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Paving the way to Circular Economy monitoring: regionalising official European statistics 

of Domestic Material Consumption 

1. Introduction 

The Circular Economy (CE) is the far-reaching strategy adopted by the European Commission and other actors 
across the Globe to set European economy on the path to sustainability (European Commision, 2015; 
Macarthur, 2015). By enabling closed-loops product systems, the CE advocates for a paradigm shift in the way 
we produce, distribute and consume goods and services, while, at the same time, creating new opportunities 
for economic growth and social prosperity (Bourguignon, 2016; Ghisellini et al., 2016; Kalmykova et al., 2018).  
Understanding how these systemic transformations could impact regional economies and how different areas 
will evolve towards circular trajectories is one of the major challenges that policy-makers dealing with cohesion 
policies are currently faced with (Fratini et al., 2019). 
 
Monitoring and assessing such structural changes is critical, both from a macroeconomic perspective – to 
assess whether sufficient action has been taken, as well as from a local perspective – to support local decision-
makers in setting new priorities towards the long-term objectives of a circular economy (Corvellec et al., 2013; 
van Buren et al., 2016). Within the circular economy action plan, the European Commission has implemented 
a monitoring framework composed of a set of key indicators that capture the main underlying elements of the 
CE. These are grouped into four stages and aspects including: production and consumption, waste 
management, secondary raw materials and competitiveness and innovation (European Commission, 2018). 
However, these indicators fail short in providing territorial evidence at sub-national levels: all the indicators 
are provided at National or aggregated pan-European levels. Hence, additional efforts are needed to calculate, 
derive or estimate circular economy indicators at sub-national levels. 
 
In this paper we will focus on Domestic Material Consumption (DMC), by far the most used and relevant 
indicator informing on material use by a given economy (Steinberger et al., 2010; Weisz et al., 2006). The DMC 
and its fours subcategories (i.e. biomass, mineral ores, fossil fuels and construction materials), is one of the 
key indicators included in most circular economy monitoring frameworks, including the one in the EU (see e.g. 
European Commission, 2018; PBL, 2018), and environmental reporting systems (EUROSTAT, 2018).  
 
The DMC indicator is defined as the sum of domestic material extraction and importations, minus exportations 
(EUROSTAT, 2018). It is calculated according to the Economic-Wide Material Flow Accounting (EW-MFA), 
which is the most wide-spread and standardized methodology to account material flows on a national or global 
scale (Fischer-Kowalski et al., 2011). DMC measures the quantity of resources consumed by a given spatial unit 
and, despite it presents some shortcomings (Giljum et al., 2014; Wiedmann et al., 2015), it is often used to 
conduct quantitative analyses on the circulartity and efficiency of economies (Haas et al., 2015; Talmon-Gros, 
2014). Its combination with population, surface area and/or GDP variables permits to delineate socio-
metabolic profiles of territories providing important information in understanding future territorial trajectories 
(Baynes and Musango, 2018; Krausmann et al., 2009; Steinberger et al., 2013). As an example, material 
productivity (i.e. GDP/DMC) is the indicator of reference used at the national policy level to measure the 
relative dematerialization of an economy (UNEP, 2016; Wiedmann et al., 2015). 
 

Thanks to the high degree of methodological standardization and the quality of the underlying primary data, 

the comparability of DMC indicators across countries and over time is high (Fischer-Kowalski et al., 2011). 

Given that the EW-MFA methodology has been primarily developed to assess material flows of national and/or 

global economies (Schandl and West, 2010; Steinberger et al., 2010; Weisz et al., 2006), in general, harmonised 

data on material flows and associated indicators are only available at aggregated national level (EUROSTAT, 

2018; Gierlinger and Krausmann, 2012; Krausmann et al., 2011). By contrast, local/regional implementations 

exhibit a great variability in terms of methods and approaches. Scholars have been proposing methods and 

estimating material flows at sub-national levels for many years (see e.g. Wolman (1965) for an early example 

of MFA in the city of New York). More recently, studies have been conducted, among others, on Paris and its 
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region (Barles, 2009), Czech regions (Kovanda et al., 2009), Lisbon (Niza et al., 2009; Rosado et al., 2014), 

Amsterdam (Voskamp et al., 2017) and Spanish regions (Sastre et al., 2015), to cite only a few recent examples. 

These studies defined a solid knowledge base on the regional and urban metabolism in the EU. However these 

works embrace a large spectrum of approaches and scopes (see e.g. Horta and Keirstead, 2017) that makes 

inter-regional comparison biased (Kovanda et al., 2009; Rosado et al., 2014). In addition, these approaches 

generally did not attempt to explain the relation between material consumption and their potential drivers, 

even if some studies present interesting findings in this respect (see e.g. Courtonne et al., 2015; Steinberger 

et al., 2010).  

 

To a large extent, this diversity of approaches is explained and driven by data availability in each setting. One 

of the main limitations for the application of the EW-MFA approach at local and regional levels is the lack of 

statistical information on material flows at these levels (Hammer et al., 2003; Sastre et al., 2015; Voskamp et 

al., 2017). The high costs associated with data collection at lower territorial levels, alongside the limited 

capacity of intervention and incentives offered to regional and local governments to monitor and minimize 

material consumption in their own jurisdictions, make official statistics on material flows at sub-national levels 

a rare exception. Besides, the small number of datasets available at these levels are not collected in a 

harmonised way, undermining comparability. This represents an important limitation for the characterisation 

of the metabolic profiles of territories under a consistent approach and, therefore, it hinders the design of 

place-based policies targeting socio-metabolic processes (Binder et al., 2009; Kennedy et al., 2015; Ten Brink 

et al., 2017).  

 

This study proposes a method to estimate the DMC in the EU and EFTA countries at regional level1. Our goal 

was to develop and apply a methodology to estimate regional data that: (1) uses a consistent approach that 

recognises territorial heterogeneity but at the same time permits comparability across different years and 

between regions, (2) accounts for multiple correlation between materials consumption and its key drivers, (3) 

allows a certain degree of automatization and thus the estimation of larger datasets at once and the 

application to other indicators. Based on the STIRPAT approach, which seeks to explain resource consumption 

in terms of population, affluence and technology (Dietz et al., 2007; York et al., 2003), we estimate DMC figures 

at regional scale (NUTS 2 level) 2 for two time periods (2006 and 2014). Our study differs from past studies in 

terms of coverage and exhaustiveness (data for all EU regions plus Norway and Switzerland regions), and also 

consistency (figures are estimated through a single and stable approach that allows inter-regional 

comparisons). In addition, the high systematisation level of the methodology permits its application to other 

fields and/or indicators, paving the way for further comparative analyses and therefore advancing the general 

knowledge based so far on city-specific case studies. 

