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A new empirical approach to identify local housing markets (LHM's) is proposed, which focuses 

on the spatial correlation between local house price indices constructed from repeat sales data. It 

extends the work of Pryce (2013) who claimed that if housing in different locations are perfect 

substitutes, their house price indices should be perfectly correlated over time.  Repeat sales data 

for house prices in Tel Aviv during 1998 – 2014 are used to construct house price indices for 

almost 100 census tracts. These price indices are used to define LHMs, the number of which 

varies inversely with the pairwise correlation cut-off, and with the degree of spatial contiguity. 

Results point to considerable spatial heterogeneity in house price movement. This belies the 

popular impression that the Tel Aviv housing market is relatively homogeneous, characterized 

by expensive housing and uniform house price movements.   
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1. Introduction 

Defining local housing markets (LHM) is conceptually simple, but practically difficult. 

Conceptually, areas A and B belong to the same LHM if residing in A and B are perfect 

substitutes. In the nature of things, A and B are proximate and even contiguous. They are perfect 

substitutes when amenities in A and B are identical, and when their housing qualities are 

identical. Under these circumstances unit house prices in A and B should be the same. The 

problem is that housing is not homogeneous for physical, environmental and social reasons. 

Moreover, housing characteristics and amenities are imperfectly observed in practice. The 

empirical problem of defining LHMs has much in common with defining capital submarkets. 

According to capital asset pricing theory, assets belong to the same submarket if their market risk 

is the same. The measurement of market risk has been the focus of research as well as much 

controversy for more than half a century (Cuthbertson and Nitzsche, 2008). 

Historically, interest in defining LHM's has been concerned with 'housing submarkets' and 

'housing market segmentation'. These were invariably local in nature and geographically defined. 

Early work dates back to Fisher and Fisher (1954) and Grigsby (1963) who considered the 

housing market as a set of quasi-independent submarkets with dynamics captured by local 

household movement and price changes. Central to this approach was the assumption of 

heterogeneity of structural (physical) and socio-economic attributes of housing units. This 

approach was eventually superseded by the AMM (Alonso-Mills-Muth) model, which 

conceptualized housing markets in terms of a trade-off between accessibility to the central 

business district and housing space. The AMM model was rooted in the assumption of 

homogenous housing units yielding housing services over time and tending to long run 

equilibrium. Eventually this neo-classical framework was extended by hedonic theory which 

accommodated heterogeneity of dwellings attributes within a unitary market (Galster 1996). 

Given these antecedents, the identification of LHM's has invariably been concerned with  

estimating hedonic house prices for these exogenously defined areas. Areas constitute an LHM if 

their hedonic prices differ from standard reference prices (Goodman 1981).  In this respect, the 

willingness to pay more for physical and socio-economic attributes (such as better schools or 

access to amenities) within given geographical boundaries, constitutes membership of an  LHM  

in a 'weak',  de facto sense.  It also implies that the attributes of dwellings or their environments 
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are crucial in determining the LHMs to which they belong. In this vein, studies have focused on 

dwelling sizes (Bajic 1985) and dwelling types (Allen et al 1995). Several such studies (Basu and 

Thibodeau 1998, Gillen, Thibodeau and Wachter 2001, Tu, Sun and Yu 2007) allow for spatial 

autocorrelation in their house price regressions.     

Membership of LHM's can alternatively be defined in a “strong” sense. In this case, consumer 

preferences for housing express themselves directly though prices rather than indirectly through 

locational and spatial attributes (Pryce 2013), and houses belong to the same LHMs when their 

prices are perfectly positively correlated, induced by perfects substitution. According to Pryce, 

houses that are perfect substitutes may have heterogeneous attributes.   

In practice, weak LHM membership arises when hedonic prices in different locations are the 

same. Because hedonic house price models typically explain between 50 and 70 percent of the 

variance of house prices, weak LHM membership is generally inconsistent with strong LHM 

membership, and strong LHM membership does not imply weak membership (Appendix 1). 

House prices may be perfectly correlated within LHMs despite the fact that their hedonic prices 

differ, and if their hedonic prices happen to be the same, house prices within LHMs may even be 

poorly correlated.     

