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Abstract

This paper introduces a novel estimator for the Poisson model with

dual binary endogenous explanatory variables, addressing the need to

quantify the effects of preferential economic integration agreements. We

develop a two-stage pseudo-maximum likelihood estimator and derive ex-

act analytical gradient matrices as well as Hessian matrices to improve

computational speed and eliminate approximation errors substantially.

Applying our approach to trade data, we find that preferential trade agree-

ments positively impact bilateral trade flows, while bilateral investment

treaties have a negative effect. Additionally, the positive interaction term

between these two treaties suggests that preferential trade agreements pro-

mote horizontal foreign direct investment.
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I. Introduction

Preferential economic integration agreements (PEIAs), such as preferential trade

agreements (PTAs), bilateral investment treaties (BITs), or double-taxation treaties

(DTTs), serve as vital policy tools for countries to enhance trade and welfare.

Consequently, assessing the effects of PEIAs on bilateral trade values has con-

tinued to be a central topic in international trade literature for over six decades,

dating back to the work of Tinbergen (1962). Presently, Tinbergen’s gravity

equation, combined with the Poisson pseudo maximum likelihood (PPML) esti-

mator and incorporating both exporter and importer fixed effects (two-way fixed

effects), serves as the prevailing method for this analysis.1

The econometric challenge in this task stems from the fact that PEIAs are

not exogenous variables (Baier and Bergstrand, 2007) and solutions for address-

ing endogeneity in PEIAs are still under development.2 Addressing endogenous

variables in non-linear models such as Poisson models poses a well-known chal-

lenge, especially when dealing with binary endogenous explanatory variables

(Wooldridge, 2014). Notably, the pioneering instrumental variable technique

employed by Egger et al. (2011) can only tackle the endogeneity arising from

self-selection into one specific PEIA, leaving the endogeneity in other PEIAs

unresolved.3

This study thus develops a Poisson model that incorporates two binary en-

dogenous explanatory variables (BEEVs) when two-way fixed effects are in-

cluded. Specifically, we adopt the approach of Terza (1998) to develop a two-stage

PPML estimator, hereafter referred to as 2SPPML.4 Specifically, our economet-

ric model includes an outcome equation with a structural-causal interpretation

(Eq. (2)), along with additional equations that capture the generating processes

of the endogenous binary variables also termed treatment variables (Eqs. (3)–

(4)).

We choose this method due to its efficiency when the econometric model is

3



correctly specified and its ability to examine both the determinants and effects

of PEIAs. Consequently, our econometric model unifies two strands of literature

within a single framework: (1) the economic determinants of the formation of

PEIAs, as explored by Baier and Bergstrand (2004) and Bergstrand and Egger

(2013), and (2) the effects of PEIAs on trade values, as studied by Heid and

Vozzo (2020) and Egger and Tarlea (2021). In contrast, if the focus is solely on

the effects of PEIAs, then the instrumental-variable (IV) approach can be an

alternative since it requires few assumptions. In the literature, Mullahy (1997),

Windmeijer and Silva (1997), and Jochmans and Verardi (2022) propose different

IV estimators based on distinct orthogonality conditions.5

Moreover, our method is generally immune to the incidental parameter prob-

lem when incorporating two-way fixed effects.6 In contrast, Jochmans (2022)

finds the instrumental-variable estimators are in general inconsistent and ne-

cessitate bias correction. This property is valuable in international economics

applications for two primary reasons: First, Anderson and van Wincoop (2003)

show that omitting multilateral resistance (MR) terms—which capture how a re-

gion’s average trade barriers with all partners affect bilateral trade flows—leads

to biased estimates. Second, these MR terms are crucial for subsequent economic

analyses, including welfare calculations and trade policies evaluations in general

equilibrium models. Following Feenstra (2004), Redding and Venables (2004),

and Fally (2015), researchers are able to recover the MR terms of the structural

gravity model by estimating the gravity equation using a PPML estimator with

two-way fixed effects. While the IV estimator proposed by Jochmans and Verardi

(2022) addresses incidental parameter problems by differencing out the two-way

fixed effects, requiring other methods to recover them for further analysis. Ad-

ditionally, their method’s inability to produce predicted values for trade flows

limits its applicability in empirical work.