 

The article is structured as follows. In the next section, we present the data sources and methods applied. In 

particular, we first provide an overview of data sources at both, national (NUTS 0) and regional (NUTS 2) levels, 

and then, we describe the three-steps methodological approach based on (1) model specification, (2) 

parameters optimization and (3) regional data extrapolation. In Section 3 we present our DMC regional 

estimates for 280 European regions, including a comparison with DMC figures provided by other peer-

reviewed studies. Finally, in Section 4 we summarise the main conclusions about the contributions of our 

method to the estimation of DMC at sub-national levels and conclude with some perspectives for future 

research needs. 

                                                           
1 Hereafter the terms “regions” and/or “regional level” will refer specifically to the NUTS-2 level. 
2 The Nomenclature of Territorial Units for Statistics (NUTS) is a geocode standard for referencing the subdivisions of countries for 
statistical purposes. The standard is developed and regulated by the European Union, and thus only covers the member states of 
the EU in detail. 
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2. Materials and methods 

2.1. Data 

For the purpose of this paper we built a dataset that includes DMC, Gross Domestic Product (GDP) – measured 

in purchasing power standard (PPS) –, population (Pop), and surface area (Area). From these variables we 

computed the GDP per capita (GDP/Pop), population density (Pop/Area), DMC per capita (DMC/Pop) and DMC 

intensity (DMC/GDP). Data were downloaded from the Eurostat “nama_10r_2gdp”, “demo_r_d3dens”, and 

“env_ac_mfa” databases. Missing data have been retrieved from OECD and/or national statistical databases. 

We accessed data on March 2019 and downloaded data using the R package “Eurostat” v.3.3.5 (Lahti et al., 

2019). We downloaded data for 2006 and 2014 at both, national (NUTS 0) and regional (NUTS 2) levels. We 

selected 2006 and 2014 as reference for two reasons. Firstly, because it covers a significant time-span, allowing 

to better capture potential structural changes across countries. Secondly, because data availability is 

acceptable: 2006 and 2014 are the oldest and the most recent year where reasonably complete data sets were 

available3. 

 

Table 1 presents an overview of selected variables across EU countries. As it can be seen, countries exhibit a 

large heterogeneity in term of both socio-economic and physical factors. For example, Germany recorded the 

highest values for GDP and population. These are 265 and 188 times bigger than those recorded for the smaller 

country in our dataset, Malta. On the other hand, this country shows the highest population density across EU 

countries (1.375 hab/km2). This is a clear example of how geographical features may contribute to define the 

socio-economic structure of territories and it also explains why scholars often distinguish between extensive 

variables (e.g. area, population and GDP) and intensive variables (e.g. income per capita and population 

density), when describing territorial patterns of material use (Steinberger et al., 2010; Weisz et al., 2006).  

 
Table 1: Overview of selected data for EU Countries (2014) 

Country code Country name GDP  Pop  Area DMC  GDP/Pop Pop/Area  DMC/Pop  DMC/GDP  

AT Austria 307299 8508 83878 176002 36120 104 20.69 0.57 

BE Belgium 368671 11181 30666 147283 32973 370 13.17 0.40 

BG Bulgaria 93219 7246 110996 135627 12865 66 18.72 1.45 

CH Switzerland 373646 8140 41287 99293 45905 205 12.20 0.27 

CY Cyprus 19090 858 9253 11928 22249 93 13.90 0.62 

CZ Czechia 250275 10512 78871 160384 23808 136 15.26 0.64 

DE Germany 2810712 80767 357569 1362428 34800 227 16.87 0.48 

DK Denmark 199236 5627 42925 123755 35406 132 21.99 0.62 

EE Estonia 27649 1316 45336 37173 21013 30 28.25 1.34 

EL Greece 215454 10927 131694 138772 19718 83 12.70 0.64 

ES Spain 1154784 46512 505983 391232 24828 93 8.41 0.34 

FI Finland 166925 5451 338411 169434 30621 18 31.08 1.02 

FR France 1959963 65942 638475 777286 29722 104 11.79 0.40 

HR Croatia 68900 4247 56594 38582 16224 75 9.08 0.56 

HU Hungary 185607 9877 93012 127209 18791 106 12.88 0.69 

IE Ireland 175052 4638 69947 96844 37744 68 20.88 0.55 

IT Italy 1616043 60783 302073 474853 26587 201 7.81 0.29 

LT Lithuania 60890 2943 65284 43503 20686 47 14.78 0.71 

LU Luxembourg 41674 550 2595 11914 75815 215 21.67 0.29 

LV Latvia 35078 2001 64586 41415 17526 32 20.69 1.18 

MK North Macedonia 20598 2066 25434 19189 9971 83 9.29 0.93 

                                                           
3 2006 is the first year in which Norway reports on DMC, while the years after 2014 present many estimated DMC figures. 
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MT Malta 10620 429 316 5246 24731 1375 12.22 0.49 

NL Netherland 604157 16829 37378 174377 35899 501 10.36 0.29 

NO Norway 248133 5108 323381 146596 48578 17 28.70 0.59 

PL Poland 717249 38018 311928 654385 18866 124 17.21 0.91 

PT Portugal 220362 10427 92227 154435 21133 113 14.81 0.70 

RO Romania 302406 19947 238398 450860 15160 87 22.60 1.49 

SE Sweden 332467 9645 447424 221699 34471 24 22.99 0.67 

SI Slovenia 46889 2061 20273 26989 22750 102 13.09 0.58 

SK Slovakia 115525 5416 49035 68069 21331 111 12.57 0.59 

UK United Kingdom 1938495 64351 244381 589558 30124 266 9.16 0.30 

Note: Bold figures represent max and min values. Gross Domestic Product (GDP) is measured in purchasing power standard 

(PPS); population is measured in 1000 inhabitants;  area is measured in square kilometres; Domestic Material Consumption 

(DMC) is measured in 1000 tonnes; income (GDP/Pop) is measured in GDP PPS per capita; population density (Pop/Area) 

is measured in inhabitants per square kilometres; DMC per capita (DMC/Pop) is measured in tonnes per capita; DMC 

intensity (DMC/GDP) is measured in tonnes per 1000 GDP PPS. 

