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Abstract: In recent years, evolutionary economic geography has made great progress. However, 4 

some scholars have pointed out that evolutionary economic geography has neglected the impact of 5 

demand-side elements and external factors on regional economic evolution. To respond to this 6 

situation, this paper explores the impact of external demand shocks on the local industrial evolution 7 

based on Chinese city-level data and the difference-in-difference model, using the US-China trade 8 

friction in 2018 as a research case. It is found that the external demand shock lead local industries 9 

into a path-dependent and technical-complexity-reducing evolutionary path. The decline in 10 

innovative capacity due to the narrowing of exports as a global channel plays a mediating role 11 

between the external demand shock and regional industrial evolution. In addition, there is regional 12 

heterogeneity in the impact of the external demand shock on regional industrial evolution. Regions 13 

with high levels of related diversification are more vulnerable to shocks. 14 
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1 Introduction 18 

Around 2000, geographers, represented by Ron Boschma, combined ideas from evolutionary 19 

economics with economic geography topics to create the branch of Evolutionary Economic 20 

Geography (EEG) (Boschma and Lambooy, 1999; Boschma and Frenken, 2006). EEG reveals the 21 

intrinsic mechanism of the evolution of regional economic activities with its unique dynamic 22 

perspective. EEG believes that regional economic development is based on history, specifically, the 23 

path of the past determines the direction of future development (Boschma, 2005; Maskell, 2001; 24 

Simmie, 2012). In recent years, the study of EEG has made great progress, forming a wealth of 25 

research topics such as evolution of industrial clusters, evolution of correlation, diversity and 26 

complexity, regional economic resilience, and so on (Balland and Rigby, 2017; Boschma, 2015; 27 

Boschma, 2017; Boschma and Iammarino, 2009; Frenken et al., 2007; Martin and Sunley, 2015). 28 

Nevertheless, some scholars have pointed out the limitations of EEG. First, the research of EEG is 29 

almost exclusively conducted from the supply-side perspective, which regards the reorganization 30 

and diffusion of productive knowledge as the fundamental driving force for the evolution of regional 31 

economic activities and ignores the role played by demand-side factors (Martin et al., 2019). Second, 32 

EEG focuses more on the role of factors and capabilities within the region and pays less attention 33 

to the local effects of external factors (Boschma et al., 2017). To address the limitations of current 34 

EEG research, this paper will attempt to discuss the impact of external demand shocks on the local 35 

industrial evolution. 36 

The US-China trade friction that opened in 2018 provides a good case for this paper to study the 37 

shock of reduced external demand on the local industry evolution. In an effort to close the trade 38 

deficit with China and stimulate the development of local manufacturing, the U.S. government 39 

announced an additional 10% tariff on $200 billion of products imported from China starting 40 

September 24, 2018, and this amount will be increased to 25% from January 1, 2019 onwards. This 41 



decision set off this round of US-China trade friction. The US is China's largest trading partner, with 42 

China's exports to the US increasing from 8.3% of total exports in 1990 to 17.5% in 2020 (Caliendo 43 

& Parro, 2023). This trade friction, initiated by the US, has caused China's external demand level 44 

to plummet. The data shows that in 2017, China's export growth rate was 10.76%, falling to 7.06% 45 

in 2018 and further down to 5.02% in 2019. The decrease in external demand has brought a serious 46 

shock to China's economic development (Shen et al., 2021). Studies have shown that US-China 47 

trade frictions have reduced China's overall welfare level by about 2% (Ding et al., 2022), and the 48 

level of market returns on sanctioned products has been thrown into fluctuation (Wen et al., 2023). 49 

Since China's accession to the World Trade Organization (WTO) in 2001, it has gradually integrated 50 

into the global market and established an export-oriented economic model that serves external 51 

demand. Exports have become an important driver of China's economic development as well as 52 

regional industrial evolution (Lin and Li, 2003). Therefore, the external demand shock brought to 53 

China by the trade friction between China and the US is bound to reshape China's industrial 54 

evolution path and pattern. 55 

In this paper, based on the model constructed by Balland et al. (2019), we will characterize 56 

China's industrial evolution in terms of two dimensions, path dependence and technological 57 

complexity, and analyze the impacts of the external demand shock event of trade friction between 58 

China and the US by using a difference-in-difference model. Compared with the past literature, the 59 

work of this paper may have the following contributions: first, this paper observes the driving force 60 

of regional industrial evolution from the demand-side perspective, responding to the limitations of 61 

EEG that focuses on supply but not demand, as suggested by Martin et al. (2019); second, this paper 62 

observes the influence of external factors on regional industrial evolution, providing ideas to 63 

introduce an external perspective to EEG. 64 

The organization of the main content of this paper is as follows. Section 2 will review the 65 

literature related to this paper and present the research hypotheses. Section 3 will introduce the 66 

research methods and data sources. Section 4 will provide a descriptive analysis of China's external 67 

demand characteristics and the evolution of industries at the city level. Section 5 will report the 68 

results of the empirical analysis. Section 6 will summarize and discuss the main conclusions of this 69 

paper. 70 

2 Literature review and research hypothesis 71 

2.1 Regional industrial evolution 72 

Regional industrial evolution is a metabolic process in which new industries continuously 73 

replace old ones, and is influenced by the entry of new industries and the survival and decline of 74 

existing industries (Alcorta et al., 2021; He et al., 2018). EEG attempts to reveal the laws and 75 

mechanisms of regional industrial evolution and has made remarkable progress. 76 

First, EEG has given a high priority to industrial entry. Industrial entry usually refers to the 77 

introduction or creation of new industries in a region that were not previously available (Liang, 78 

2017). Newly entering industries largely influence the future direction and trajectory of the region. 79 

According to the EEG, in the absence of exogenous factors, industrial entry is constrained by a 80 

region's technology and knowledge base (Doloreux and Turkina, 2021; Gong et al., 2023; J. H. Chen 81 

and Y. Chen, 2015). In other words, the stronger the relatedness to the region's technology and 82 

knowledge base, the easier it is for new industries to enter the region (Boschma et al., 2013; Neffke 83 

et al., 2011). This pattern of industrial evolution, which has a strong correlation with the original 84 



regional industrial structure and foundation, is known as path dependence. Although the EEG views 85 

path dependence as a general phenomenon of industrial entry, the reality is that there is also a special 86 

phenomenon of new entrants that are weakly related to their local base. A number of scholars have 87 

theorized about this particular phenomenon (Hassink et al., 2019). The findings suggest that, first, 88 

some endogenous forces drive regional industries to create new paths. For example, research by 89 