The empirical challenge of conducting the proposed 2SPPML method is its
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computational load when the model consists of hundreds of parameters, even

though we successfully derive the corresponding pseudo-log-likelihood function of

the estimator.7 The computational burdens lie in the demand for approximating

the gradients and Hessians of the pseudo-log-likelihood function using numerical

methods. In international trade applications, the number of observations grows

exponentially, and the number of parameters increases linearly with the number

of countries, creating substantial computational challenges. For instance, when

using data from 100 countries in a Poisson model, there are 9,900 (= 100 ×

99) observations (i.e., bilateral country pairs) and more than 200 (= 2 × 100)

parameters.

To resolve the daunting tasks of estimating the proposed model with huge

observations and a massive number of parameters, we work out the exact an-

alytical gradients and Hessian matrices of the pseudo-log-likelihood function as

outlined in the mathematical appendices of this paper. Accordingly, the compu-

tational performance tremendously improves by a thousand-fold of acceleration,

as shown in the Monte Carlo simulations of this paper. Furthermore, the use of

exact analytical formulas ensures that the calculation is free from approximation

errors. In fact, our method is not only fast and easily implemented, but it also

exhibits promising finite sample performance, as displayed in the simulation re-

sults under a Poisson model with a two-way fixed effect specification consisting

of several hundreds of parameters.

We then employ the newly developed Poisson model on the dataset of Egger

et al. (2011). This dataset provides a cross-section of trade flows and PTA

relationships among 126 countries for the year 2005. To augment the data, we

have included BIT relationships. The rationale behind this extension is that,

apart from PTAs, BITs can influence the volume of foreign direct investment

(FDI), which subsequently affects bilateral trade values via numerous channels

such as vertical integration and horizontal expansion (Berger et al., 2013).
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Vertical integration allows for the specialization of production stages across

different countries, capitalizing on their comparative advantages in factors of

production and boosting trade in intermediate goods. Conversely, horizontal

expansion involves the replication of production facilities in various countries,

improving market access, but potentially reducing bilateral trade values. The

inclusion of such significant PEIA allows for the discovery of more intricate rela-

tionships and possible interactions among these factors, thereby deepening our

comprehension of the underlying mechanisms.

Our results show that the decisions of signing PTAs and BITs are positively

correlated, echoing the findings of Bergstrand and Egger (2013). While signing

a PTA has a strong positive impact on bilateral trade flows (i.e., 172.92%),

a BIT has a negative effect (i.e., −46.79%). The partial effects of PTAs and

BITs become much smaller (74.16% and −25.46%, respectively) if endogeneity

is ignored.

Given that, BIT lowers the cross-border investment costs and encourages

FDI, and our “negative BIT effect” finding highlights the so-called proximity-

concentration trade-off (Brainard, 1997; Neary, 2009), which emphasizes the

strong role of horizontal FDI. Since horizontal FDI aims at replicating produc-

tion facilities abroad to improve access to foreign markets, a BIT will cause a

negative effect on trade if horizontal FDI is encouraged by the BIT. Brainard

(1997) finds that FDI is high in industry-country pairs with high transport costs

and low plant scale economies, while international differences in relative factor

abundance have little effect on FDI. In the same vein, Markusen (2002) finds

evidence that bilateral flows of FDI at the industry level are encouraged by sim-

ilarities in market size and in relative endowments of skilled and unskilled labor

between countries. Such empirical evidence is consistent with the view that FDI

is primarily horizontal rather than vertical.8

We also investigate the interaction effect of PTAs and BITs in another model
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specification that adds the interaction term, PTA× BIT , into the econometric

model. The coefficients of PTA, BIT , and PTA×BIT are 0.8342, −0.6893, and

0.2762, respectively. Relative to the case where there is neither PTA nor BIT

between a specific country pair, negotiating a PTA increases the expectation of

the bilateral trade flow by 130.30%, while signing a BIT decreases the expectation

of the bilateral trade flow by 49.81%. Having both PTAs and BITs will raise the

expectation of the bilateral trade flow by 52.36% relative to the case without any

PTA and BIT. Through the positive PTA × BIT term, the negative effect of

BITs on trade is mitigated. This implies that the trade effect of a BIT depends

on whether this country pair possesses a PTA and belongs to the same trade

bloc. It reminds us that multinational corporations pursue what Yeaple (2003),

following UNCTAD (1998), calls “complex integration strategies”. Adopting a

strategy of horizontal FDI, vertical FDI, or both, definitely depends on the trade

barriers between the home country and the host country.9

Our work empirically highlights the distinct motives of FDI between cases

with or without PTAs. Horizontal FDI dominates when the home country and

the host country are not in the same trade bloc. Thus, a BIT will encourage

this FDI strategy and in turn, decrease the trade flow from the home to the

host. In contrast, if the two countries already have a PTA and participate in the

same trade bloc, then a BIT will benefit from the motive of vertical FDI, which

generates another channel to increase the bilateral trade flow by rising trade in

intra-firm intermediate goods.