A further dichotomy concerns the derivation of the boundaries of LHMs.  In many studies LHM 

boundaries are imposed exogenously. For example, Palm (1979), Schnare and Stryk (1976) and 

Watkins (2001) use exogenously defined spatial units such as postcodes and census tracts. Israel 

hedonic house price studies invariably use exogenously derived administrative boundaries 

('statistical areas') to capture neighborhood or environmental effects (Borukhov et al1978, 

Gabriel 1984, Gat 1996, Sayag 2012).  Hwang and Thill (2009) use 'fuzzy' clustering where 

buildings and spatial units may belong to more than one LHM. A variation on this theme 

involves identifying LHM attributes rather LHM geometries. This allows for observing the 

dynamics of urban processes. Grinberger and Felsenstein (2017) for example, ascribe synthetic 

socio-economic attributes to residential buildings. They compare the prices of dwellings sold in 

these buildings with their expected prices generated from their attributes. They cluster these 

differences to identify ‘hot spots’ of urban change. Positive differences are used to indicate 

processes of urban changes such as gentrification while negative differences indicate downward 

mobility.    
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Alternatively, LHM boundaries may be left to emerge through modeling and statistical 

techniques. In this case, the data determine the geography of LHMs. Dale-Johnson (1982) and 

Watkins (1999) have used factor analysis and principal components methods to stratify LHMs. 

Using transactions data for Santa Clara County and Glasgow, they identify 10 and 8 homogenous 

market segments respectively. Goodman and Thibodeau (1998) and  Bourassa et al (1999) 

compare hedonic house prices after controlling for amenities and housing characteristics. In 

these studies geographical boundaries are modeled rather than imposed. Geographical 

boundaries are considered the starting units of the analysis and are then aggregated up to the 

level of submarkets based on the significance of hedonic price differences across the units. 

Goodman and Thibodeau (1998) use hierarchical methods to analyze the correspondence 

between LHMs and school districts in Dallas, and decompose differences between LHMs in 

terms of price effects and hedonic effects.   

Table 1 Taxonomy of LHM Studies  

 Imposed 

 

Emergent 

Strong              
 Goodman and Thibodeau (2007) 

  

Pryce (2013)
 

Weak  

 

Fisher and Fisher (1954)
 

Bajic (1985) 

Allen et al (1995)
 

Adair (1996) 

Maclennan and Tu (1996)
 

Bhattacharjee (2016) 

Bourassa (1999, 2003) 

Goodman and Thibodeau (1998),  

Helbich et al (2013) 

 

 

Cross–classifying LHM membership ('weak' and 'strong') with LHM geometry ('imposed' or 

'emergent') suggests a taxonomy of studies (Table 1). For example in Goodman and Thibodeau 

(1998) willingness to pay for better schooling constitutes a (weak) LHM whose geometry is 

emergent rather than imposed. Extending this approach, Goodman and Thibodeau (2007) 

compare a-spatial (price-determined) and non-contiguous  housing submarkets with spatially 
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contiguous submarkets, using transaction data for Dallas, Texas. The spatial submarkets emerge 

by combing adjacent block groups and school districts. A-spatial markets are created by 

combining price per sq foot with property size. They find that the two approaches yield similar 

results raising questions relating to the need for capturing spatial variation in house prices. 

Helbich et al use a 4-step data driven methodology to derive 'weak' data-driven LHM's.  They 

generate area-wide surfaces of marginal prices using regression and interpolation in the first 

stage. The variability in the resultant surfaces (maps) is reduced in the next stage by principle 

component analysis. The principle components are subsequently clustered using a dedicated 

algorithm (see also Royuela and Duque 2013). Finally, the number and spatial coherence of the 

emergent submarkets is tested using the out-of-sample prediction error of a hedonic pricing 

model.  In similar vein, Keskin and Watkins (2017) compare different housing submarket 

partitioning methods particularly highlighting the role of subjective, qualitative identification by 

real estate experts. Their results show that subjective identification tends to perform as well as 

the alternatives (imposing or clustering boundaries) and that in the absence of appropriate micro 

data, the agent based methods for housing submarkets definition can be considered. 

In contrast, Bourrassa et al (1999) use a three-step approach  to generate LHM's. (Table 1). 