Plummer et al. (2022) shows that new knowledge, industrial diversity, and industrial transformation 90 

are conducive to enabling the creation of new paths. Second, exogenous factors such as policies, 91 

organizational behavior, and external knowledge facilitate breaking the self-reinforcing cycle of the 92 

evolutionary path within the region, thus breaking the dependence on the original path (Apajalahti 93 

and Kungl, 2022). Third, EEG not only emphasizes the role of “history”, but also pays attention to 94 

“future” and “expectations”. Studies have shown that forward-looking entrepreneurship can be a 95 

way for regional industries to create new evolutionary paths (Baumgartinger-Seiringer et al., 2022). 96 

In addition to new entry industries, existing industries have also received attention from scholars. 97 

The development and operation of existing industries will likewise influence the direction of the 98 

region's evolution. For the development and evolution of existing industries, the study of EEG 99 

proposes the concepts of path transformation and path upgrading. Path transformation or path 100 

upgrading is the enhancement of the productivity of existing paths through embedding in global 101 

value chains, technological transformation, organizational or business model innovation, asset 102 

restructuring, and niche creation to achieve higher returns (Baumgartinger-Seiringer et al., 2021; 103 

Grillitsch et al., 2018). 104 

From the above review, it can be seen that both new entry industries and existing industries have 105 

important impacts on the trajectory and direction of regional industry evolution. Balland et al. (2019) 106 

constructed a framework as shown in Figure 1 in their discussion of smart specialization policies. 107 

This framework provides a good idea for us to examine both new entry industries and existing 108 

industries at the same time. In Figure 1, the horizontal axis indicates the degree of technological 109 

relatedness between the new entry industries and the regional base, which is used to identify the 110 

degree of path dependence of the regional industrial evolution; the vertical axis indicates the degree 111 

of technological complexity within the region, and the increase in technological complexity implies 112 

that the region realizes the industrial path upgrading. Based on this framework, this paper will look 113 

at regional industrial evolution in terms of two dimensions: technological relatedness and 114 

technological complexity. These two dimensions categorize regional industrial evolution into four 115 

paths: ①Path-dependent and technical-complexity-increasing, ②Path-dependent and technical-116 

complexity-reducing, ③Path-breaking and technical-complexity-increasing and ④Path-breaking 117 

and technical-complexity-reducing. 118 



 119 

Figure 1 Regional industrial evolution framework 120 

2.2 External demand shocks 121 

External demand shocks refer to the turbulence and decline in the scale of demand for local 122 

products in overseas markets, which may have a negative impact on local economic and social 123 

development (Branstetter & Kwon, 2018; Wu et al., 2023). After the 2008 financial crisis, the impact 124 

of external demand shocks on regional economic development began to receive widespread 125 

attention. The existing literature has focused on analyzing the specific manifestations of the socio-126 

economic effects of external demand shocks. 127 

First, external demand shocks can affect local macroeconomic performance. Specifically, 128 

external demand shocks can reduce total local exports, raise regional unemployment rates, affect 129 

industrial and business output, and increase economic development gaps between regions (Cashin 130 

and Sosa, 2013; Chen et al., 2021; Horvath and Zhong, 2019; Justiniano and Preston , 2010; Nguyen 131 

et al., 2020). Second, there is regional heterogeneity in the impact of external demand shocks. 132 

Studies have shown that the higher the degree of related diversification of local industries, the larger 133 

the shock to local economic resilience from external demand is likely to be, as inter-industry 134 

relatedness allows shocks in one industry to be transmitted to other industries in the region (He et 135 

al., 2021). There is also empirical evidence that regions with greater factor mobility are more 136 

resistant and resilient in the face of external demand shocks (Di Pietro et al., 2021). Third, while 137 

most of the literature focuses on the negative effects of external demand shocks, some studies have 138 

empirically analyzed the beneficial effects of external demand shocks on innovative activities based 139 

on Schumpeter's “creative destruction” hypothesis (Barrot et al., 2018; Erixon, 2007; Erixon, 2016). 140 

For example, Aarstad and Kvitastein (2021) demonstrate that when the scale of external demand 141 

decreases, competition among local industries increases, thus forcing firms to invest more in 142 

innovative R&D. 143 



Currently, attention to external demand shocks is mainly focused on the field of economics, and 144 

the study of EEG has not yet paid enough attention to this issue. In recent years, the intensification 145 

of political, military and economic conflicts worldwide has greatly impacted the balance of the 146 

international supply and demand system and trade patterns, and the frequency and intensity of 147 

external demand shocks can be elevated as a result. In this context, the evolutionary trajectory of 148 

regional economic activity is bound to be affected by external demand shocks. Exploring the impact 149 

of external demand shocks in the context of EEG not only enriches its content system, but also 150 

provides theoretical references for different subjects to cope with external demand shocks. 151 

2.3 External demand shocks and industrial evolution 152 

In the era of globalization, regional industrial evolution paths are not only the product of 153 

endogenous drives, but also influenced by external factors (Martin and Sunley, 2006). Changes in 154 

external demand are very likely to disrupt the process of knowledge accumulation in the region and 155 

thus reshape the path of regional industrial evolution. This paper argues that the decline in external 156 

demand may have two implications for regional industrial evolution. First, external demand shocks 157 

may raise the share of related industries in newly entered industries, reinforcing the path-dependent 158 

tendency of regional industrial evolution. The reason for this is that a decline in external demand 159 

will negatively affect the region's ability to cope with risk (Marin & Modica, 2021; Dutt & Ros, 160 

2007). Balland et al. (2019) point out that the emergence of a large number of new technologies that 161 

are not related to the local base can impose greater costs and risks on local development. Compared 162 

to related industries, unrelated industries will inevitably lead to more unrelated new technologies, 163 

exposing the region to greater risk. In order to avoid the risk, under the situation of insufficient 164 

external demand, the government, production enterprises, financial institutions and other main 165 

agents are more inclined to introduce new industrial activities with strong relatedness to the existing 166 

technological base, thus reinforcing the trend of path dependence in the evolution of regional 167 

industries. Second, external demand shocks may hinder the process of regional industrial path 168 

upgrading, which is manifested in a decline in technological complexity. This is because lower 169 

external demand makes local agents less profitable and less able to afford the costs required to 170 

develop complex technology (Rafferty & Funk, 2004). In summary, external demand shocks may 171 

reinforce the tendency of the ② evolutionary path in Figure 1. Accordingly, research hypothesis 1 172 

is proposed. 173 

Hypothesis 1: External demand shocks cause regional industries to evolve in a path-dependent 174 

and technical-complexity-reducing direction. 175 

Changes in innovation capacity brought about by the narrowing of the export pipeline may play 176 

an important role in the above effects of external demand shocks on the regional industrial evolution. 177 