The rest of this paper runs as follows. Section 2 presents our econometric

model, the two-stage Poisson pseudo-maximum likelihood (2SPPML) estimation

procedure, and two sets of Monte Carlo simulations. Section 3 describes the data

and the estimation results of the trade effects of endogenous PTAs and BITs.

Section 4 concludes.
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II. Econometric model and estimation method

This section presents the econometric model and estimation procedures for ex-

ploring the effects of dual BEEVs on count data outcomes. As shown in the intro-

duction section, we follow the suggestions of Gourieroux, Monfort and Trognon

(1984) and Santos Silva and Tenreyro (2006) to employ a pseudo-maximum likeli-

hood (PML) estimator to our Poisson model, mainly because the PPML estima-

tor delivers consistent parameter estimates provided that the conditional expec-

tation of the response variable is correctly specified. Moreover, our 2SPPML esti-

mator is consistent even when the dependent variable is not count data (i.e., non-

negative integer). It can be any non-negative real number (Gourieroux, Monfort

and Trognon, 1984). Finally, our 2SPPML estimator is immune to the incidental

parameter problem when incorporating two-way fixed effects (Fernández-Val and

Weidner, 2016; Weidner and Zylkin, 2021).

Econometric model

When the response variable, y, is count data, it is popular to model y with the

exponential function:

E[y|x] = exp(xβ), (1)

where x is a vector of explanatory variables, and β is the vector of parameters

to be estimated. For example, in the gravity model, y is the nominal exports

of a country pair, and x is a vector containing trade cost and trade facilitating

variables.

To capture potential unobserved idiosyncratic characteristics of the country

pair, we add an error term r1 and assume that the conditional expectation of the

response variable has the following form:

E[y1|z, y2, y3, r1] = exp(x1β1 + r1), (2)

where x1 contains a constant term, a vector of exogenous variables x, and the
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two binary variables, y2 and y3 (like the statuses of PTA and BIT), respectively.

Note that z denotes a vector of exogenous variables, including a constant term,

x, and instrumental variables that are excluded from x. The binary variables,

y2 and y3, are endogenous. For example, the decisions of signing PTAs and BITs

might relate to expected bilateral trade values. In fact, Bergstrand and Egger

(2013) model the PTA and BIT statuses of a country pair with the following

bivariate probit models:

y2 = 1[zδ2 + v2 ≥ 0], v2|z ∼ Normal(0, 1), (3)

y3 = 1[zδ3 + v3 ≥ 0], v3|z ∼ Normal(0, 1), (4)

where (δ2, δ3) and (v2, v3) are the vectors of true parameters and error terms

corresponding to Eq. (3) and Eq. (4), respectively. One can interpret these two

equations as decisions based on the following differences in utility levels from

having a PTA or a BIT, denoted respectively by:

y∗2 = zδ2 + v2, and y∗3 = zδ3 + v3.

Thus, a pair of countries sign a PTA or a BIT if they have a positive difference

in these utility levels, y∗2 or y∗3. However, Bergstrand and Egger (2013) do not

consider the impacts of PTA and BIT on trade flows.

We characterize the endogeneity of y2 and y3 by assuming the error terms

(r1, v2, v3) as multivariate normal variables (conditional on the exogenous vari-

ables) with mean vector zero and variance-covariance matrix:

Σ =

󰀵

󰀹󰀹󰀹󰀷

α2 µ2 µ3

µ2 1 γ

µ3 γ 1

󰀶

󰀺󰀺󰀺󰀸
. (5)

Resorting to Theorem 3.10 and Corollary 5.5 of White (1994), the parameters

of interest, β1, can be consistently estimated by the 2SPPML method under

suitable regularity conditions with the correct functional form of E(y1|z, y2, y3)
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and the associated log-likelihood function displayed in the following Section 2.2.

Accordingly, the first stage for estimating β1 is to derive this correct functional

form of E(y1|z, y2, y3).

We thus begin by applying the law of iterative expectation to Eq. (2):

E[y1|z, y2, y3] = E
󰀅
E[y1|z, y2, y3, r1]

󰀏󰀏z, y2, y3
󰀆
.