Source: own elaboration based on Eurostat. 

 

The heterogeneity observed at national level increases when we move the focus to the regional scale. Figure 

1 illustrates the Lorenz curve of GDP, Pop and Area observed at regional level, while Table 2 provides some 

summary statistics, including mean, coefficient of variation and the variation factor, on the same data. 

According to the figures, both GDP and Pop showed very skewed distribution. Around 20% of EU regions 

produce almost 50% of total GDP. Similar percentages hold for population data. Regions with the highest GDP 

per capita, such as Inner London-West (UK), show values that are 21 times higher than those of the regions 

situated in the lower rank (e.g. Bulgarian and Romanian regions). However, absolute surface area is the 

variable more unevenly distributed, with only four regions (Nordic regions of Scandinavia plus Castilla y Leon 

(ES)) covering around 10% of total European surface. In terms of population density, greater agglomerations 

such as Inner London and Brussels regions, with more than 7000 inhabitants per square kilometres, contrast 

with very low-density regions, such as Upper Norrland (SE) and Nord-Norge (NO), with only 3 and 5 inhabitants 

per square kilometres, respectively. 

 
Figure 1: Lorenz curves of GDP, population, and surface 

 

Source: own elaboration. 

 
Table 2: Comparative statistics for EU regions 

Concept Level of analysis GDP/Pop Pop/Area DMC/Pop DMC/GDP 

Mean Countries 27949 168 16.32 0.67 

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

Equality

GDP

Pop

Area



5 
 

Regions 27462 452 n.a. n.a. 

CV Countries 0.46 1.47 0.38 0.50 

Regions 0.48 2.68 n.a. n.a. 

VF 
Countries 8 81 3.98 5.61 

Regions 21 3478 n.a. n.a. 

Variables 
Selected outliers 

Maximum  Minimum 

GDP/Pop  

Inner London - West (UK) 173032  North-western (BG) 8214 

Luxembourg (LU) 75571  Southern Central (BG) 8802 

Hamburg (DE) 57608  Nord-Est (RO) 9290 

Pop/Area 

Inner London - East (UK) 10780  Upper Norrland (SE) 3 

Inner London - West (UK) 10283  Nord-Norge (NO) 5 

Brussels (BE) 7393  Middle Norrland (SE) 5 

Note: GDP/Pop is measured in GDP PPS per capita; Pop/Area is measured in inhabitants per square kilometres; DMC/Pop 

is measured in tonnes per capita; DMC/GDP is measured in tonnes per 1000 GDP PPS. The mean refers to the mathematical 

average of the sample; The coefficient of variation (CV) = sd/mean. The variation factor (VF) = Max/Min. 

Source: own elaboration. 

Attention should also be paid on the selection of Pop/Area and GDP/Pop to analyse DMC patterns, which is 

not random. In fact, both variables are acknowledged as synthetic indicators that embody historical socio-

metabolic characteristics of territories (Fischer-Kowalski et al., 2013). The former is a key variable in explaining 

various aspects related to socio-metabolic regimes and their transition: a high population density across larger 

territory presupposes a long history of intensive agricultural colonization (Krausmann et al., 2008). Notice that 

it takes many centuries of an agrarian regime to bring about a high population density, and there is no densely 

populated country without such a long agrarian history (Krausmann et al., 2008). On the other hand, if 

population density is low, this might be due to either historical reasons (i.e., no long, uninterrupted history of 

agrarian colonization), or geophysical reasons (such as adverse natural conditions, e.g., aridity, cold climate, 

or adverse terrain). Population density not only reflects geophysical conditions and agricultural history, it also 

systematically differentiates between areas of high and low per capita availability of natural resources (Weisz 

et al., 2006). The per capita endowment of natural resources, being these mineral resources, biomass, or 

livestock farming, is higher in sparsely populated regions than in regions with high population density. This is 

further enhanced by the historical argument outlined above. Countries with a high population density usually 

have a longer history of resource exploitation and hence have often exhausted their domestic resource base 

(Krausmann et al., 2008). Finally, sparsely populated countries require a higher input of energy and materials 

for the same level of supply of services per person compared to densely populated countries, therefore 

population density can be expected to have a significant impact on metabolic profiles (Weisz et al., 2006). 

GDP/Pop, on the other hand, is a proxy of the productive structure of a region. In general, economic activities 

belonging to the tertiary sector are the most productive ones, and these can generate up to 86% of the total 

gross value added of metropolitan areas (Duarte, 2016). Therefore, we expect that regions with above-average 

income level represent economies specialised in tertiary sector, while lower income level would suggest 

economy mainly oriented to agricultural and/or industrial sectors. However, we also need to keep in mind 

some limitations when linking economic development and resource consumption. In fact, there is evidence 

that highly developed economies outsource material-intensive products to other countries (Giljum et al., 

2014). Roughly speaking, richer regions (i.e. metropolitan and capital regions) might be better-off when 

looking to material consumption figures since it is likely that they import material-intensive products and/or 

semi-finite products instead of producing them in-site. 

 

2.2. Methods 
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As shown graphically in Figure 2, our methodology proposal is a three-steps econometric approach based on: 

(1) global model specification, (2) national level parameter optimization and (3) regional extrapolation. The 

model specification step (1) focuses on the identification of the best regression model to describe DMC figures 

at country or national level. This phase goes from the very early phases of model building, which includes 

variables selection and theoretical foundations, to spatial data analyses aiming to detect potential spatial 

correlations. The main output of this first task is the estimation of the global parameters (𝛽𝑔) (i.e. the 

regression coefficients observed between DMC and drivers at European level). Once the 𝛽𝑔have been 

identified, in step 2 we calibrate them in order to reflect the specific “metabolic-regimes” of the different 

countries. This calibration is implemented by an optimization algorithm that automatically adjusts the 

estimated parameters for each country. This generates a set of country-specific parameters (𝛽𝑐𝑠). Finally, in 

phase (3) we extrapolate the regional figures for DMC by applying 𝛽𝑐𝑠 on the selected explicative variables, 

which are now measured at the regional level. 

 
Figure 2: Methodological approach to estimate regional figures 

 

Note: bold terms refer to the output of each phase; upper case letters (Y-X) refer to variables measured at national level 

(NUTS 0); lower case letters (y-x) refer to variables measured at regional level (NUTS 2). 