Exporting is an important “global pipeline” through which local connections to the globe are 178 

established, allowing external knowledge to enter the local area, and thus laying the knowledge base 179 

for new local industry creation (Bathelt et al., 2004). The clogged global pipeline affects the ability 180 

to innovate, making both industrial path breaking as well as upgrading technological complexity 181 

more difficult (Coenen et al., 2015; Salomon & Shaver, 2005), which in turn shapes the regional 182 

industrial evolution paths described above. Accordingly, this paper proposes research hypothesis 2. 183 

Hypothesis 2: The decline in innovation capacity due to the narrowing of the export pipeline 184 

plays a mediating role between external demand shocks and regional industrial evolution. 185 

In addition, there may be regional heterogeneity in the impact of external demand shocks on 186 

regional industrial evolution. Specifically, regions with higher levels of related diversification are 187 



likely to be hit harder. Regions with higher related diversity imply a higher degree of inter-industry 188 

relatedness. Inter-industry relatedness can allow shocks in one industry to be transmitted to other 189 

industries in the region, which could lead to greater negative impacts on the region as a whole (He 190 

et al., 2021). This leads to the research hypothesis 3 in this paper. 191 

Hypothesis 3: Regions with high levels of related diversification are likely to be more affected 192 

by external demand shocks. 193 

3 Data sources and research methods 194 

3.1 Data sources 195 

The data used in this paper to measure industry relatedness, technological complexity, and 196 

related diversity come from the China Business Enterprise Registration Database (2000-2022). The 197 

database divides industry categories by China's National Economic Industry Classification (NEC) 198 

codes, including 481 three-digit industries, with a data range covering 337 cities. Other data, such 199 

as control variables, come from the city statistical yearbooks of each prefecture-level city for the 200 

years 2000-2022 and the Patsnap patent database (2000-2022). Data on provincial-level exports to 201 

the US are from the China Customs Database (2000-2022). 202 

3.2 Relatedness and path-dependent industry identification 203 

Most of the EEG literature analyzes the region's industrial dynamics and evolutionary trends by 204 

measuring the relatedness between new entry industries and existing industries. The most widely 205 

used measures of industry relatedness in the current literature include Hierarchical Relatedness, Co-206 

occurrence Relatedness, and Resource-based Relatedness (Boschma et al., 2012; Frenken et al., 207 

2007; Hidalgo et al., 2007; Neffke and Henning, 2013; Whittle and Kogler, 2020). The limitation 208 

of these methods is that they can only analyze macro trends in the region and cannot identify 209 

individual industry types. Coniglio et al. (2018) proposed a dartboard approach for identifying path-210 

dependent industries based on the degree of relatedness, which solves the difficulty of identifying 211 

individual industry types. This approach will be used in this paper to calculate the number and share 212 

of path-dependent industries among new entrants. The specific measurement process of this 213 

approach is as follows: 214 

In the first step, the revealed comparative advantage (RCA) of an industry in a city is measured 215 

and new entry industries are identified. The RCA is calculated as shown in Eq.1. 𝑅𝐶𝐴𝑐,𝑖,𝑡 denotes 216 

the revealed comparative advantage of industry 𝑖 of city 𝑐 in year 𝑡. 𝐴𝑚𝑜𝑢𝑛𝑡𝑐,𝑖,𝑡 denotes the 217 

number of firms in industry 𝑖 of city 𝑐 in year 𝑡. The idea of identifying a new entry industry is 218 

to consider an industry as a new entry industry if its RCA is less than 0.5 in year 𝑡 and greater than 219 

1 in year 𝑡 + 𝑛. In this paper, we set 𝑛 to 1. 220 

 𝑅𝐶𝐴𝑐,𝑖,𝑡 =
(𝐴𝑚𝑜𝑢𝑛𝑡𝑐,𝑖,𝑡 ∑ 𝐴𝑚𝑜𝑢𝑛𝑡𝑐,𝑖,𝑡𝑖⁄ )

(∑ 𝐴𝑚𝑜𝑢𝑛𝑡𝑐,𝑖,𝑡𝑐 ∑ 𝐴𝑚𝑜𝑢𝑛𝑡𝑐,𝑖,𝑡𝑐,𝑖⁄ )
 Eq.1 

In the second step, the inter-industry relatedness is calculated. The calculation is shown in Eq. 221 

2. 𝜑𝑖,𝑗,𝑡  is the relatedness between industry 𝑖  and 𝑗  in year 𝑡 . The idea is to calculate the 222 

conditional probability that the RCA of industry 𝑖 and industry 𝑗 in the same city is greater than 223 

1 at the same time and take the minimum value. 224 

 𝜑𝑖,𝑗,𝑡 = min[𝑃(𝑅𝐶𝐴𝑐,𝑖,𝑡 > 1|𝑅𝐶𝐴𝑐,𝑗,𝑡 > 1), 𝑃(𝑅𝐶𝐴𝑐,𝑗,𝑡 > 1|𝑅𝐶𝐴𝑐,𝑖.𝑡 > 1)] Eq.2 

The third step is to calculate the relatedness of the new entry industry to the industrial base of 225 

its city. Coniglio et al. (2018) propose three indicators to represent this relatedness. The first 226 



indicator is expressed as the maximum value of the relatedness between new entry industries and 227 

all other industries. The second indicator is expressed as the mean value of the relatedness between 228 

new entry industries and all other industries. The third indicator is expressed as the weighted mean 229 

value of the relatedness between new entry industries and all other industries (weighted by the share 230 

of the number of firms). In this paper, the first indicator is adopted, i.e., it is measured by the 231 

maximum value, and the equation is shown in 3. 𝐷𝑐,𝑖,𝑡  denotes the maximum value of the 232 

relatedness between industry i and all the existing industries j in city c. Where j belongs to city c. 233 

 𝐷𝑐,𝑖,𝑡 = max⁡(𝜑𝑖,𝑗,𝑡) Eq.3 

In the fourth step, the counterfactual distribution of relatedness between new entry industries 234 

and existing industries is established through Monte Carlo sampling random sampling method, and 235 

path-dependent industries are identified through the counterfactual distribution. This is done by 236 

randomly selecting 𝑟 industries from the city's non-existing industries (those with RCA less than 237 

