. Environmental 

Modelling & Software, 57, 235–247. https://doi.org/10.1016/j.envsoft.2014.03.007 

Lilburne, L., & Tarantola, S. (2009). Sensitivity analysis of spatial models. International Journal of 

Geographical Information Science, 23(2), 151–168. 

https://doi.org/10.1080/13658810802094995 

Liu, X., Pan, Q., King, L., & Jin, Z. (2019). Analysing the changes of employment subcentres: A 

comparison study of Houston and Dallas. Urban Studies, 56(12), 2532–2548. 

https://doi.org/10.1177/0042098018789554 



 22 

McGee, T. G. (2000). The urban future of Vietnam reconsidered. J Ritsumeikan Geogr Soc, 12, 1–18. 

McGee, T. G. (2013). The Emergence of Desakota Regions in Asia: Expanding a Hypothesis. In N. 

Brenner (Ed.), Implosions /Explosions: Towards a Study of Planetary Urbanization (pp. 121–

137). JOVIS. https://doi.org/10.1515/9783868598933-010 

McMillen, D. P. (2001). Nonparametric Employment Subcenter Identification. Journal of Urban 

Economics, 50(3), 448–473. https://doi.org/10.1006/juec.2001.2228 

Melchiorri, M., Pesaresi, M., Florczyk, A. J., Corbane, C., & Kemper, T. (2019). Principles and 

Applications of the Global Human Settlement Layer as Baseline for the Land Use Efficiency 

Indicator—SDG 11.3.1. ISPRS International Journal of Geo-Information, 8(2), 96. 

https://doi.org/10.3390/ijgi8020096 

Moreno-Monroy, A. I., Schiavina, M., & Veneri, P. (2021). Metropolitan areas in the world. Delineation 

and population trends. Journal of Urban Economics, 125, 103242. 

https://doi.org/10.1016/j.jue.2020.103242 

Potts, D. (2018). Urban data and definitions in sub-Saharan Africa: Mismatches between the pace of 

urbanisation and employment and livelihood change. Urban Studies, 55(5), 965–986. 

https://doi.org/10.1177/0042098017712689 

Roy, A. (2009). The 21st-Century Metropolis: New Geographies of Theory. Regional Studies, 43(6), 

819–830. https://doi.org/10.1080/00343400701809665 

Şalap-Ayça, S., & Jankowski, P. (2016). Integrating local multi-criteria evaluation with spatially explicit 

uncertainty-sensitivity analysis. Spatial Cognition & Computation, 16(2), 106–132. 

https://doi.org/10.1080/13875868.2015.1137578 

Şalap-Ayça, S., Jankowski, P., Clarke, K. C., Kyriakidis, P. C., & Nara, A. (2018). A meta-modeling 

approach for spatio-temporal uncertainty and sensitivity analysis: An application for a cellular 

automata-based Urban growth and land-use change model. International Journal of 

Geographical Information Science, 32(4), 637–662. 

https://doi.org/10.1080/13658816.2017.1406944 

Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., & Tarantola, S. (2010). Variance based 

sensitivity analysis of model output. Design and estimator for the total sensitivity index. 

Computer Physics Communications, 181(2), 259–270. 

https://doi.org/10.1016/j.cpc.2009.09.018 

Schiavina, M., Melchiorri, M., Pesaresi, M., Politis, P., Freire, S., Maffenini, L., Florio, P., Ehrlich, D., 

Goch, K., Tommasi, P., & Kemper, T. (2022). GHSL Data Package 2022 (JRC129516; 

Publications Office of the European Union). 

https://ghsl.jrc.ec.europa.eu/documents/GHSL_Data_Package_2022.pdf 



 23 

Shukla, V., & Waddell, P. (1991). Firm location and land use in discrete urban space: A study of the 

spatial structure of Dallas-Fort worth. Regional Science and Urban Economics, 21(2), 225–253. 

https://doi.org/10.1016/0166-0462(91)90035-L 

Statham, T. A., Wolf, L. J., & Fox, S. (2021). Identifying urban areas: A new approach and comparison 

of national urban metrics with gridded population data. 

https://doi.org/10.31235/osf.io/abvc6 

Tang, Z., Zhang, H., Yi, S., & Xiao, Y. (2018). Assessment of flood susceptible areas using spatially 

explicit, probabilistic multi-criteria decision analysis. Journal of Hydrology, 558, 144–158. 

https://doi.org/10.1016/j.jhydrol.2018.01.033 

Taubenböck, H., Droin, A., Standfuß, I., Dosch, F., Sander, N., Milbert, A., Eichfuss, S., & Wurm, M. 

(2022). To be, or not to be ‘urban’? A multi-modal method for the differentiated measurement 

of the degree of urbanization. Computers, Environment and Urban Systems, 95, 101830. 

https://doi.org/10.1016/j.compenvurbsys.2022.101830 

Uchida, H., & Nelson, A. (2009). Agglomeration Index: Towards a New Measure of Urban 

Concentration. World Bank. https://openknowledge.worldbank.org/handle/10986/9039 

United Nations Population Division. (2019). World Urbanization Prospects. The 2018 Revision. 

https://population.un.org/wup/Publications/ 

United Nations Statistics Division. (2019). United Nations Expert Group Meeting on Statistical 

Methodology for Delineating Cities and Rural Areas. 

https://unstats.un.org/unsd/demographic-social/meetings/2019/newyork-egm-

statmeth.cshtml 

US Census Bureau. (2022). TIGER/Line Shapefile of Urbanized Areas 2020 [Dataset]. 

van Horen, B. (2005). Hanoi. Cities, 22(2), 161–173. https://doi.org/10.1016/j.cities.2005.01.006 

Van Migerode, C., Poorthuis, A., & Derudder, B. (2024). Flexurba: An open-source R package to flexibly 

reconstruct the Degree of Urbanisation classification. Environment and Planning B: Urban 

Analytics and City Science, 23998083241262545. 

https://doi.org/10.1177/23998083241262545 

Weiss, D. J., Nelson, A., Gibson, H. S., Temperley, W., Peedell, S., Lieber, A., Hancher, M., Poyart, E., 

Belchior, S., Fullman, N., Mappin, B., Dalrymple, U., Rozier, J., Lucas, T. C. D., Howes, R. E., 

Tusting, L. S., Kang, S. Y., Cameron, E., Bisanzio, D., … Gething, P. W. (2018). A global map of 

travel time to cities to assess inequalities in accessibility in 2015. Nature, 553(7688), Article 

7688. https://doi.org/10.1038/nature25181 

Wineman, A., Alia, D. Y., & Anderson, C. L. (2020). Definitions of “rural” and “urban” and 

understandings of economic transformation: Evidence from Tanzania. Journal of Rural Studies, 

79, 254–268. https://doi.org/10.1016/j.jrurstud.2020.08.014 



 24 

Yang, Q., Xu, Y., Tong, X., Hu, T., Liu, Y., Chakraborty, T. C., Yao, R., Xiao, C., Chen, S., & Ma, Z. (2023). 

Influence of urban extent discrepancy on the estimation of surface urban heat island intensity: 

A global-scale assessment in 892 cities. Journal of Cleaner Production, 426, 139032. 

https://doi.org/10.1016/j.jclepro.2023.139032 

 