Via Eq. (2) again, we replace E[y1|z, y2, y3, r1] on the right-hand side of the

above equation and arrive:

E
󰀅
E[y1|z, y2, y3, r1]

󰀏󰀏z, y2, y3
󰀆
= exp(x1β1)E[exp(r1)|z, y2, y3].

Given the normal distribution assumption of the error terms, (r1, v2, v3), we

derive an analytic form of the above conditional expectation. We leave the

details to the mathematical appendices of the paper and present the formula in

the following:

E[y1|z, y2, y3] = exp(x1β
∗
1)Ψ(µ2, µ3, γ, δ2, δ3), (6)

where

Ψ(µ2, µ3, γ, δ2, δ3) =
Φ2(w2 + q2µ2, w3 + q3µ3, γ󰂏)

Φ2(w2, w3, γ󰂏)
, (7)

and Φ2(a, b, ρ) denotes the bivariate standard normal cumulative distribution

function (CDF) such that a, b ∈ R and ρ ∈ [−1, 1]. Moreover, q2 = 2y2 − 1,

q3 = 2y3 − 1, w2 = q2zδ2, w3 = q3zδ3, and γ󰂏 = q2q3γ. In Eq. (6), since we

cannot identify α, the term α2/2 is “merged” with the first element of β1, and

we denote β∗
1 as β1 with its first element plus an extra α2/2.

It is clear now that one might face omitted variable bias if the endogenous

binary variables, y2 and y3, are treated as exogenous variables by using the

following conditional expectation from conventional PPML approach to estimate

the parameters of interest:

E[y1|z, y2, y3] = exp(x1β1) ≡ λ(β1). (8)
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The term Ψ in Eq. (6) can be interpreted as the nonzero conditional error expec-

tation in Eq. (7) of Heckman (1978) (the inverse Mill’s ratio correction term).

Analogous to Heckman’s more conventional endogenous dummy variable model,

neglecting the “correction term” in the conditional mean function results in a

form of omitted variable bias.

To distinguish from the notation used for the exogenous y2 and y3 scenario, we

define the correctly specified conditional expectation, Eq. (6), as λ∗(β∗
1, µ2, µ3, γ, δ2, δ3):

E[y1|z, y2, y3] = exp(x1β
∗
1)Ψ(µ2, µ3, γ, δ2, δ3) ≡ λ∗(β∗

1, µ2, µ3, γ, δ2, δ3). (9)

Pseudo-maximum likelihood estimation

We estimate the parameters of interest, θ ≡ (β∗⊤
1 , µ2, µ3)

⊤ and ξ ≡ (γ, δ⊤
2 , δ

⊤
3 )

⊤,

based on Eq. (6) with a 2SPPML method. Different from the maximum likeli-

hood (ML) method that specifies the conditional distribution of y1, the PPML

method approximates it by a Poisson density function (White, 1994; Wooldridge,

2010):

f(y1|y2, y3,x1, z;θ, ξ) =
exp(−λ∗) · (λ∗)y1

y1!
,

where λ∗ is a function of (θ, ξ) defined in Eq. (9).

We now describe the estimation procedures. The first stage is to use a bivari-

ate probit model to estimate Eq. (3) and Eq. (4). The estimates thus obtained

are denoted as 󰁥ξ ≡ (󰁥δ2, 󰁥δ3, 󰁥γ).10 We then plug these estimates in the second stage

of the Poisson pseudo-maximum log-likelihood function for observation i:

li(θ, 󰁥ξ) ≡ l(y1i, y2i, y3i,x1i, zi;θ, 󰁥ξ) = ln f(y1i|y2i, y3i,x1i, zi;θ, 󰁥ξ)

= −󰁥λ∗
i + y1i ln(󰁥λ∗

i )− ln(y1i!),

(10)

where

󰁥λ∗
i ≡ λi(β

∗)Ψi(µ2, µ3, 󰁥γ, 󰁥δ2, 󰁥δ3). (11)

The PML estimator 󰁥θ ≡ (󰁥β∗
1, 󰁥µ2, 󰁥µ3) is the solution to:

max
ϑ

N󰁛

i=1

li(ϑ, 󰁥ξ).
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Non-linear solvers in MATLAB’s fmincon function are used to locate 󰁥θ. Nev-

ertheless, the task is time-consuming if we rely on the solvers to calculate the

score and Hessian of the pseudo-log-likelihood function in Eq. (10) via numeri-

cal approaches. Another contribution of this paper is to resolve this numerical

issue by providing the analytical formulae of the score and Hessian functions of

the pseudo-log-likelihood function so as to speed up the estimation procedure by

more than one thousand times. The details of these formulae are also presented

in the mathematical appendices of the paper.