1 in year 𝑡 ) if city 𝑐  has 𝑟  new entry industries in year 𝑡 + 𝑛 . The maximum value of the 238 

relatedness between the randomly selected industry and other existing industries is calculated 239 

according to Equation 2 and Equation 3, and then the mean value is calculated. Repeat the above 240 

process 1500 times to establish the counterfactual distribution. An industry is considered path-241 

dependent if the maximum value of the relatedness of a particular new entry industry to other 242 

industries in the city is within a confidence interval of 95% or more of the counterfactual distribution. 243 

On the basis of identifying path-dependent industries, this paper measures the industrial 244 

evolution characteristics of a city in terms of the ratio of path-dependent industries in the new entry 245 

industries. The larger the ratio is, the more path-dependent the city's industrial evolution path is. 246 

3.3 Urban technological complexity indicator measurement 247 

The existing literature usually measures the complexity of regional economic activity through 248 

export or product production data. Regions with a high level of economic complexity imply the 249 

mastery of complex technologies. There are four main approaches. One is the EXPY method 250 

proposed by Hausmann et al. (2007). This approach assumes that only high-income countries can 251 

export complex products. If a product is frequently exported by high-income countries, it is more 252 

technically complex. Regional complexity is then measured on the basis of product complexity; the 253 

more high-complexity products are exported from a region, the higher the complexity of that region. 254 

The second approach is the Economic Complexity Indicator (ECI) proposed by Hidalgo and 255 

Hausmann (2009), which solves the problem of circularity between product and regional complexity 256 

in the EXPY approach by measuring regional technological complexity in terms of “ubiquity” and 257 

“uniqueness”. The third approach is the Fitness indicator proposed by Tacchella et al. (2012). This 258 

approach measures regional technological complexity through the adaptation of knowledge and 259 

capabilities held by the region to the demand for new products, overcoming the problem that the 260 

ECI approach ignores industry diversity. The fourth approach is the ECI+ proposed by Albeaik et 261 

al. (2017). This approach measures regional technological complexity by defining “export difficulty” 262 

as a correction for “export size”. In this paper, the basic idea of ECI+ approach is adopted to measure 263 

the technological complexity of Chinese cities, and the main steps are as follows. 264 

The matrix 𝑋𝑐𝑖 is first constructed to represent the number of firms of industry 𝑖 in city 𝑐. 265 

On this basis, the difficulty of developing a certain industry⁡𝑖 in city 𝑐 (𝐷𝑖𝑓𝑓𝑐𝑖
0) is measured. The 266 

smaller the size of an industry in a city, the higher the complexity of the technology contained in 267 



the industry, and the more difficult it is to develop. Therefore, “difficulty” and “size” are inversely 268 

proportional to each other. The measurement method is shown in Eq. 4. 269 

 
𝐷𝑖𝑓𝑓𝑐𝑖

0 = 1 ∑
𝑋𝑐𝑖

𝑋𝑐
0

𝑐
⁄  Eq.4 

 
𝑋𝑐
0 = ∑ 𝑋𝑐𝑖

𝑖
  

In Eq.4, the superscripted numbers indicate the number of corrections. On the basis of measuring 270 

the difficulty of industrial development, it is necessary to use the difficulty of industrial development 271 

to fix the size of the regional industry and get the corrected industrial size. The more the number of 272 

corrections, the closer the result is to the real industrial size in reality. The revised equation is shown 273 

in 5. 274 

 
𝑋𝑐
𝑁 =∑ 𝑋𝑐𝑝𝐷𝑖𝑓𝑓𝑐𝑝

𝑁−1

𝑝
 Eq.5 

The ECI+ approach determines whether industry size has been sufficiently corrected through a 275 

standardized coefficient of industry size. If the size of the industry remains stable after the 276 

standardized treatment, the number of corrections is sufficient. Based on the measurement, the 277 

number of corrections in this paper is set at 50, i.e., N = 50. The standardized treatment equation is 278 

shown in 6. 279 

 

𝑋𝑐
𝑁 =

𝑋𝑐
𝑁

(∏ 𝑋𝑐′
𝑁

𝑐′ )
1
{𝑐}

 Eq.6 

Finally, the equation for the regional technological complexity is shown in 7. 280 

 
𝑇𝐶𝐼𝑐 = 𝑙𝑜𝑔(𝑋𝑐

50) − 𝑙𝑜𝑔 (∑
𝑋𝑐𝑖
𝑋𝑖𝑖
) Eq.7 

3.4 Difference-in-difference model design 281 

The basic idea of the difference-in-difference (DID) model is to divide the study sample into 282 

experimental and control groups, and then to divide the study period into experimental and control 283 

periods. The exogenous effects of the system are accurately measured by performing two 284 

differencing between the experimental and control groups and between the experimental and control 285 

periods. In this case, the experimental group is the study samples that were exogenously influenced, 286 

while the control group is the unaffected samples. The experimental period was the stage that was 287 

exogenously influenced and the control period was the stage that was unaffected. This paper 288 

constructs a DID model to analyze the impact of US-China trade friction on the regional industrial 289 

evolution, and the basic setting of the model is shown in Eq. 8. 290 

 𝑌𝑐,𝑡+1 = 𝛼0 + 𝛼1𝑑𝑖𝑑𝑐,𝑡 + 𝛼2𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑐,𝑡 + 𝜇𝑐 + 𝛿𝑡 + 𝜀𝑐,𝑡 Eq.8 

In the above equation, subscripts c and t denote city and time, respectively. 𝑌𝑐,𝑡+1 denotes the 291 

dependent variable. The dependent variables include two indicators, the proportion of path-292 

dependent industries in new entry industries (Dependence) and the city's technological complexity 293 

(TCI), which are used to assess the impact of the US-China trade friction on path dependence and 294 

path upgrading, respectively. Due to the existence of a certain time lag in the change of the industrial 295 

evolution path, this paper lags the dependent variable by one year. 296 

𝑑𝑖𝑑𝑐,𝑡 denotes the difference-in-difference variable, i.e., the interaction term between the staged 297 

dummy variable and the grouped dummy variable. Since the US-China trade friction occurs in 2018, 298 



this paper sets 2000-2017 as the control period and assigns a value of 0, and sets 2018-2021 as the 299 

experimental period and assigns a value of 1. Regarding the setting of the experimental group and 300 

the control group, we believe that the cities that are more affected by the trade friction between 301 

