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EXTENDED ABSTRACT 

 

The concept of quality of life has evolved significantly over time, moving beyond economic well-being and life 

expectancy to encompass a broader range of factors. It is now defined as the degree of satisfaction individuals derive from 

their social and physical environments (Mulligan, Carruthers, & Cahill, 2004). This comprehensive approach emphasizes 

both individual and societal well-being, integrating quality of life indicators into public policy to assess the holistic effects 

of decisions on daily life. Quality of life is viewed as a location-specific economic good that varies by region (Gillingham 

& Reece, 1979; Wingo, 1973), and it includes urban amenities—natural elements like favorable weather and human-

made features such as cultural institutions and public services. Additionally, social factors, including safety and tolerance, 

are crucial in quality of life assessments (Diamond & Tolley, 1982; Rosen, 1979). This multidimensional view influences 

household and business location decisions, shaping urban development (Mulligan et al., 2004; Mulligan & Carruthers, 

2011; Shapiro, 2006). The incorporation of overlooked factors into analysis has fostered deeper insights, and 

advancements in machine learning are enhancing the study of quality of life, particularly regarding health-related 

elements. A World Health Organization paper utilized a decision tree framework to identify key variables impacting life 

expectancy and quality of life, based on 25 factors related to health, environment, economy, and demographics observed 

in 2013. Similar studies have explored the relationship between clinical conditions and health issues, considering factors 

like socioeconomic status and infrastructure. Some researchers have expanded their focus to include aspects like urban 

development and climate action, suggesting they also affect quality of life. However, there is limited literature in this 

broader area, underscoring the need for further investigation into the relationship between quality of life and less obvious 

influencing factors, especially given the constraints of using a limited number of variables. 

The absence of more granular indicators, both in terms of geographical scope and specific characteristics, has led most 

existing studies on quality of life to concentrate on multivariate analyses of aggregate spatial dimensions, such as NUTS-

1 and NUTS-2 regions. Conversely, some research tends to be overly generalized, failing to offer a nuanced 

implementation in both characteristic and spatial terms. Additionally, other studies remain broad, merely outlining the 

methodology for applying machine learning within a spatial context. The focus on quality of life is particularly pertinent 

today, as numerous public policies utilize this concept as a benchmark to monitor the existence of uniform quality 

standards. Identifying the factors that significantly impact this indicator is crucial for addressing territorial disparities, 

which have become especially pronounced in the current historical context due to a convergence of global economic 

crises, rising political and economic tensions, the need to manage migration flows and promote integration, and the 

repercussions of the recent COVID-19 pandemic.  

This paper is designed to furnish decision-makers with the pertinent information required to intervene effectively in 

specific territories, promoting greater alignment across the area or its particular characteristics while addressing the 

limitations identified in the existing literature. It seeks to explore the relationships between quality of life and a diverse, 

more granular dataset, employing machine learning (ML) models to identify the key drivers contributing to increasing 

territorial disparities and preventing the establishment of uniform quality standards. Unlike the previously discussed 

literature, which tends to isolate territorial disparities based on a single feature, this paper collects a comprehensive set of 

heterogeneous variables across a more detailed spatial dimension (NUTS-3 level, or Italian provinces). To achieve this, 

a combination of data from certified institutional sources and web scraping techniques has been utilized. Furthermore, 

this paper aims to develop a decision-making tool for policymakers through decision tree representations, ensuring 

enhanced explainability. More specifically, the approach trains machine learning models to identify the key characteristics 

relevant for distinguishing differences in quality of life. This is represented by a composite indicator known as the Life 

Quality Index (LQI), which, by design, aggregates several macro-categories and serves as a benchmark to address 

territorial disparities across various aspects of life. The proposed methodology is neutral, as it avoids any assumptions of 

functional dependence between the collected objective characteristics and the target variable, LQI. Furthermore, the 

interpretability of the machine learning model and the representation of results using decision trees allow these findings 

to be applicable across diverse territorial contexts. The insights gained can guide decision-makers in developing strategies 

to enhance the quality of life in similar settings, even if they are situated in different geographical areas. The immediate 
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interpretability of the results makes them compelling and hard to dispute, as they can be easily recognized and compared 

with citizens' perceptions in specific provinces. In this paper, we have focused on the LQI (Life Quality Index) across 

Italian provinces, as derived from Il Sole 24 Ore's annual survey. The LQI measures the quality of life as perceived by 

citizens and establishes a ranking of various Italian provinces. Its primary purpose is to provide researchers and 

policymakers with insights into how perceived quality of life varies spatially, both within and among provinces, and over 

time. The annual updates to the LQI ranking often spark significant debate across the country, as they highlight the 

noticeable disparities between regions. This paper provides to planners and decision-makers with easily interpretable 

results. Our research seeks to identify the primary drivers contributing to increasing territorial disparities and inconsistent 

quality standards across Italian provinces. To achieve this objective, we examine the interplay between perception, which 

underpins the LQI (an index that aggregates distinct macro-categories), and the objective, disaggregated data drawn from 

diverse geographical, thematic, and political contexts. By employing machine learning approaches, we assess the impact 

of variables related to territorial and societal development on the perceived quality reflected by the LQI. Additionally, we 

compare the hierarchies of the most significant indicators across various provinces. 
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