Initially they calculate factor scores for 18 housing characteristics. They then apply cluster 

analysis to these factor scores (accounting for 80 percent of the variance) to form hypothesized 

LHMs. Finally, they estimate cross-section hedonic house price regressions for each 

hypothesized LHM in which (self-assessed) house prices are regressed on their factor scores. The 

hypothesized LHMs are expected to have different hedonic house prices.  

The Bourassa-type approach however is not without criticism. First, the list of potential attributes 

comprising the LHM is incomplete. It excludes noise, pollution, crime, school quality and many 

other characteristics. Second, 20 percent of the variance of these characteristics is excluded by 

design. Third, since the characteristics include house prices, there is an obvious endogeneity 

problem in the hedonic regressions. Fourth, the residuals of the hedonic regressions are assumed 

to be spatially uncorrelated.  Fifth, there is no spatial spillover between submarkets. In a related 

paper, Bourassa et al (2003) show that LHMs matter for house prices in Auckland. They test 

whether LHMs can improve out-of-sample hedonic predictions, and compare the effect of 

alternative definitions of LHMs on the accuracy of hedonic predictions.  Specifically, realtor 
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generated LHMs are contrasted with statistically generated LHMs consisting of dwellings that 

are similar in characteristics but not necessarily spatially contiguous. Their results underscore 

that the definition of LHMs depends on their purpose. Subsequently, Bourassa, Cantoni and 

Hoesli (2007) showed that the specification of submarket variables in hedonic price models 

outperforms geostatistical and lattice models.   

The spatial dependence ignored by Bourassa et al (1999) is the key focus of Bhattacharjee et al 

(2016). Here too the authors struggle with housing heterogeneity in a Portuguese city. They 

introduce spatial dependence in the estimation of factor scores, and they compare spatial 

econometric with geographically weighted regression for estimating hedonic house prices. 

However, their conceptual framework is essentially similar to that in Bourassa et al (1999, 2003).   

As mentioned, Pryce (2013) attaches importance to strong LHM membership. He also 

determines LHM boundaries emergently in terms of the spatial correlation in house prices.  

Whereas Bourassa et al focus on levels of hedonic house prices, Pryce focuses on changes in 

house prices. A practical problem with Pryce’s approach is that it requires panel data on house 

prices. In the absence of such data, Pryce used hedonic methods to construct synthetic panel data 

for Glasgow. It is obvious that synthetic panel data are subject to error and are likely to generate 

results different to genuine panel data.  

This paper extends and generalizes the Pryce approach in which LHMs are defined in the strong 

sense, and their boundaries are emergent rather than imposed. We make several contributions. 

First, we suggest some generalizations to Pryce’s methodology. Second, we show that if 

locations A and B belong to the same LHM, house prices in A and B should be perfectly 

positively correlated over time. Third, in the absence of panel data for house prices, we use 

repeat sales data for Israel to calculate the spatial correlation matrix between intra-city house 

prices. Because repeat sales do not occur in each period, we use a variant of the repeat sales 

methodology proposed by Bailey, Muth and Nourse (1963) to construct heterogeneous house 

price indices by location (Peng 2012). The advantage of repeat sales data is that they obviate the 

need for hedonic pricing. We show that if repeat sales house price indices between locations A 

and B are perfectly positively correlated, A and B belong to the same submarket. We provide an 

empirical application using repeat sales data for house prices in Tel Aviv.     
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2. Pryce Theory 

According to Pryce (2013), if the cross-price elasticity of demand (CPED = ) between goods i 

and j is infinite, their cross-price elasticity of price (CPEP = ) should be 1. We show that this 

claim is true under restrictive conditions. However, if CPED is infinite, we show that the spatial 

correlation over time between pairs of house price indices is expected to approach 1.  

We extend Pryce’s 2-good model for goods i and j to include a third good (k). The equilibrium 

condition for good i is:   

)1();,,();,,( YPPPSZPPPD kjiikjii   

where D denotes demand, S denotes supply, P denotes prices, and Z and Y are common shift 

variables for demand and supply respectively. It may be shown that Pryce’s cross-price elasticity 

of price (ij) is: 
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where e.g. Dij > 0 denotes the effect of Pj on the demand for i.  Pryce omitted Sij < 0 in the 

numerator of the first term in equation (2). He also assumed that  = 0 because good k does not 

feature in his model, and because he implicitly assumed that supply and demand shifters Y and Z 

don’t change. Since Sii > 0 and Dii < 0, ij is positive when  = 0. The first component of  is 

positive if house prices increase in j and k. The second component is positive if the term in large 

brackets is negative.   Hence, Pryce over-estimates CPEP if  < 0. In general, however, it is 

difficult to quantify the bias in Pryce’s CPEP.  