China and the US should have two characteristics: a higher dependence on exports for economic 302 

development and closer economic ties with the US. Based on this judgment, we divided the 303 

experimental and control groups by the following steps. The first step is to calculate the degree of 304 

dependence of the city's economic development on exports, which is calculated as the ratio of the 305 

total value of exports to GDP; the larger the ratio, the more dependent the city is on exports. The 306 

second step is to calculate the degree of the city's economic ties to the US. This is done by 307 

calculating the ratio of exports to the US from the province to which the city belongs to its total 308 

exports. The larger the share of exports to the US from the provincial district in which the city is 309 

located, the stronger the city's economic ties to the US. The reason for adopting provincial- level 310 

data to judge the economic links between cities and the US is that we lack data that directly reflect 311 

the cities' exports to the US. However, cities belonging to the same province are relatively similar 312 

in terms of geography and economic structure, so this idea can also reflect the export characteristics 313 

of cities to some extent. In the third step, the cities whose dependence on exports and dependence 314 

on the US are both greater than the mean value are categorized as the experimental group (assigned 315 

a value of 1), while the other cities are categorized as the control group (assigned a value of 0). The 316 

experimental group was measured to contain a sample of 49 cities and the control group contained 317 

a sample of 243 cities. 318 

𝛼0, 𝜇𝑐, 𝛿𝑡 and 𝜀𝑐,𝑡 denote the constant term, city fixed effect, year fixed effect, and error term, 319 

respectively. 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑐,𝑡  represents the control variables. 𝛼1  and 𝛼2  represent the regression 320 

coefficients of the independent variable and the control variables. The following control variables 321 

are selected for this paper: ①Innovative capacity, measured by the number of patents granted. 322 

Regional innovative capacity is an important force in shaping the evolutionary path of regional 323 

industries (Tödtling and Trippl, 2018). ②Consumption level, expressed as total retail sales of 324 

consumer goods. Local demand, represented by consumption, has a causal effect on production and 325 

innovation activities and is one of the forces that shape the evolution of regional industries (Martin, 326 

R. and Martin, H., 2023). ③The influence of the government is measured by the level of 327 

government public expenditure. The government's investment in and emphasis on specific industries 328 

will greatly influence the future direction of industrial development in the region (He et al., 2018; 329 

Zhu et al., 2019). ④COVID-19, which started in 2020, brought global production and trade 330 

activities to a standstill, significantly hitting China's export trade (Liu et al., 2022). In this paper, a 331 

dummy variable is created to reflect the exclusion of the disturbance of COVID-19, which is set to 332 

1 in 2020-2022 and 0 in the rest of the years. ⑤Industrial structure which is measured by the share 333 

of added value of tertiary industry in GDP. The characteristics of industrial structure reflect the 334 

economic base of the region, which has an important impact on innovation capacity, investment 335 

activities, etc. (Greunz, 2004; Jin, 2012), and will most likely have an impact on the evolution of 336 

regional industries as well. 337 

4 External demand and industrial evolution of China 338 

4.1 External demand characteristics of China 339 



The scale of imports from overseas markets can directly reflect the scale of external demand, so 340 

this paper utilizes data on overseas imports to conduct a descriptive analysis of China's external 341 

demand pattern, with data from the CEPII-BACI database. 342 

Figure 2 reflects changes in the scale of imports of Chinese products into the global market 343 

(black line) and the US market (blue line) over the period 2000-2020. Overall, both the global 344 

market and the US market have seen a significant increase in the scale of demand for Chinese 345 

products, and the trends in both are essentially the same. Between 2000-2020, there were three 346 

notable declines in demand in the global market and the US market, occurring in 2008, 2014, and 347 

after 2018. The financial crisis of the US in 2008 caused a decline in market demand globally, 348 

leading to a contraction of China's external demand market (Bricongne et al., 2012; Jing, 2012). The 349 

decline in the scale of demand after 2014 could be attributed to the sluggish demand for commodities 350 

due to the fall in international crude oil prices (Grigoli et al., 2019). The decline in the scale of 351 

demand after 2018 is a result of the negative impact of trade frictions between the US and China 352 

(Zhu et al., 2022). 353 

 354 
Figure 2 Import scale of Chinese products in the global market and the US market during 355 

2000-2020 356 

Note: Data in tens of thousands of dollars 357 

In terms of the spatial pattern of external demand, China has actively opened up many new 358 

overseas markets. Figure 3 reflects the spatial pattern of China's overseas markets in 2000 and 2021, 359 

where the ratio of the import size of the countries in red to the global market size exceeds 1%, and 360 

we refer to the countries with a ratio of more than 1% as core overseas markets. China's core 361 

overseas markets in 2000 were mainly North America (including the United States and Canada), 362 

East Asia (including Japan and South Korea), Western Europe (including the United Kingdom, 363 

France, Germany, Spain, Italy, etc.) and Australia. By 2021, China is aggressively expanding its 364 

core markets into Central and South America (including Mexico and Brazil), Eastern Europe 365 



(including Poland and Russia), and South & Southeast Asia (including India, Vietnam, the 366 

Philippines, Indonesia, and others). Of all the core markets, the US has always been the market with 367 

the largest share. During the period 2000-2021, the ratio of US imports of Chinese products to total 368 

Chinese exports was above 10%. However, the US share shows a significant decline (Figure 4). 369 

Especially after the trade friction between China and the US in 2018, the share of the US rapidly 370 

declined from 19.09% to 16.47%. China's overseas market diversification strategy and the decrease 371 

in the US market share reflect the trend of gradual decoupling of the US and Chinese economies. 372 

 373 

Figure 3 China's Overseas Market Pattern 374 



 375 

Figure 4 Share of the US market 376 

4.2 Industrial Evolution paths of Chinese Cities 377 

Calculate the share of path-dependent new industries and the technological complexity of 378 

Chinese cities based on the categorization of paths in Section 2 and the methodology described in 379 

Section 3. Path dependence and path breaking are classified by whether the share of path-dependent 380 

new industries is greater than the mean of all cities, with cities that are greater than the mean defined 381 

as path-dependent and those that are less than the mean defined as path breaking. The criterion for 382 

an increase or decrease in technological complexity is whether the difference between the current 383 

year's technological complexity and the previous year's is greater than 0. Cities that are greater than 384 