Source: own elaboration. 

 

Our proposal differs from similar data regionalization studies based on econometric approaches in the fact 

that we are here applying an optimization algorithm that accounts for territorial heterogeneity within the 

sample. While previous studies often addressed the different territorial regimes by using a switching 

regression approach (see e.g. Chasco (2003)), we implemented an algorithm that automatically adjusts global 

estimated parameters to the “metabolic-profile” of each country. Our approach not only overcomes the 

limited accessibility to data that often limits the application of traditional EW-MFA metabolism studies at 

regional and local level, but it also addresses two issues that most of the existing studies have so far ignored, 

namely: (1) the issue of national regimes dependency and (2) the multiple correlation accounting problem. 

When it comes to item (1), it should be considered that correlations between drivers and response variable 

might not only vary across scales, but also across observations belonging to different “spatial regimes”. In 

particular, when considering the nations-to-regions extrapolation, it is likely that regional drivers are also 

influenced by their own national regimes and not only by highly-aggregated supra-national structures. For 

instance, softer territorial factors (e.g. governance and administrative traditions, milieus, etc.) operating in 

nation A, which frequently are not directly captured by the explanatory drivers in regression equations, could 

expectedly affect the respective regions in a different way from how these same factors affect regions in nation 

B. In practice, this means that similar underlying drivers can affect regions in different and diverse ways, 

depending on the specific socio-metabolic conditions defined by the upper governance structures.  

Regarding item (2), most local metabolism studies use a single proxy factor (or driver) to estimate missing data 

(Barles, 2009; Courtonne et al., 2015,). These decisions are often based on bold hypothesis like the assumption 

that “consumption is almost proportional to population”. However, a number of correlation studies (Baynes 
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and Musango, 2018; Steinberger et al., 2010) assert that this statement only holds for material consumption 

flows, since other material flows such as e.g. material extraction can also (and above all) depend on the 

geophysical characteristics of regions (Weisz et al., 2006). 

 

 

Step 1: Model specification 
 

The theoretical foundation of our empirical model is based on the STIRPAT analysis (STochastic Impacts by 

Regression on Population, Affluence and Technology) conducted on carbon emissions and the ecological 

footprint (York et al., 2003) and adopted later by, inter alia, Steinberger et al. (2010) to understand and 

quantify the relations between material consumption flows, socioeconomic drivers and geophysical factors, 

and Baynes and Musango (2018) to predict global material consumption in 2050 (see also Dietz et al., 2007). 

The STIRPAT approach seeks to explain environmental impact (I) of a given socio-economic system in terms of 

population (Pop), affluence (A) and available technology (T). Affluence stands for the level of consumption and 

it is generally approximated by GDP per capita (GDP/pop). Technology, in turn, can be interpreted as the 

materiality of affluence in lifestyle, ownership of durable goods and access to infrastructure and services such 

as buildings, roads, water and electricity supply (Baynes and Musango, 2018). In some studies, (see e.g. Dong 

et al., 2017), Technology is approximated by material intensity (i.e. DMC/GDP). However, given the uncertainty 

surrounding the identification of an efficient proxy for T, this component is commonly omitted in most modes. 

Its effects is captured, by default, in the error term (e) (Dietz et al., 2007).  

 

The STIRPAT model has been applied in the past using both total DMC or its intensive expressions, i.e. 

DMC/Pop and DMC/GDP (Baynes and Musango, 2018; Dietz et al., 2007). Although we expected that the 

intensive form is more appropriate since it allows to better capture the relationship between DMC and its 

drivers, avoiding the bias produced by the absolute size of each country, we first conducted an analysis on 

both specifications. These are: (a) 𝐿𝑜𝑔 (
𝐷𝑀𝐶

𝐺𝐷𝑃
) = 𝑐𝑜𝑛𝑠𝑡 + 𝛽1𝐿𝑜𝑔 (

𝑃𝑜𝑝

𝐴𝑟𝑒𝑎
) + 𝛽2𝐿𝑜𝑔 (

𝐺𝐷𝑃

𝑃𝑜𝑝
) + 𝑒 for the intensive 

mode and (b)  𝐿𝑜𝑔(𝐷𝑀𝐶) = 𝑐𝑜𝑛𝑠𝑡 + 𝛽1𝐿𝑜𝑔 (
𝑃𝑜𝑝

𝐴𝑟𝑒𝑎
) + 𝛽2𝐿𝑜𝑔 (

𝐺𝐷𝑃

𝑃𝑜𝑝
) + 𝛽3𝐿𝑜𝑔 (𝑃𝑜𝑝) + 𝑒 for the extensive 

mode. Where 𝛽1,2,3 are the parameters to be estimated respectively for population density (
𝑃𝑜𝑝

𝐴𝑟𝑒𝑎
), GDP per 

capita (
𝐺𝐷𝑃

𝑃𝑜𝑝
),and  population (Pop), while e is the error term. Logarithmic forms were used to reduce skewness 

and approximate linear relationships between variables (Steinberger et al., 2010). Notice also that logarithmic 

forms also allow to interpret parameters’ coefficient (𝛽) as “ecological elasticities” (York et al., 2003). Then, if 

|𝛽| >1 the relationship is elastic, meaning that as the predictor X increases, Y increases, and it does so at a 

faster rate than X. If |𝛽| <1, the relation is inelastic, i.e.  as X increases, the response Y increases as well, but a 

slower rate than X. When |𝛽| =1, the relation is proportional. 

 

Table 3 shows the regression results for both, (a) and (b) models for years 2006 and 2014. Overall, the STIRPAT 

approach is quite successful  at explaining cross-country differences in material consumption for both models, 

and results are in line with past studies (Dietz et al., 2007; Steinberger et al., 2010). As expected, with a 

coefficient close to 1, the most significant explanatory variable is total population, indicating that DMC is 

almost exactly proportional to population size. Pop/Area on the other hand is inversely correlated with 

material consumption in both models. To a certain extent, this can be explained by assuming that denser areas 

optimize material consumption (think for example on how the construction of transport infrastructures may 

have a greater impact on per capita values when built in low-density areas). Besides, denser regions are 

typically regions where material intensive activities such as primary and secondary transformations of raw 

materials are rarely conducted (Weisz et al., 2006). However, the fact that the coefficient is almost inelastic 

suggests that the mitigation effect of agglomeration economies on DMC remains, in any case, limited. Quite 

interestingly, GDP/Pop assumes opposite signs depending on the model, clearly suggesting income elasticity. 