The first term in equation (2) may be rewritten in terms of price elasticities () of supply and 

demand: 
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Equation (4), which is expected to be positive, states that CPEP varies directly with CPED (
D

ij ), 

and tends to 1 as CPED (
D
) tends to infinity. However, since  is not zero Pryce's contention is 

incomplete. In what follows we show instead that as CPED tends to infinity prices become 

perfectly correlated over time.  

CPED and Correlations 

Continuing with a 3-good set-up we loglinearize supply and demand as follows: 

)6(lnlnlnlnln
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where time periods are labelled by t, and u and v are spatially uncorrelated iid random variables. 

In equations (5) and (6) P refers to price indices in locations i, j and k. The CPED parameters are 

represented by β,  and , where β exceeds  and  because own price elasticities exceed cross 

price elasticities. Also,  exceeds  and . The partial equilibrium solution for house prices in i 

is: 
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CPEPij and CPEPik are represented by the coefficients of lnPj and lnPk, which vary directly, as 

expected, with CPED via i and i. The CPEPs are less than one because i + i and i + i are 

less than i + βi. However, CPEP tends to one as CPED tends to infinity, as claimed by Pryce. 

For example, if CPEDij = , i = βi =  in which case 1




ii

ii




, and equation (7a) simplifies to 

lnPit  = lnPjt because the coefficients of lnPk, lnZ, lnY and u - v are zero. Hence, the relative price 

of i and j is independent of Z, Y u and v because these goods (houses) are perfect substitutes in 

consumption.   

The partial equilibrium solution for Pk is: 
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The CPEPs are less than one because k + k and k + k are less than k + k.  

The general equilibrium (reduced form) solutions for house prices are: 

                                                                                    

                                                           

where the s and s are defined in Appendix 2. These reduced form parameters have a spatial 

structure in which each parameter depends on the structural parameters for locations i, j and k. 

Notice also that the reduced form residuals () have a spatial structure too. Despite the fact that 

w is spatially uncorrelated, the reduced form residuals (i) are spatially autocorrelated.  

Equations (8) imply that the covariance between log prices for i and j is: 
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The correlation between log house prices for i and j is defined as: 
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Substitution of equation (9a) into the numerator of equation (10), and equations (9b) and (9c) 

into the denominator, defines the relationship between rij and the structural parameters, including 

CPED. Since house prices in i and j are affected by common factors Z and Y, but with different 

loadings (i1, j1 and i2, j2), the correlation is expected to be less than 1. Also, the correlation 

between i and j is less than 1. For both of these reasons house prices in i and j are expected to 

be imperfectly correlated.  
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Appendix 2 demonstrates that when goods i and j are perfect substitutes in consumption, the 

correlations between their prices tends to unity. This result stems from the fact that under perfect 

substitution equation (7a) implies Pit = Pjt.    

Measurement Error and Differences between Correlations 

If house prices are measured with error (p) such that            and pi and pj are 

independent, the correlation between house prices is attenuated and equals: 

)13(
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(ln
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If the correlation is calculated over T periods, Fisher’s test implies that correlation is 

significantly less than r* when: 
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at p = 0.05 (one-tail). Note that smaller absolute differences between r and r* are more likely to 

be significantly different as r* tends to 1.  

Table 2 Measurement Error and 95% Confidence Intervals for Correlations  

r*    σp 

0.995 0.9876 0.0037 

0.99 0.975 0.0076 

0.95 0.88. 0.039 

0.9 0.769 0.0818 

 

Table 2 uses equation (14) to generate (one sided) 95% confidence intervals for measured 

correlations when the true correlation is r*, and uses equation (13) to determine the implicit 

value of measurement error (p) that accounts for the difference between these correlations. For 

example, if the true correlation is 0.95, the correlation at the 95% confidence interval is 0.88. 