0 are defined as having an increase in technological complexity, and cities that are less than 0 are 385 

defined as having a decrease in technological complexity. The sample of 292 cities was categorized 386 

into the four evolutionary paths described in Figure 1 based on the above criteria. 387 

Figure 5 illustrates the spatial pattern of industrial evolution paths of Chinese cities in 2001 and 388 

2022, which shows that the industrial evolution paths of Chinese cities have changed dramatically 389 

over time. In 2001, 239 cities, representing 81.85 % of the total, experienced an increase in 390 

technological complexity. 147 cities continued their dependence on the original path, while 92 cities 391 

achieved a path breaking. The spatial distribution of urban industrial evolution paths does not show 392 

obvious agglomeration characteristics. And by 2022, at which point most of China's cities seem to 393 

have reached a bottleneck in technological progress, only four cities have upgraded their complexity. 394 

In addition, unlike in 2001, in 2022 the industrial evolution of the city reveals agglomeration 395 

characteristics. Most of the cities that have achieved path breaking are located in the East, and those 396 

that are path dependent are located in the West and Northeast. The basic spatial characteristic of 397 



China's economy is that regions along the eastern coast have a higher level of economic 398 

development. This suggests that the more economically developed the region, the easier it is to break 399 

out of the original evolutionary path. The features reflected in Figure 5 suggest that economically 400 

less developed cities appear to be locked into a low-end evolutionary path, with gradually increasing 401 

spatial differences in industrial development across the country. 402 

 403 

Figure 5 Evolution Path of Urban Industries in China 404 

5 Empirical analysis 405 

5.1 Baseline regression 406 

The empirical analysis was conducted based on the indicator measures described in Section 3 407 

and the model design ideas, and the results of the baseline regression are shown in Table 1. In Table 408 

1, models (1) and (2) use the proportion of path-dependent industries in new entry industries 409 

(Dependence) as the dependent variable, reflecting the impact of the US-China trade friction on the 410 

path dependence or breakthrough of regional industries. Model (2) incorporates control variables. 411 

Models (3) and (4), on the other hand, use regional technological complexity (TCI) as the dependent 412 

variable. Model (4) incorporates control variables. 413 

The regression coefficients of did on Dependence in models (1) and (2) are 7.392 and 8.073, 414 

respectively, and the results are significant at the 1% level. This suggests that the US-China trade 415 

friction has significantly increased the share of path-dependent new industries, reinforcing the path-416 

dependent trend of regional industrial evolution. The regression coefficients of did on TCI in models 417 

(3) and (4) are -0.547 and -0.317, respectively, and again both are significant at the 1% level. This 418 

suggests that the US-China trade friction reduces regional technological complexity. The above 419 

results validate research hypothesis 1, that external demand shocks cause regional industries to 420 

evolve in the direction of path dependence and reduced technological complexity. 421 



Table 1 Baseline regression 422 

 (1) (2) (3) (4) 

 Dependence Dependence TCI TCI 

did 7.392*** 8.073*** -0.547*** -0.317*** 

 (4.11) (4.96) (4.81) (2.86) 

Constant 74.264*** 89.362*** 14.041*** 13.446*** 

 (245.69) (92.19) (640.51) (192.65) 

City fixed effect Yes Yes Yes Yes 

Year fixed effect Yes Yes Yes Yes 

Control variables No Yes No Yes 

N 6274 5943 6274 5943 

R2 0.26 0.38 0.23 0.31 

Note: *** p<0.01; ** p<0.05; * p<0.1. Absolute values of t-tests are in parentheses. 423 

5.2 Robustness test 424 

5.2.1 Parallel trend test 425 

The difference-in-difference method requires that the trends in the experimental and control 426 

samples are parallel before the exogenous shock occurs, otherwise the validity of the results cannot 427 

be demonstrated. In this paper, the model shown in Eq. 9 is utilized to test for parallel trends, where 428 

𝑦𝑒𝑎𝑟𝑡 is a year dummy variable and 𝑡𝑟𝑒𝑎𝑡𝑐 is a group dummy variable. This paper constructs year 429 

dummy variables for the period 2014-2020. If the interaction term between the grouped dummy 430 

variables and the year dummy variables prior to 2018 (i.e., year2014, year2015, year2016, and 431 

yer2017) is not significant, this proves that the experimental group is not significantly different from 432 

the control group prior to the occurrence of the exogenous shocks, and confirms the parallel trend 433 

between the two. 434 

 𝑌𝑐,𝑡+1 = 𝛽0 + 𝛽𝑡 ∑ 𝑦𝑒𝑎𝑟𝑡 × 𝑡𝑟𝑒𝑎𝑡𝑐

2020

2014

+ 𝛽1𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑐,𝑡 + 𝜇𝑐 + 𝛿𝑡 + 𝜀𝑐,𝑡 Eq.9 

The regression results of the model are shown in Figures 6 and 7. In particular, Figure 6 shows 435 

the parallel trend test plot for the model with Dependence as the dependent variable and Figure 7 436 

shows the parallel trend test plot for the model with TCI as the dependent variable. The horizontal 437 

axes are the year dummy variables and the vertical axes are the regression coefficients. According 438 

to the information shown in Figures 6 and 7, none of the interaction terms between the dummy 439 

variables and the grouped variables are significant in the years prior to the occurrence of the external 440 

demand shock, proving that the model is consistent with the parallel trend assumption. 441 



 442 
Figure 6 Parallel trend test for the Dependence model 443 

 444 

 445 
Figure 7 Parallel trend test for TCI model 446 

5.2.2 Placebo test 447 

To demonstrate that the model is not heavily influenced by omitted variables and random factors, 448 

this paper takes two ideas for a placebo test. The first idea is to construct a spurious timing of the 449 



external demand shock. In this paper, we bring forward the timing of the external demand shock by 450 

one year (i.e., 2017) and run the regression. If the regression results are still significant, it means 451 

that the results of the model are disturbed by other factors. The regression results are shown in Table 452 

2. The structure of Table 2 is the same as Table 1. In Table 2, the regression results of the did variable 453 

on either Dependence or TCI are not significant, which to some extent proves the robustness of the 454 

findings. 455 

Table 2 Regression results based on the timing of spurious external demand shock 456 

 (5) (6) (7) (8) 

 Dependence Dependence TCI TCI 

did 0.104 -0.685 -0.127 -0.076 

 (0.07) (0.42) (1.49) (0.81) 

Constant 73.082*** 76.108*** 14.026*** 13.098*** 

 (312.22) (243.36) (725.39) (190.22) 