Numerical studies

This section reports the simulation results for two purposes:

(1) showing that the estimates from conventional PPML can be biased if en-

dogeneity exists; and

(2) assessing the performance of our proposed model.

We first demonstrate that our algorithm can correctly deal with the Poisson

model with dual BEEVs when the numbers of observations are relatively small.

The algorithm also estimates the gravity models with tens of thousands of obser-

vations and hundreds of parameters and completes the computation tasks with

1,000 replications quickly.

We design the first Monte Carlo simulation for the scenario where the number

of parameters is moderate. We choose different sample sizes, N ∈ {200, 800, 3200},

under the following data generating process (DGP):

y1,ij = exp(β11 + β12x12,ij + β13y2,ij + β14y3,ij + r1,ij), (12)

y2,ij = 1[δ21 + δ22z1,ij + δ23z2,ij + δ24z3,ij + v2,ij ≥ 0], (13)

y3,ij = 1[δ31 + δ32z1,ij + δ33z2,ij + δ34z3,ij + v3,ij ≥ 0], (14)
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where i, j = 1, 2, . . . , N/2, and (r1,ij, v2,ij, v3,ij) are drawn from a multivariate

normal distribution with mean zero and covariance, Σ, as:

Σ =

󰀵

󰀹󰀹󰀹󰀷

α2 µ2 µ3

µ2 1 γ

µ3 γ 1

󰀶

󰀺󰀺󰀺󰀸
. (15)

We note that, in the spirit of “pseudo”-maximum likelihood, the dependent vari-

able y1,ij is not count data (i.e., non-negative integer) nor follows a Poisson

process.

The covariates x12,ij, z1,ij, z2,ij, and z3,ij are all drawn independently from

uniform distribution U(−0.5, 0.5), and the parameters of interest are set by

(β11, β12, β13, β14) = (−1, 0, 1, 1), (δ21, δ22, δ23, δ24) = (0, 0.5,−1, 1) as well as

(δ31, δ32, δ33, δ34) = (0, 0.5, 1,−1). Moreover, we use the estimates from the con-

ventional PPML estimator of β12, β13, and β14 and add them with the extra

random numbers generated from Uniform(−0.5, 0.5) to serve as their initial val-

ues for implementing the proposed method and to create a realistic simulation

scheme. As for the initial values for estimating µ2 and µ3, we simply use a

random vector generated from Uniform(−0.5, 0.5) as their starting values.

We evaluate the performance of the 2SPPML estimator under three different

endogeneity levels: (µ2, µ3, γ) = (0.3, 0.3, 0.3), (0.6, 0.6, 0.6), and (0.9, 0.9, 0.9).

We compare the average biases, and root-mean-squared errors (RMSE) of the

2SPPML estimator with those of the conventional PPML method, which treats

all covariates as exogenous variables. For ease of exposition, we refer to the

conventional PPML as PPML for the rest of the paper. The simulations are all

based on 1,000 replications, and the results are presented in Table 1.

Table 1 reports the finite sample performance of estimating β12, β13, and β14.

First, the average biases of the 2SPPML estimator are lower than those of the

PPML approach across all configurations considered in the table. For example,

the average biases of β12 for the 2SPPML estimator and the PPML estimator are
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−0.0230 and −0.1565, respectively, when N = 200 and the level of endogeneity

is low. Second, the average biases of the 2SPPML estimator decrease about half

in magnitude when the sample size doubles, whereas those of the PPML esti-

mator remain roughly intact. Accordingly, the PPML estimator cannot be used

even if we have a large sample size. Finally, the RMSE of the 2SPPML estima-

tor decreases with the sample size, indicating it has a well-behaved asymptotic

property.

The second Monte Carlo simulation is designed to demonstrate the perfor-

mance of the 2SPPML estimator for the widely known gravity model in inter-

national economics. We use N = 2,500, 10,000, and 22,500 to align with the

regular sample size observed in international economics. For example, Egger

et al. (2011) include 126× 125 = 15,750 country-pairs in their dataset.