Measurement error of 3.9% (σp = 0.039) would account for the difference between these 

correlations. As expected, the confidence interval varies inversely with r* and tends to zero as r* 
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tends to 1. If r* = 0.995 a correlation of 0.9876 is at the confidence interval, which is generated 

by measurement error of only 0.37%.     

In summary, we apply Pryce's conceptual model to the spatial correlations between house prices 

rather to their CPEPs. These correlations are calculated using location specific house price 

indices constructed from repeat sales data, which finesses the need to take account of hedonics.   

3. Repeat Sales 

Repeat sales data obviate the need for estimating hedonics under the assumption that the 

attributes of housing do not change over time (Bailey, Muth and Nourse 1963). If unobserved 

housing attributes follow a random walk process, Case and Shiller (1989) suggested that the 

weight on housing should vary inversely with the repeat sales interval because attributes are 

more likely to change with the passage of time. We have reservations about this weighting 

proposal. First, the price of land that is implicit in house prices is not directly affected by 

attributes. Therefore, the proportionate effect of an attribute on house prices will be smaller the 

more expensive the housing.  Second, if homeowners undertake major restructuring on purchase, 

the random walk model will be incorrect. In any case, Nagaraja, Brown and Wachter (2014) 

show that results for BMN and CS are correlated 0.999969 in Minneapolis. In what follows, we 

ignore complications associated with changing attributes.   

Let t denote the average log change in house prices purchased in period  and sold in period t > 

 in some location.  In a 3-period setup, the data reveal 12, 23 and 13. Let * denote log 

changes in the repeat sales index (RSI). Using the fact that 
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log changes in RSI between periods 1 and 2, and periods 2 and 3: 
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where nt is the number of repeat sales in period t of housing purchased in period . For example, 

the second term in equation (15a) refers to information on the repeat sales index (RSI) during 

period 1 embodied in 13.  The solutions to equations (15) for the RSIs are: 
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If 1 = 2 = ½  (nt = n/3), 12 = 3, 23 = 4 and 13 = 7, equations (16) imply 4,3 *

23

*

12   as 

expected. If 13 = 8 33.4,33.3 *

23

*

12    as expected. These numbers replicate the solutions to 

equations (6) in BMN, and demonstrate that BMN's regression approach is equivalent to solving 

simultaneous equations such as equation (15). 

When there are T periods the principles are the same. The restriction
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Notice that t-1t and before do not feature in (17).  Notice also that with the passage of time RSIs 

require updating historically to take account of new data on repeat sales, especially those with 

large repeat sales intervals.  

Equations (17) may be vectorized as: 

)18(*  BA   

where * is T-1 vector with elements *tt+1, A is a T-1xT-1 asymmetric matrix with 1 along the 

diagonal and positive off-diagonal elements depend on wj,  is ½T(T-1) vector with elements 
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j, and B is a T-1x½T(T-1) matrix with elements depending on wj. In the case of equations 

(15): 
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If the rank of A is full, equation (17) solves for all T-1 elements of *. Notice that identification 

of * does not require that transactions took place in all the ½T(T-1) combinations of nj. If the 

rank is R < T-1 equation (18) solves for only R elements of *. These solutions and their 

standard deviation should be the same as their BMN counterparts. Since the T-1 elements of * 

are inferred from N repeat sales, the degrees of freedom equal N – (T-1). In most applications N 

is very large relative to T because the data are national or for cities. Matters are different, 

however, when space is disaggregated to the sub-city level as discussed below.   

4. Data 

We use transactions price data to construct repeat sales indices for house prices by statistical area 

in Israel. These administrative data are recorded when house buyers pay stamp duty according to 

the value of the transaction in the conveyance. These data are available electronically since 1998 

and include about 1.3m transactions of which about a quarter involve repeat sales. The 

distribution of the interval between repeat sales (Figure 1) is censored from both sides. It is 

censored from the left because the data exclude repeat sales of properties bought before 1998, 

and it is censored from the right because it excludes repeat sales that occurred after 2014. 

Consequently, Figure 1 creates the misleading impression that turnover is rapid and that most 

repeat sales occur within about 7 years. Because the data commence in 1998, the number of 

repeat sales naturally increases over time (Figure 2). Unfortunately, uncensored data on the 

natural history of repeat sales are not available, and it will take many years until they are. 