City fixed effect Yes Yes Yes Yes 

Year fixed effect Yes Yes Yes Yes 

Control variables No Yes No Yes 

N 6274 5943 6274 5943 

R2 0.16 0.23 0.25 0.22 

Note: *** p<0.01; ** p<0.05; * p<0.1. Absolute values of t-tests are in parentheses. 457 

The second idea is to construct spurious experimental and control groups to verify the robustness 458 

of the model. This is done by randomly selecting 49 cities out of a sample of all cities to constitute 459 

a spurious experimental group, repeating the sampling process 1,500 times and running the 460 

regression. Plot the density distribution of the spurious estimated coefficients. If the spurious 461 

estimated coefficients are distributed around 0, it implies that the model does not omit important 462 

influences, in other words, the baseline regression results are brought about by the external demand 463 

shock (Ferrara et al., 2012). The density distribution of the spurious estimated coefficients is plotted 464 

in Figures 8 and 9. Among them, Figure 8 shows the coefficient density plot with Dependence as 465 

the dependent variable and Figure 9 shows the coefficient density plot with TCI as the dependent 466 

variable. As shown in Figures 8 and 9, the spurious regression coefficients are all centrally 467 

distributed around 0, further validating the robustness of the model. 468 



 469 
Figure 8 Spurious grouping regression results for the Dependence model 470 

 471 

 472 

Figure 9 Spurious grouping regression results for the TCI model 473 

5.3 Mechanism test 474 

According to the literature review, external demand shocks lead to a narrowing of exports as a 475 

global pipeline, and the decline in exports affects regional innovation capacity, which in turn 476 



reinforces the evolutionary trend of regional industrial path dependence and reduced technological 477 

complexity. Validating this mechanism requires answering three questions: first, has the US-China 478 

trade friction negatively affected exports? Second, is there a positive correlation between exports 479 

and local innovative capacity? Third, can innovative capacity help industries to break out of path 480 

dependence and upgrade? In this paper, the number of patents granted (Patent) is chosen as an 481 

indicator of the city's innovative capacity. The three questions are verified through the model shown 482 

in Eq. 10-13 below. Eq. 10 is used to verify the effect of external demand shocks on exports, and 483 

Export denotes the total amount of exports of the city. Eq. 11 is used to verify the impact of exports 484 

on the city's innovative capacity. Eq. 12 and 13 are then used to verify the impact of innovative 485 

capacity on the evolutionary path of industries. As in the baseline regression, the dependent 486 

variables of the following models are lagged by one year. 487 

 𝐸𝑥𝑝𝑜𝑟𝑡𝑐,𝑡+1 = 𝜌0 + 𝜌1𝑑𝑖𝑑𝑐,𝑡 + 𝜌2𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑐,𝑡 + 𝜇𝑐 + 𝛿𝑡 + 𝜀𝑐,𝑡 Eq.10 

 𝑃𝑎𝑡𝑒𝑛𝑡𝑐,𝑡+1 = 𝛾0 + 𝛾1𝐸𝑥𝑝𝑜𝑟𝑡𝑐,𝑡 + 𝛾2𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑐,𝑡 + 𝜇𝑐 + 𝛿𝑡 + 𝜀𝑐,𝑡 Eq.11 

 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒𝑐,𝑡+1 = 𝜃0 + 𝜃1𝑃𝑎𝑡𝑒𝑛𝑡𝑐,𝑡 + 𝜃2𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑐,𝑡 + 𝜇𝑐 + 𝛿𝑡 + 𝜀𝑐,𝑡 Eq.12 

 𝑇𝐶𝐼𝑐,𝑡+1 = 𝜎0 + 𝜎1𝑃𝑎𝑡𝑒𝑛𝑡𝑐,𝑡 + 𝜎2𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑐,𝑡 + 𝜇𝑐 + 𝛿𝑡 + 𝜀𝑐,𝑡 Eq.13 

The regression results are shown in Table 3. In Table 3, model (9) demonstrates the impact of 488 

US-China trade friction on exports, and the regression coefficient of the did variable on Export is -489 

1.481, and the regression result is significant at 1% level, which indicates that US-China trade 490 

friction negatively affects the scale of exports. Model (10) demonstrates the relationship between 491 

exports and innovative capacity, and the regression coefficient of Export on Patent is a significant 492 

0.365 at the 1% level, indicating that the growth of exports promotes regional innovative capacity. 493 

Model (11) demonstrates the effect of innovative capacity on the share of path-dependent new 494 

industries. The regression result is significantly negative at the 1% level (coefficient of -0.774), 495 

indicating that innovative capacity promotes path breaking in regional industries. Model (12), on 496 

the other hand, demonstrates the effect of innovation level on technological complexity. The 497 

regression results are significantly positive at the 1% level (coefficient of 0.874), indicating that 498 

innovative capacity has a positive impact on enhancing technological complexity. The above results 499 

validate the mechanism proposed in hypothesis 2. 500 

  501 



Table 3 Mechanism test 502 

 (9) (10) (11) (12) 

 Export Patent Dependence TCI 

did -1.481***    

 (12.51)    

Export  0.365***   

  (4.77)   

Patent   -0.774*** 0.874*** 

   (2.87) (79.53) 

Constant 4.255*** -993.185 107.890*** 2.895*** 

 (38.69) (0.16) (22.73) (14.05) 

City fixed effect Yes Yes Yes Yes 

Year fixed effect Yes Yes Yes Yes 

Control variables Yes Yes Yes Yes 

N 4588 4588 5942 5942 

R2 0.56 0.85 0.76 0.72 

Note: *** p<0.01; ** p<0.05; * p<0.1. Absolute values of t-tests are in parentheses 503 

5.4 Heterogeneity analysis 504 

The literature review suggests that the higher the degree of industrial related diversification in a 505 

region, the greater the impact of external demand shocks is likely to be. This paper utilizes the RV 506 

indicator constructed by Frenken et al. (2007) to measure the level of regional related diversification. 507 

The equations for calculating the RV indicator are shown in 14 and 15. 𝐻𝑐 is the process indicator 508 

for calculating the RV indicator. k denotes the three-digit industry and j denotes the two-digit 509 

industry. 𝑃𝑘 denotes the number of firms under the three-digit industries as a share of the total 510 

number of firms in the city, and 𝑃𝑗 denotes the number of firms under the two-digit industries as a 511 

share of the total number of firms in the city. n and m denote the number of two-digit and three-digit 512 

industries, respectively. 513 

 
𝐻𝑐 = ∑

𝑃𝑘
𝑃𝑗
𝑙𝑜𝑔2 (

1

𝑃𝑘 𝑃𝑗⁄
)