If we first analyse the relationship between GDP/Pop and DMC, we observe that richer countries tend to 
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consume more resources than the poorer ones. However, a deeper analysis showed that this connection has 

been losing strength in Europe during the last 15 years4, probably linked to underlying income convergence 

processes across European countries. On the other hand, as initially expected, the GDP/Pop parameter is 

significant and inversely correlated with the DMC/GDP. In fact, the decrease in material intensity in recent 

decades is largely explained by the steady growth of GDP, as the DMC has decreased at a much lower pace. 

  

Residuals generated from both models respect normality condition (Jarque-Bera test and Shapiro-Wilk test 

not significant at 1%), however we noted that model (a) seems to suffer residual heteroskedasticity for 2006, 

while model (b) seems to suffer heteroskedasticity for 2014 (see Breusch-Pagan Koenker’s version statistics in 

Table 3). Even if we could easily overcome the heteroskedasticity problem by applying robust errors, this would 

have important implications in the next step. In fact, a critical factor in the following optimization phase are 

the standard errors that define the confidence intervals. Since the optimization phase depends on the 

confidence intervals of estimated parameters, it is only reliable in presence of tied intervals, or in other words, 

with highly significant parameters. The use of robust errors would increase the intervals used as a boundary 

during optimization. We also tested for non-linear combinations of drivers by the RESET test. Results seems to 

suggest that the models are correctly specified. Finally, although we initially considered to pool the two cross-

sections in a unique sample, according to the similarity of figures for 2006 and 2014, the Chow test suggested 

a structural change between the two periods. We hence decided to keep the two cross-sections as separated 

analyses. 

 

Table 3: OLS regressions results of model (a) and (b) 

  

(a) 
DMC/GDP 

(b) 

DMC 

  2006 2014 2006 2014 

Constant 7.73*** 7.374*** -5.097*** -5.415*** 

  (1.052) (1.289) (1.157) (1.350) 

Pop/Area -0.225*** -0.251*** -0.216*** -0.241*** 

  (0.051) (0.057) (0.049) (0.055) 

GDP/Pop -0.688*** -0.663*** 0.301** 0.339* 

  (0.105) (0.129) (0.101) (0.123) 

Pop   0.942*** 0.931*** 

    (0.033) (0.037) 

N 30 31 30 31 

R2 0.721 0.664 0.969 0.960 

F-statistic 34.9 27.62 274.7 217.8 

JB X-squared 0.585 0.539 0.305 0.406 

SW  0.953 0.987 0.973 0.986 

B-P Koenker 6.763* 2.904 4.152 7.957* 

RESET 0.900 1.126 0.792 0.470 

Chow-test 2.991** 2.442 * 

Note: ‘***’ significant at 1%;  ‘**’ significant at 5%;  ‘*’ significant at 10%; Standard errors in parenthesis; JB: 

Jarque Bera; SW: Shapiro-Wilk; BP: Breusch-Pagan test using Koenker’s studentized version; RESET test applied 

for quadratic and cubic powers; In 2006 figures for North Macedonia were not available. 

Source: own elaboration.  

 

For the following analyses we selected the model (a), which, according to the regression results, presents the 

best statistical properties for the most recent year. In addition, the use of variables in their intensive forms 

allowed use to test the model for spatial correlation, which, from a first overview of spatial distribution of 

residual, seemed to affect the model. In fact, as it can be seen from Map 1, a sub-estimation seems occurring 

                                                           
4 The same regression showed a GDP/Pop coefficient equal to 0.538*** for 2000, 0.301** for 2006 and finally 0.339* for 2014. 
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mostly in the bigger western and southern economies of Europe (i.e. United Kingdom, France, Italy and Spain), 

and an over-estimation in eastern European countries (Romania, Estonia, Bulgaria and Poland). One possible 

explanation for this spatial pattern could be the presence of spatial correlation between the economies based 

on their geographical proximity, however the Moran’s I5 statistic performed on the residual presented a Z-

score not significant (-0.045). This is clear indication that there is no formal evidence of spatial autocorrelation 

in our sample. 

 

Map 1: Residual distribution of model (a) 

 
Source: own elaboration 

 

Based on all the tests performed6, we conclude that model (a) is correctly specified and can be applied in the 

optimization phase to estimate country-specific parameters. 

 

Step 2: Parameters optimization 
 

                                                           
5 Moran's I is a measure of spatial autocorrelation defined as: 𝐼 =

𝑁

𝑊

∑ ∑ 𝑤𝑖𝑗(𝑥𝑖−�̅�)(𝑥𝑗−�̅�)𝑗𝑖

∑ (𝑥𝑖−�̅�)2
𝑖

, where N is the number of countries indexed 

by 𝑖 and 𝑗; x is the variable of interest DMC/GDP;  �̅� is the mean of 𝑥;  𝑤𝑖𝑗 is a matrix of spatial weights with zeroes on the diagonal 

and 𝑊 is the sum of all 𝑤𝑖𝑗. Values of 𝐼 usually range between -1 to +1. For statistical hypothesis testing, Moran’s 𝐼 values can be 

transformed in Z-scores and compared with the expected value of Moran’s I under null hypothesis of no spatial correlation that is 

E(I)=(-1)/(N-1). Values significantly below -1/(N-1) indicate negative spatial autocorrelation and values significantly above -1/(N-1) 

indicate positive spatial autocorrelation. The value of 𝐼 might also be conditioned by the assumptions built into the spatial-weights 

matrix 𝑤𝑖𝑗 so that it is common practice to test different weighting matrixes to check (i) that all matrixes converge, to some extent, 

to the same hypothesis, and (ii) to identify and select the weighting matrix that better responds to specification tests. 
6 Besides the global spatial autocorrelation tests conducted on residuals, we also conducted a LISA analysis to see whether the spatial 
pattern of over and under predictions provides clues on potential countries clustering.  The LISA map suggested the presence of two 
clusters: one for material-intensive countries and the other for capital-intensive ones. We made an attempt to include such clusters 
within the regression as factor variables, however the final results did not show significant improvements. Therefore, we favoured 
the simpler version. 
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The parameters 𝛽𝑔 for 
𝑃𝑜𝑝