Ben-Tovim, Zussman and Yachin (2014) used these data to construct repeat sales indices for two 

locations (center and periphery), and show that BMN and CS methodologies generate almost 

identical results. They also show that between 1998 and 2008 housing was less expensive 

according to repeat sales methods than according to hedonic methods, but the opposite was true 

subsequently (until 2012).  
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Figure 1 Time Interval between Repeat Sales 
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Figure 2 Repeat Sales by Year 

 

Israel is divided by the Central Bureau of Statistics into over 3000 statistical areas (SAs), or 

census tracts, of which about 1800 are populated. Since these SAs are designed to be roughly 

equally populated, they are geographically smaller in more densely populated areas. SAs in large 

cities are generally small, homogenous administrative units with roughly 3000 inhabitants. In Tel 

Aviv city, average SA size is 0.306 sq. km. in contrast to the Tel Aviv metropolitan average of 

0.819 sq. km.
1
. The frequency distribution of the number of repeat sales nationwide during 1998 

- 2014 by statistical area (Figure 3) is almost exponential. The vast majority of SAs have up to 

200 repeat sales, but some have as many as 600 or more.     

  

                                                           
1
 While the average SA size in other large cities is larger than in Tel Aviv, for example Jerusalem (0.627 sq.km.), 

Haifa (0.614 sq. km.)  and Beer Sheva (1.894 sq. km.) these are still small areas.  
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Figure 3 Number of Repeat Sales by Statistical Area 
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5. Identifying Housing Submarkets in Tel Aviv  

The city of Tel Aviv comprises 169 statistical areas, which are mapped in Figure 4. On average, 

there were about 170 repeat sales per statistical area during 1998 – 2015. Figure 5 plots the 

repeat sales indices (RSI's) for Tel Aviv as a whole. House prices nationwide had peaked in 

1998-9 having doubled in real terms since 1989 in the wake of mass immigration from the 

former Soviet Union, which increased the population of Israel by 20 percent. During 1989 – 

2007 house prices decreased nationally by about 25 percent. Subsequently, house prices began to 

increase nationally, surpassing their previous peak by 2010, and they are currently almost double 

what they were in 1989. These national trends are reflected in Figure 5. However, house prices in 

Tel Aviv have grown faster than the national average.    

 

Figure 4 Map of Tel Aviv Statistical Areas 
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In Figure 5 the large increase in house prices in 2014 is most probably induced by data 

censoring. It will take several years before it will be possible to determine whether this 

development was genuine or whether it was induced by censoring.  

 

Figure 5 Repeat Sales Price Index: Tel Aviv 

 

We construct RSIs for almost S = 100 statistical areas in Tel Aviv (see Fig 4) excluding those for 

which the number of repeat sales is less than 50. Since T = 17 these data are used to estimate 16 

elements of * for each SA. In 4 cases some elements could not be calculated because matrix A 

in equation (18) was not full rank.  Next, we calculate ½S(S - 1) pairwise correlations between 

the log price indices (lnP* not *) generated by *. These correlations are expected to be 

spatially clustered because SAs that are closer to each other are more likely to share common 

amenities such as accessibility, crime, and services. The distribution for these correlations is 

presented in Figure 6. It has an extended right tail and most of the correlations are below 0.5. 

Despite measurement error in RSIs, many correlations exceed 0.8. Since measurement error 
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attenuates correlations away from 1, Table 1 suggests that these correlations may be regarded as 

being close to 1. 

Figure 7 presents these correlations in a heat map.  The pixels in Figure 7 refer to 

pairwise correlations, which are clustered according to their size on a raster generated density 

surface.  Along its diagonal, the correlations equal 1 by definition. The dominant color in Figure 

7 is yellow, indicating that the vast majority of correlations are small. However, the purple off-

diagonal patches indicate clusters of high correlation. If these statistical clusters belong to the 

same LHM they should be spatially clustered. If highly correlated statistical areas happen to be 

remote from each other they cannot belong to the same LHM.  