We also include two sets of dummies to imitate the scenario of a gravity model

with two-way fixed effects along with the proceeding endogeneity setting in the

error terms, (r1,ij, v2,ij, v3,ij). The new DGP thus becomes:

y1,ij = exp(β11 + β12x12,ij + β13y2,ij + β14y3,ij + e1,i +m1,j + r1,ij), (16)

y2,ij = 1[δ21 + δ22z1,ij + δ23z2,ij + δ24z3,ij + e2,i +m2,j + v2,ij ≥ 0], (17)

y3,ij = 1[δ31 + δ32z1,ij + δ33z2,ij + δ34z3,ij + e3,i +m3,j + v3,ij ≥ 0], (18)

where the six terms, e1,i, e2,i, e3,i,m1,j,m2,j, andm3,j, represent the two-way fixed

effects included in the above three equations. The letter ‘e’ denotes the meaning

of exporter, while the letter ‘m’ conveys the idea of an importer. Moreover, these

six terms are independently generated from the product of two random variables

O1×O2, where O1 ∼ Uniform(−0.5, 0.5), and O2 ∼ Normal(0, 0.52), and Q1 and

Q2 are independent of each other across all i and j considered in these six items.

Since the simulation design includes intra-national trade country pairs, the

number of included importer and exporter dummies in Eqs. (16)–(18) is 2×
√
N .

For example, when N = 2, 500, we have
√
N =

√
2, 500 = 50 countries. And
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the number of corresponding two-way fixed effects is thus 2 × 50 = 100. We

summarize the results in Table 2 and Table 3 based on 1,000 replications again.

Table 2 reports the finite sample performance of estimating β12, β13, and

β14. We find similar patterns as those found in the first simulation experiment.

The average biases of the 2SPPML estimator are always lower than those of the

PPML method across all endogeneity levels and all sample sizes. The estimates

of PPML are severely biased, as expected. When the average biases and RMSE

of the 2SPPML estimator decrease with sample sizes, the corresponding values

of the PPML estimator roughly remain intact even when facing the same larger

sizes.

Table 3 presents the results from estimating µ2, µ3, and γ, which are the

indicators of the endogeneity level of the binary regressors. Interestingly, we find

similar patterns as we observe in Table 2; i.e., the average biases and RMSE of

these estimators decrease with the sample size. Combining the results in Table 2

and Table 3, we find that the 2SPPML has promising performance, even though

large numbers of two-way fixed effects are included in the model. This signals

the potential of using our proposed method in many empirical studies.

III. Empirical results

In this section, we apply our proposed method to the dataset used in Egger

et al. (2011) where they focus on the case with a single BEEV. In particular,

they consider the effects of signing PTAs on the magnitude of bilateral trade

flows. Building on their framework, we add an additional BEEV, BITij, in the

model, because global fragmentation motivates firms to influence trade policies,

including BITs (Blanchard, 2010; Blanchard and Matschke, 2015; Blanchard,

Bown and Johnson, 2016). This not only extends the coverage of the literature,

but also helps us check the robustness of the findings in Egger et al. (2011).
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Table 1: Monte Carlo Results