𝐴𝑟𝑒𝑎
  and 

𝐺𝐷𝑃

𝑃𝑜𝑝
 estimated in step 1 are global, that is to say, they apply indifferently to 

all countries, without taking into account any kind of country-specific regimes being these sociological, 

economic and/or geophysical. However, it is well-known that the DMC of an economy is strongly related with 

the contextual factors characterising the territory. For instance Dong et al. (2017) distinguished between 

developing, primary developed and mature industrialized countries, while Steinberger et al. (2013) highlighted 

the difference between the metabolic regime of China and Germany. Figure 3 shows a scatterplot of DMC per 

capita and GDP per capita for a sample of European countries over the 2000-2015 period. The observations 

for each country depict distinctive metabolism regimes. For example, economies such as Germany and 

Switzerland, are characterised by a rather stable DMC/Pop despite a growing GDP/Pop. The economies of 

France and United Kingdom show a rather declining pattern in DMC/Pop vs GDP/Pop (i.e. declining material 

consumption per capita and increasing GDP per capita). In contrast, expanding economies such as Poland and 

Romania show a DMC/Pop that grows at similar pace as GDP/Pop. Therefore, the use of global parameters 

computed at European scale would likely produce unrealistic regional estimates since these do not account 

for the observed heterogeneity in national metabolic regimes. 

 

Figure 3: Examples of socio-metabolic regimes at country level. 

 
Note: figures are in logarithmic forms. Fitted lines are generate by OLS regressions for each country. 

Source: own elaboration; 

 

We propose an optimization procedure that automatically adjusts global parameters to country-specific 

structures. This systematisation is a pragmatic way to reflect countries regimes and overcome the poor data 

context that would otherwise strongly limit the application of more elaborated methods, like the switching 

regressions approach (Chasco, 2003; Quandt, 1958). The optimization algorithm, which is based on the general 

nonlinear programming problem (Ye, 1988), has been implemented in R through the “Rsolnp” Package 

(Ghalanos and Maintainer, 2015) and can be defined as: 

Min 𝑓(𝑥) such that: 
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𝑙𝛽𝑔
≤ 𝛽𝑔 ≤  𝑢𝛽𝑔

 

𝑓(𝑥) = 𝑌𝑛 
 

Where  𝑓(𝑥) is the result of the regression from model (a); 𝛽𝑔 are the estimated global parameters for 
𝑃𝑜𝑝

𝐴𝑟𝑒𝑎
  

and  
𝐺𝐷𝑃

𝑃𝑜𝑝
; [𝑙𝛽𝑔

, 𝑢𝛽𝑔
] are the respective confidence intervals based on the standard errors; and 𝑌𝑛 the DMC/GDP 

observed at country level. Essentially, through this approach, we are allowing the parameters for 𝛽𝑔 to vary 

within their confidence interval such that for each country the estimated DMC/GDP will match the real 

DMC/GDP. In this way, the  𝛽𝑔 coefficients are calibrated to better capture the country-specific regime. Table 

4 shows the estimated parameters for all countries on years 2006 and 2014. 

 

Table 4: Country-specific parameters generated by the optimization algorithm 
 

Global parameters (βG)  
2006 2014  

Income Pop. density Income Pop. density 

Coefficients -0.689 -0.225 -0.663 -0.251 

Confidence interval (5%) -0.903 -0.474 -0.329 -0.122 -0.923 -0.400 -0.367 -0.134  
Country-specific parameters (βcs) 

GEO code Income Pop.  density Income Pop. density 

AT -0.670 -0.223 -0.646 -0.249 

BE -0.678 -0.224 -0.655 -0.250 

BG -0.670 -0.223 -0.630 -0.248 

CH -0.723 -0.229 -0.685 -0.253 

CY -0.668 -0.223 -0.670 -0.251 

CZ -0.675 -0.224 -0.654 -0.250 

DE -0.689 -0.225 -0.645 -0.249 

DK -0.649 -0.221 -0.634 -0.248 

EE -0.678 -0.224 -0.626 -0.248 

EL -0.706 -0.227 -0.678 -0.252 

ES -0.684 -0.225 -0.721 -0.256 

FI -0.663 -0.224 -0.643 -0.250 

FR -0.720 -0.229 -0.691 -0.253 

HR -0.711 -0.228 -0.707 -0.255 

HU -0.694 -0.226 -0.669 -0.251 

IE -0.637 -0.221 -0.656 -0.250 

IT -0.697 -0.226 -0.711 -0.256 

LT -0.726 -0.229 -0.678 -0.252 

LU -0.669 -0.223 -0.649 -0.249 

LV -0.683 -0.225 -0.649 -0.250 

MK n.a. n.a. -0.687 -0.253 

MT -0.681 -0.224 -0.624 -0.245 

NL -0.712 -0.229 -0.672 -0.252 

NO -0.716 -0.227 -0.666 -0.251 

PL -0.687 -0.225 -0.637 -0.248 

PT -0.672 -0.223 -0.657 -0.250 

RO -0.672 -0.223 -0.611 -0.246 

SE -0.720 -0.227 -0.668 -0.251 

SI -0.672 -0.223 -0.674 -0.252 

SK -0.703 -0.227 -0.674 -0.252 

UK -0.716 -0.229 -0.693 -0.254 

Source: own elaboration 
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Step 3: Data extrapolation and reconciliation 

 

The next step in our procedure consists on the direct application of the country-specific parameters for 
𝑃𝑜𝑝

𝐴𝑟𝑒𝑎
  

and  
𝐺𝐷𝑃

𝑃𝑜𝑝
 for model (a) to the exogenous variables measured now at the regional (NUTS 2) level, generating 

regional DMC estimates (i.e. from eq. 1 to eq. 2): 

 

𝐿𝑜𝑔 (
𝐷𝑀𝐶

𝐺𝐷𝑃
)

𝑖
= 𝑐𝑜𝑛𝑠𝑡 + 𝛽𝑔𝐿𝑜𝑔 (

𝑃𝑜𝑝

𝐴𝑟𝑒𝑎
)

𝑖
+ 𝛽𝑔𝐿𝑜𝑔 (

𝐺𝐷𝑃

𝑃𝑜𝑝
)

𝑖
+ 𝑒 ;                          𝑐𝑜𝑢𝑛𝑡𝑟𝑦 𝑖 = 1,2, … 31;        (1)                                 

 