Figure 6: Distribution of Pairwise Correlations between Repeat Sales Indices 
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Figure 7: Heat Map of Pairwise Correlations 

 

Figure 8 maps the locations where house prices are not only highly correlated, but they are also 

spatially clustered. We identify about 15 LHMs generated with no regard to contiguity. The red 

zones indicate statistical areas where the correlations with other statistical areas exceed 0.8. 

Recall from Table 2 that such correlations might not be significantly smaller than correlations 

that exceed 0.9. In Figures 9 and 10 contiguity restrictions are imposed, and correlation cut-offs 

varied.  With contiguity, the number of LHMs naturally declines as correlation cut-offs are 

successively raised from 0.55 to 0.85  (Figure 9).  Conversely, if we relax the contiguity 

requirement to include 2
nd

 order (neighbor's neighbors) and 3
rd

 order (neighbors of neighbor's 

neighbors) contiguity, the number of LHMs increases (Figure 10).    
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Figure 8 Local Housing Markets:  r  > 0.8, no contiguity restrictions* 

 

*Red zones indicate statistical areas where pairwise correlations with other statistical areas exceed 0.8. 
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Figure 9 Local Housing Markets: (a) r > 0.55, (b) r > 0.65, (c) r > 0.75, (d) r > 0.85 with 

contiguity* 

 

 

*Red zones indicate statistical areas where pairwise correlations with other statistical areas meet the benchmarks 

outlined in the caption. 

 

a

 

b

 

c

 

d
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Fig 10: Correlations with contiguity relaxed: (a) 1
st
 order neighbors,  (b) 2

nd
 order neighbors, (c)  3

rd
 order neighbors* 

 

  

*Orange shading denotes level of correlation   

a 
b

 

c
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Conclusions 

Identifying local housing markets is important for planners, realtors, property tax assessment, 

mortgage evaluation and price prediction. In this paper, we therefore propose a new empirical 

approach to identifying LHMs, which focuses on the spatial correlation between local house price 

indices constructed from repeat sales data.  

We extend the insight of Pryce (2013) on strong membership of local housing markets, who claimed 

that if houses in different locations are perfect substitutes, their house price indices should be 

perfectly correlated over time. We therefore focus on changes in house prices indices rather than 

levels of hedonic house prices, as in Bourassa et al (1999). We implement Pryce's method by using 

repeat sales data in the absence of panel data on house prices.  

Results for almost 100 statistical areas in Tel Aviv illustrate the highly heterogeneous nature of its 

housing market. Similar heterogeneity is reported  by Goetzmann and Speigel (1997) who use a 

repeated sales method for San Francisco to  decompose a city-wide  housing returns  index into its 

neighborhood constituents. Strictly speaking, strong LHM membership requires that the correlations 

should be 1 and locations should be contiguous. These strict criteria imply that there are no LHMs in 

Tel Aviv. In practice, correlations are expected to be less than 1 due to measurement error. For 

example, there are two LHMs when the correlation exceeds 0.85 and locations are required to be 

contiguous. The number of LHMs naturally varies inversely with the degree to which house prices in 

locations that belong to the same LHM are expected to be correlated, and varies directly with the 

order of contiguity of these locations. When these criteria are relaxed the number of LHMs increases 

towards 20.  

Our purpose is not to declare the number of LHMs in Tel Aviv. Instead, it is to illustrate empirically 

the use of repeat sales data to identify LHMs in the strong sense. However, we are surprised by the 

heterogeneity of house prices across Tel Aviv. The popular impression that Tel Aviv constitutes a 

relatively homogeneous housing market in which housing is expensive and house prices move 

together if not in unison, is not supported by the data. Our results show the opposite; the correlations 

between house prices by statistical areas are, on the whole, rather low. The vast majority of 

correlations are less than 0.5 and some are even negative. In the absence of studies for other cities, 

we do not know whether Tel Aviv is unusual. 
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Our approach may be sensitive to the modifiable area unit problem (MAUP) (Fotheringham and 

Wong 1991) since the spatial units in the analysis defined by the Central Bureau of Statistics (SA's) 

might influence the outcome. This critique applies to the large literature using census tract data. 