β12 β13 β14

Estimator: Bias RMSE Bias RMSE Bias RMSE

µ2 = 0.3, µ3 = 0.3, γ = 0.3

N = 200

2SPPML -0.0230 0.3743 -0.1322 0.3347 0.2005 0.4015

PPML -0.1565 0.3958 0.4155 0.4532 0.4154 0.4607

N = 800

2SPPML -0.0082 0.1867 -0.0637 0.1655 0.0888 0.1870

PPML -0.1518 0.2353 0.4154 0.4254 0.4171 0.4293

N = 3,200

2SPPML -0.0044 0.0939 -0.0309 0.0807 0.0441 0.0959

PPML -0.1523 0.1773 0.4158 0.4182 0.4171 0.4203

µ2 = 0.6, µ3 = 0.6, γ = 0.6

N = 200

2SPPML -0.0297 0.3401 -0.0922 0.2609 0.2204 0.4105

PPML -0.2557 0.3981 0.7151 0.7301 0.7475 0.7680

N = 800

2SPPML -0.0064 0.1684 -0.0549 0.1404 0.0914 0.1800

PPML -0.2531 0.2959 0.7157 0.7195 0.7466 0.7516

N = 3,200

2SPPML -0.0053 0.0840 -0.0301 0.0748 0.0435 0.0895

PPML -0.2572 0.2680 0.7172 0.7182 0.7448 0.7461

µ2 = 0.9, µ3 = 0.9, γ = 0.9

N = 200

2SPPML -0.0236 0.3057 -0.0602 0.1679 0.1977 0.3440

PPML -0.3155 0.4014 0.9239 0.9290 1.0252 1.0332

N = 800

2SPPML -0.0103 0.1546 -0.0406 0.0987 0.0846 0.1572

PPML -0.3196 0.3433 0.9241 0.9254 1.0248 1.0268

N = 3,200

2SPPML -0.0030 0.0771 -0.0242 0.0546 0.0352 0.0707

PPML -0.3181 0.3243 0.9260 0.9263 1.0249 1.0254

Notes: This table reports the simulation results of Eq. (12) based on 1,000 replications.

β12 is the coefficient of an exogenous regressor, whereas β13 and β14 are the coefficients

of BEEVs.
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Table 2: Monte Carlo Results of the Gravity Model

β12 β13 β14

Estimator: Bias RMSE Bias RMSE Bias RMSE

µ2 = 0.3, µ3 = 0.3, γ = 0.3

N = 2,500

2SPPML -0.0974 0.2537 0.2777 0.6733 0.2830 0.6701

PPML -0.1452 0.1787 0.4182 0.4219 0.4200 0.4242

N = 10,000

2SPPML -0.0481 0.1440 0.1248 0.3738 0.1259 0.3679

PPML -0.1520 0.1611 0.4167 0.4176 0.4205 0.4217

N = 22,500

2SPPML -0.0315 0.0939 0.0848 0.2513 0.0821 0.2441

PPML -0.1505 0.1548 0.4164 0.4168 0.4202 0.4207

µ2 = 0.6, µ3 = 0.6, γ = 0.6

N = 2,500

2SPPML -0.0977 0.1851 0.2787 0.4763 0.2815 0.4776

PPML -0.2532 0.2683 0.7188 0.7202 0.7502 0.7520

N = 10,000

2SPPML -0.0451 0.0888 0.1427 0.2368 0.1350 0.2311

PPML -0.2527 0.2563 0.7203 0.7206 0.7469 0.7474

N = 22,500

2SPPML -0.0279 0.0569 0.0850 0.1510 0.0828 0.1482

PPML -0.2550 0.2567 0.7218 0.7220 0.7488 0.7490

µ2 = 0.9, µ3 = 0.9, γ = 0.9

N = 2,500

2SPPML -0.0756 0.1300 0.2418 0.3073 0.2720 0.3401

PPML -0.3170 0.3261 0.9308 0.9314 1.0351 1.0358

N = 10,000

2SPPML -0.0366 0.0622 0.1220 0.1522 0.1343 0.1673

PPML -0.3171 0.3192 0.9330 0.9331 1.0300 1.0302

N = 22,500

2SPPML -0.0228 0.0419 0.0775 0.1002 0.0862 0.1097

PPML -0.3175 0.3185 0.9353 0.9353 1.0272 1.0273

Notes: This table reports the simulation results of Eq. (16) based on 1,000 replications.

β12 is the coefficient of an exogenous regressor, whereas β13 and β14 are the coefficients

of BEEVs.
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Table 3: Monte Carlo Results of the Gravity Model

µ2 µ3 γ

Num. Obs. Bias RMSE Bias RMSE Bias RMSE

µ2 = 0.3, µ3 = 0.3, γ = 0.3

2,500 -0.1985 0.4707 -0.2055 0.4711 0.0094 0.0348

10,000 -0.0910 0.2653 -0.0915 0.2605 0.0031 0.0166

22,500 -0.0619 0.1788 -0.0597 0.1745 0.0032 0.0115

µ2 = 0.6, µ3 = 0.6, γ = 0.6

2,500 -0.2339 0.3872 -0.2291 0.3782 0.0177 0.0319

10,000 -0.1180 0.1913 -0.1110 0.1831 0.0081 0.0153

22,500 -0.0699 0.1218 -0.0663 0.1157 0.0054 0.0100

µ2 = 0.9, µ3 = 0.9, γ = 0.9

2,500 -0.2326 0.2875 -0.2281 0.2814 0.0250 0.0287

10,000 -0.1158 0.1409 -0.1122 0.1365 0.0107 0.0125

22,500 -0.0741 0.0925 -0.0719 0.0895 0.0072 0.0085

Notes: This table reports the simulation results of Eq. (15) based on 1,000 rep-

lications. The magnitudes of µ2 and µ3 stand for the level of endogeneity, and

γ measures the correlation between the two BEEVs.
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The dataset of Egger et al. (2011) includes the information concerning 126