𝐿𝑜𝑔 (
𝐷𝑀𝐶

𝐺𝐷𝑃
)

̂

𝑗
= 𝑐𝑜𝑛𝑠𝑡 + (𝛽𝑐𝑠)𝑖 𝐿𝑜𝑔 (

𝑃𝑜𝑝

𝐴𝑟𝑒𝑎
)

𝑗
+ (𝛽𝑐𝑠)𝑖 𝐿𝑜𝑔 (

𝐺𝐷𝑃

𝑃𝑜𝑝
)

𝑗

+ 𝑒 ;    𝑟𝑒𝑔𝑖𝑜𝑛 𝑗 = 1,2, … 280;       (2) 

                                                         𝑐𝑜𝑢𝑛𝑡𝑟𝑦 𝑖 = 1,2, … 31;                                 
 

Where (1) represents the regression model (a) estimated at EU level, and (2) represents the country-specific 

regression models applied to each country in order to extrapolate regional (
𝐷𝑀𝐶

𝐺𝐷𝑃
)

̂
. As it can be seen in (2) we 

substitute 𝛽𝑔 with 𝛽𝑐𝑠, and the variables (
𝑃𝑜𝑝

𝐴𝑟𝑒𝑎
)  and (

𝐺𝐷𝑃

𝑃𝑜𝑝
) with their equivalents measured at regional level. 

 

In general, the only reliable way to assess the validity of the estimates is to compare these with direct statistics 

for those same administrative areas (e.g. NUTS 2). However, since we estimated at once all regions within 

Europe, we can first check whether the sum of regional values for each country reflects the real national value. 

Even if this approach does not ensure that regional figures are correctly distributed within a country, it can 

provide some insights on the goodness of the model applied. In Table 5 we provide an overview of the deviation 

of results generated by (1) our approach and (2) the results that would have been generated by global 

parameters (𝛽𝑔) (i.e. without optimization procedure). According to the figures, the use of optimized 

parameters improves significantly the goodness of regional estimates, as these deviates significantly less from 

the real values. The perfect matching for countries having just one region (i.e. Republic of Macedonia, 

Lithuania, Latvia, Luxemburg, Estonia and Malta) simply indicates that the optimization algorithm adjusted the 

parameters to fit exactly the national value. 
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Table 5: Deviations of estimates from real values in the case of global- and country-specific approach  

 

(𝛽𝑔) (𝛽𝑐𝑠) 

Deviation for each country has been computed as (
𝐷𝑀�̂�−𝐷𝑀𝐶

𝐷𝑀𝐶
). Source: own elaboration 

 

Once the consistency of our regional estimates was confirmed, we performed a reconciliation of these values 

with the national figures. Reconciliation is a procedure that seeks to ensure coherence of results between 

different scales of analysis (Courtonne et al., 2015). In this specific study, reconciliation consisted on a rescaling 

the regional estimates to fit exactly the respective national values.  Mathematically,  �̃� =
�̂�𝑖∗ 𝑌

∑ �̂�𝑖 𝑛
𝑖=0

 where �̃� is the 

final rescaled regional estimate (i.e. DMC/GDP), ∑ �̂�𝑖
𝑛
𝑖=0  is the sum of regional estimated values 𝑦�̂�  of a country 

𝑌. The final results are presented in the following section, along with a discussion and a comparison of a set 

of estimated and real DMC values produced by previous studies for a sample of selected regions. 

 

3. Results and discussion 

 

Table 6 compares our results with DMC figures estimated by other metabolism studies for a sample of selected 

regions. Although the analyses differ in term of scopes, methods, approaches, timeframes and assumptions, 

a comparison of these studies with our results allows to assess the consistency of our estimates, as well as to 

understand and recognise the limitations of our method. 

 
Table 6: Estimates for selected regions and comparison with other studies  

Geo 
code 

Region name 

Our results 
DMC (t/cap) 

Other studies 

Sources 

2006 2014 DMC (t/cap) Year 

FR10 Ile de France 10.69 8.97 

7.10 2003 Barles (2009) 

11.85 2011 Duarte (2016) 

14.72 2000 Duarte (2016) 

15.50 2000 Pina et al. (2015) 
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DE30 Berlin 8.91 8.73 17.86 2011 Duarte (2016) 

DE60 Hamburg 12.44 12.06 
20.90 2011 Duarte (2016) 

12.10 2001 Hammer and Giljum (2006) 

PT17 Lisbon 16.23 10.91 

10.40 2005 Rosado et al. (2013) 

18.97 2011 Duarte (2016) 

17.10 2000 Pina et al. (2015) 

ES30 
Comunidad de 

Madrid 
15.55 5.90 

5.90 2010 Sastre et al. (2015) 

12.91 2011 Duarte (2016) 

UKD7 
Merseyside 
(Liverpool) 

7.93 5.87 8.32 2011 Duarte (2016) 

UKD3 
Greater 

Manchester 
8.26 6.06 9.05 2011 Duarte (2016) 

UKE2 
North Yorkshire 

(York) 
16.91 13.32 11.94 2000 Barret et al. (2002) 

NL32 
Noord-Holland 
(Amsterdam) 

10.69 9.80 16.00 2012 Voskamp et al. (2016) 

SE11 Stockholm 14.77 16.08 

19.19 2011 Duarte (2016) 

10.34 2011 Rosado et al. (2016) 

10.10 2011 Kalmykova et al. (2015) 

AT13 Wien 13.19 9.64 9.20 2003 Hammer and Giljum (2006) 

Mean 12.32 9.76 12.09   

Source: own elaboration 

 

Starting with the results for Ile de France (8.97 t/cap), we can see that our estimates are in line with the most 

recent studies, based on Input-Output analysis (Duarte, 2016; Pina et al., 2016). Moreover, similarly to these 

studies our estimates also suggest a decreasing trend on DMC in Ile de France between years 2006 and 2014. 

The major discrepancy is with Barles’ results. This can be justified by the different assumptions made by this 

author when characterising waste flows. Indeed, Barles considers waste as an exported material, which is 

consequently subtracted from the calculation of the domestic material consumption indicator. In turn, the 

EW-MFA framework considers waste material flowing to landfill as a material flow within the economy and 

thus includes it in the calculation of the DMC indicator. 