However, because the statistical areas are geographically very small (0.306 sq km.on average), we 

do not think that the MAUP is a serious problem. In principle, we could carry out robustness checks 

by redefining statistical areas by their geographical coverage to see whether MAUP matters. The 

alternative is to use data on individual dwellings rather than spatial panel data. In the absence of 

panel data for dwellings, the methodology of Bourassa et al (1999) is the default, which has 

numerous problems.  We think that the use of repeat sales data by census tract, which are 

geographically small, strikes a sensible compromise between methodological imperfections induced 

by MAUP and imperfections related to hedonic pricing.  
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Appendix 1: The Relation between Weak and Strong LHM Membership 

The hedonic house price models for locations A and B are: 

                            

                            

where C1 and C2 denote hedonic characteristics, and u and v are iid. R
2
 for these models are rA

2
 and 

rB
2
. If A = B and A = B housing in A and B belong weakly to the same LHM.  

Average house prices in A and B in period t are denoted by PAt and PBt. The correlation between 

them over T periods is: 

    
         

            
 

A and B belong strongly to the same LHM when rAB = 1. Suppose, for simplicity, the first two 

moments of C1t and C2t are the same in A and B, so that the hedonic component of house prices in 

period t, denoted by Ht, is the same in A and B. Hence: 

                          

It may be shown that the panel correlations rA and rB equal their time series counterparts.  Since 

  
                  and   

                , the standard deviations for average prices over 

T periods are                  and                . Substituting these results into rAB 

implies: 

            
       

      
  

In the absence of unobserved common factors cov(uv) = 0, in which case the correlation between 

average prices over T periods equals the product of the panel correlations for the hedonic price 

models. If R
2
 for the hedonic price regressions are of the order of 0.6, rAB = 0.6. Weak membership 

of LHMs does not imply strong membership and vice-versa. Matters would be different if rA and rB 

equaled 1.   
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When there are unobserved common factors                        > 0, where ruv denotes the 

correlation between u and v. Since, for example,               
         , the general solution 

for rAB may be rewritten as: 

                    
       

   
 
   

If ruv < 1 then rAB must be less than 1. If ruv = 1 then rAB = 1 even when ra  = rb = 0. When rA = rB = r,  

the solution simplifies to: 

                   

If, for example, R
2
 = 0.6 in the hedonic price regressions and ruv = 0.25 then rAB = 0.7.   

 

Appendix 2: Definitions of  and  Coefficients in Equations (8) 

For good i: 

     
 

 
                    

    
 

 
                    

                                      

    
   

 
            

                                    

                                  

                                  

                                   

For good j: 
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For good k: 

     
 

 
                    

    
 

 
                    

                                      

    
   

 
              

                                  

                                  

                                   

Asymptotes of  and  under perfect substitution in consumption: 

If i and j are perfect substitutes in demand, β and  for i and j tend to a common value (S), which 

tends to infinity under perfect substitution. The asymptotic order of these elasticities is denoted by 

O(S). Since D involves products of β and  for i and j, it tends to: 

               
                      

All the As involve sums of these elasticities except Akk, which involves their products (βij). Hence, 

Akk tends to O(S
2
) while other As tend to O(S). Therefore, for goods i and j: 
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 For good k: 

       
  

                    
 

      
  

                    
 

      
 

                    
 

                    

Implications of asymptotes for price correlations: 

Substituting these results into equation (9b) implies: 

                
               

                                     
           

  
       

                              
                 

    

The same applies to equation (9c), in which case var(lnPi) = var(lnPj) asymptotically. The 

asymptotic covariance in equation (9a) becomes: 
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Finally, substituting these results into equation (10) proves that rij tends to 1 as goods i and k tend to 

perfect substitutes in consumption, because the covariance equals the variance.  

Matters are different for rik and rjk. The variance of lnPk does not depend on S: 

               
               

                                      
            

Its covariance with with lnPi or lnPj is O(S
-1

) instead of O(S
-2

): 

             

                                        

                                              

                                                                            

                            
                  

             

 

Since cov(lnPilnPk) ~ O(S
-1

) and sd(lnPi) ~ O(S
-1

), rik does not depend on S. When goods i and j are 

perfect substitutes in consumption the correlation tends to: 

   

  
          

                                        
                                            

      
               

                                     
       

               
                                      

           

 

 

Whereas the correlations between the prices of i and j tend to 1 due to perfect substitution, the 

correlations between i and k (and j and k) are less than 1, because they are imperfect substitutes. 
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