𝑛

𝑘=1

 Eq.14 

 
𝑅𝑉𝑐 = ∑𝑃𝑗𝐻𝑐

𝑚

𝑗=1

 Eq.15 

 𝑌𝑐,𝑡+1 = 𝛼0 + 𝛼1𝑑𝑖𝑑𝑐,𝑡 + 𝛼2𝑅𝑉𝑐,𝑡 + 𝛼3𝑑𝑖𝑑𝑐,𝑡 × 𝑅𝑉𝑐,𝑡 + 𝛼4𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑐,𝑡 + 𝜇𝑐

+ 𝛿𝑡 + 𝜀𝑐,𝑡 
Eq.16 

The regression results are shown in Table 4. Model (14) shows that the regression result of RV 514 

on Dependence is significantly negative, with a coefficient of -0.09. This indicates that the higher 515 

the degree of industrial related diversification, the more the city tends to introduce path-breaking 516 

new industries. The reason for this phenomenon may be the increased frequency of knowledge 517 

spillovers and interactions as a result of increased inter-industry relatedness. Frequent knowledge 518 

spillovers and interactions increase the innovative capacity of cities, giving them the ability to break 519 

out of their original evolutionary paths. In model (15), the regression result of the interaction term 520 

between did and RV on Dependence is significantly positive at the 1% level, with a coefficient of 521 



0.051, suggesting that the related diversification reinforces the positive effect of US-China trade 522 

friction on path dependence. In model (17), the regression coefficient of RV on TCI is positive 0.008, 523 

indicating that industrial related diversification favors technological complexity. This phenomenon 524 

can likewise be explained by the impact of industrial related diversification on innovative capacity. 525 

The regression of the interaction term between did and RV on TCI in model (18) is significantly 526 

negative at the 10% level with a coefficient of -0.002. It indicates that the related diversification 527 

reinforces the negative impact of US-China trade friction on technological complexity. The results 528 

of models (15) and (18) validate research hypothesis 3. 529 

Table 4 Heterogeneity analysis 530 

 (13) (14) (15) (16) (17) (18) 

 Dependence Dependence Dependence TCI TCI TCI 

did 8.073***  -15.546** -0.317***  1.065*** 

 (4.96)  (2.45) (2.86)  (2.71) 

RV  -0.090*** -0.094***  0.008*** 0.008*** 

  (52.71) (56.48)  (65.53) (59.85) 

did×RV   0.051***   -0.002* 

   (2.79)   (2.22) 

Constant 89.362*** 100.227*** 103.14*** 13.446*** 11.955*** 12.334*** 

 (92.19) (136.53) (113.15) (192.65) (209.51) (202.84) 

City fixed 

effect 

Yes Yes Yes Yes Yes Yes 

Year fixed 

effect 

Yes Yes Yes Yes Yes Yes 

Control 

variables 

Yes Yes Yes Yes Yes Yes 

N 5943 5943 5943 5943 5943 5943 

R2 0.38 0.60 0.62 0.31 0.54 0.56 

Note: *** p<0.01; ** p<0.05; * p<0.1. Absolute values of t-tests are in parentheses 531 

6 Conclusion and discussion 532 

In recent years, geopolitical factors and the rise of local protectionism have continued to 533 

challenge the global economic order, and more and more external shocks are set to become 534 

important forces in reshaping local economic patterns and landscapes. This paper discusses the 535 

impact of external demand shocks on the local industry evolution using US-China trade friction as 536 

an external shock event. The study responds to the shortcoming of the current EEG literature, which 537 

ignores the influence of demand-side factors and external forces. Based on Chinese city-scale 538 

industrial data and DID models, this paper finds the following core conclusions: 539 

First, the US-China trade friction, an external demand shock event, has had a significant impact 540 

on China's industrial evolution. Specifically, the US-China trade friction has led to a stronger path-541 

dependent trend in the industrial evolution of Chinese cities and reduced technological complexity. 542 

The main reason for this phenomenon is the shrinking of exports as a global pipeline due to external 543 

demand shocks, which hinders the entry of external knowledge. The resulting decline in local 544 

innovative capacity hinders industrial path breaking and technological complexity. Second, there 545 

may be regional heterogeneity in the impact of external demand shocks on the local industrial 546 



evolution. This is reflected in the fact that regions with a higher degree of industrial related 547 

diversification are more exposed to external demand shocks. This is because inter-industry 548 

relatedness provides a channel for external demand shocks from a particular industry to spread to 549 

other industries, which in turn has a greater impact on the industrial evolution of the region as a 550 

whole. 551 

What does it mean for regional development that external demand shocks can set local industries 552 

on a path of dependence and reduced technological complexity? We believe that, for developing 553 

countries, such a path would have a negative impact on regional development. First, developing 554 

countries are lacking the technology and capital to produce high-end products and services, and the 555 

reinforcement of the trend of path dependence will lock their industrial development into a low-end 556 

path. Second, the reduction in technological complexity has further weakened the ability of 557 

developing countries to develop high value-added industries. In addition, there are also usually large 558 

differences in levels of development between regions within developing countries, and the impact 559 

of external demand shocks may make it more difficult for lagging regions to catch up, thus 560 

increasing interregional disparities. How should developing countries reduce the negative impact of 561 

external demand shocks? In our view, developing countries should, on the one hand, actively explore 562 

new overseas markets to hedge against shocks from specific markets by diversifying overseas 563 

markets; and, on the other hand, they should actively explore and build up their domestic markets 564 

in order to replace external demand with internal demand. 565 

Limitations to the findings of this paper remain, as evidenced by the fact that the choice of data 566 

and study cases prevents this paper from analyzing the long-term effects of external demand shocks. 567 

Some studies have found that there may be differences between the short-term and long-term effects 568 

of external demand shocks. In the short run, external demand shocks have predominantly negative 569 

effects. However, in the long run, external demand shocks may lead to “destructive creation” 570 

(Erixon, 2007; Erixon, 2016). The long-term effects of the US-China trade friction that occurred in 571 

2018 cannot be shown as the data we obtained ends in 2022. After 2024, the macro data of the 572 

Chinese economy and technological breakthroughs in the high-tech sector seem to corroborate the 573 

positive impact of US-China trade friction, but this issue needs to be further examined. 574 
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