With respect to Hamburg, Berlin, Stockholm and Amsterdam, we also noted some divergences with previous 

studies. The difference for Hamburg might be explained by the so-called “Rotterdam Effect”. In commercial 

harbour areas, material flows tend to be overestimated due to trade exchanges and the difficult statistical 

allocation of transit goods. Still, our estimate for Hamburg are in line with those provided by Hammer and 

Giljum (Hammer et al., 2003).  In the case of Amsterdam, the difference between our estimates and those 

from previous studies could be justified by the inclusion of water flows in the analysis conducted by Voskamp 

and colleagues, which are normally excluded in standard EW-MFA statistics. The order of magnitude of water 

flows are much larger than other material flows, to a point that not only dominate the accounts, but also 

'dilute' the flows of other materials (EUROSTAT, 2018: 18). Finally, for the regions of Lisbon, Madrid, Liverpool 

and Manchester, all the estimated values are close to previous studies. 

Our conclusion from this evaluation fully confirms the hypothesis that the divergence between the various 

assessments strongly depends on the specific methods and underlying assumptions that are made. This said, 

in general, our results seem to be pretty much aligned with those from previous studies. 

Map 1 provides an overview of the regional DMC per capita in 2014 across Europe. Regions with large urban 

agglomerations and strong tertiary economies are those characterised by lower material consumption per 

capita (i.e. Ile de France, Madrid, London area etc.). As said before, this could be a natural consequence of the 

economic specialization in these areas, in contrast to the less densely populated areas. In fact, rural, 

peripherical regions feature greater availability of land for the cultivation of biotic resources and extraction 
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activities. Frequently, natural resources are pre-processed or pre-transformed locally as a strategy to minimise 

transport costs, which could increase the DMC intensity of these economies in comparison to other regions 

that only import or consume finished products.  

 

Again, regional economic specialization seems to have an impact on DMC per capita. As clearly shown on Map 

2, peripherical regions, which coincide largely with the Eastern regions, Southern Portugal, Ireland, Scotland 

and Scandinavia peninsula, tend to drive on material intensive sectors. Romanian regions feature among the 

ones with higher economic dependency on building and construction sector, many Polish regions keep large 

industrial facilities that process large amounts of materials, while the Scandinavian peninsula and Ireland are 

specialised in timber and livestock production, respectively. Similarly, interior regions are those characterised 

by more de-materialised economies thanks to a strong service and finance sector. 

 
Map 2: Quantile map of DMC per capita (T/CAP) in 20147 

 
Note: the three tonalities of green refer to sample quantiles corresponding to the three probability intervals [0% – 25%], 

[25% – 75%] and [75% – 100%]. The numbered scale reflects the DMC per capita measured in t/cap. 

Source: own elaboration 

 

4. Conclusion 

 

                                                           
7 We estimated also regional figures for 2006 but due to space limitation we present only the map for 2014.  
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This article presents a novel econometric modelling approach to derive regional estimates for the Domestic 

Material Consumption (DMC) indicator. The model was applied to more than 280 EU and EFTA regions (NUTS-

2 level) in two periods (2006 and 2014). Our results provide policy-makers with granular information on 

material consumption that would be otherwise unavailable for policy formulation. In particular, this input is 

critical to the design of place-based policies and strategies in support of circular economies at sub-national 

levels.  

The approach addresses several methodological caveats of previous studies. In particular, our method:  

• Provides harmonised and comparable figures: The limited number of regional metabolism studies and 
the lack of harmonisation among them undermines comparability between regions (Decker et al., 
2000). By applying a consistent and systematic approach, we provided a harmonised material 
consumption dataset at European regional level that is not only exhaustive (all EU and most EFTA 
regions are covered), but also comparable over time and across regions. This paves the way for 
comparative research that advances the general understanding of metabolic systems and the factors 
that influence them (Kennedy et al., 2015; Rosado et al., 2014) allowing decision-makers to acquire 
significant knowledge about the effects of measures and policies adopted in a region with those 
applied in other regions (Voskamp et al., 2017). 

• Accounts for correlation: Unlike similar studies where the extrapolation of larger regional datasets is 
based on simpler ratio-based normalization approaches, our method considers multiple correlations 
between material consumption and its potential drivers. Using correlations to extrapolate regional 
data not only provides regional estimates that better capture the magnitude of the relationship 
between drivers and material consumption, but also gives useful insights into how the relationship 
evolve over time, i.e. whether these are reinforcing or weakening. 

• Overcomes data constraints at sub-national levels: The lack of regional and local data is arguably the 
most important barrier to conduct local metabolism studies (Hammer et al., 2003; Sastre et al., 2015). 
This assertion can be extrapolated to many other policy domains as well. By taking advantage of 
available general statistical information and reflecting territorial heterogeneity by the optimization 
algorithm, we propose a method that can be sufficiently automated to permit the estimation of larger 
datasets at once. Furthermore, its systematisation makes it suitable for application to other territorial 
contexts, geographical scales, thematic domains and indicators. It provides a pragmatic but reliable 
solution to deal with data scarcity at sub-national levels.  
 

Moreover, our approach provides reliable estimates for DMC data. The comparison of our figures with 

previous studies on regional metabolism shows that, overall, the DMC values obtained through our method 

are consistent with those obtained by earlier studies adopting a bottom-up approach. 

 

Still, our method could be further improved in various ways. In this study we considered static indicators and 

annual explanatory variables (e.g. GDP and/or population in a specific year) to build our models. While these 

static variables are the best alternative to regionalise a given indicator at some point in time, such variables 

say little about the dynamics of change of the regionalised indicators. Further analyses might focus on the 

selection of progress variables such as population and/or income growth for a selected period instead of static 

time-cuts. This dynamic approach would allow to e.g. gauge the impact of specific drivers on material efficiency 

and better understand the impact of policies on material consumption. Similarly, it would be useful to compare 

our regional estimates with freight transport data to determine whether regions are genuinely decreasing 

their material footprint. This would allow to understand if territories are really decreasing their material 

consumption or simply “shifting the burden” to other areas (Marra Campanale and Femia, 2013; 

Satterthwaite, 2008). 

 

List of abbreviations 

CE Circular Economy 
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DMC Domestic Material Consumption 
DMC/Pop Domestic Material Consumption per capita 
DMC/GDP Domestic Material Consumption intensity 
EFTA European Free Trade Association 
EU European Union 
GDP Gross Domestic Product 
GDP/Pop Gross Domestic Product per capita 
Pop Population 
Pop/Area Population density 
PPS Purchasing power standard 
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