countries for the year 2005. We thus have 126 × 125 = 15,750 bilateral trade

country-pairs. We denote an indicator, BITij, to be one, if the importer and

exporter countries sign a BIT in force and zero otherwise. Table 4 reports the

descriptive statistics of the data used for the estimation. To gain better compu-

tational precision, we rescale some variables to ensure their means fall between

zero and one. When the data are subject to a rescaling procedure, we mark them

with ∗. For example, the log distance between the importer and the exporter,

DISTij∗, is divided by 10.

We consider three different settings. The first one treats both PTA and BIT

statuses as exogenous, and the conventional PPML method is used consequently.

This setting is mostly employed in empirical studies and can be viewed as the

benchmark of our investigation.

The second setting treats either PTA or BIT as an endogenous decision of the

country pair involved. This is the model considered in Egger et al. (2011) where

they employ the Poisson model with only one BEEV. For fairness of comparison,

we use the programming code of Egger et al. (2011) to conduct the estimation

task.

The last setting considers both PTA and BIT as endogenous variables and

applies the proposed estimation procedure in Section 2. Furthermore, the im-

porter and exporter fixed effects are both included with the other country-specific

determinants such as a country’s GDP, population, and capital-labor ratio in the

model specifications.

In Table 5, columns (1)–(3) report the estimation results of the PPML es-

timates without considering the endogeneity of PTAs and BITs. The estimates

found in these three columns are very similar to each other. Column (1) and

column (2) report a positive
󰀅
exp (0.5548) − 1

󰀆
× 100% = 74.16% PTA effect

and a negative
󰀅
exp (−0.2939)− 1

󰀆
× 100% = −25.46% BIT effect, respectively.
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From column (3), we find the PTA effect is 69.93% and the BIT effect is −22.59%

when both PTA and BIT statuses are included. The negative BIT effect is more

in line with multinationals’ horizontal FDI strategies, because the firms under-

taking horizontal FDI can avoid trade costs by replicating production facilities

abroad. Export values between the country pairs decrease consequently.

In columns (1) and (2) of Table 6, we replicate the empirical results of Egger

et al. (2011) who only consider the endogeneity of PTAs. Our results are indeed

identical to those of Egger et al. (2011). For the variables subject to the rescaling

procedure, the magnitudes of the parameters require the same rescaling. For

example, the estimated coefficient of DISTij∗ is -10.7370. This is identical to

that of Egger et al. (2011) after dividing by 10, which is the exact number we

use to divide the original data of DISTij in Egger et al. (2011).

We then examine µ2 in Table 6. It is significantly negative, rejecting the null

hypothesis of exogeneity of PTAs. A negative µ2 reveals that the unobservables

that we do not include in the model of signing PTA correlate negatively with

the unobservables affecting bilateral trade values. In other words, the country

pairs that have lower bilateral trade flows are more likely to sign PTAs after

controlling the economic and political factors. This negative correlation causes

a downward bias in the estimated PTA parameter when using the conventional

PPML models. It is thus not surprising to find that the estimate in column (1)

of Table 6 is about double the estimates of PTAij in column (1) of Table 5,

revealing PTA has strong impacts (214.90%) on bilateral trade flows when we

control its endogeneity.

We also apply the methodology of Egger et al. (2011) to explore the endoge-

nous BIT effect and display the results in columns (3) and (4) of Table 6. Since µ3

is significantly positive, we can reject the null hypothesis of exogeneity of BITs.

In fact, a positive µ3 indicates that the unobservables in the model of signing a

BIT correlate positively with the unobservables affecting bilateral trade values.
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It implies that the country pairs that have higher bilateral trade flows are more

likely to sign BITs after controlling the economic and political factors. Such a

positive correlation causes an upward bias in the BIT effects if the conventional

exogenous PPML is used. As a result, the estimated BIT effect in column (2) of

Table 5 is −25.46%, which is higher than −51.69% of the estimated BIT effect

in column (4) of Table 6.

We finally discuss the estimation results based on our proposed 2SPPML

method in Table 7. The robust standard errors used in this table are based

on the approach of White (1994) and Wooldridge (2010), which considers the

first-stage estimation effects on the second-stage Poisson-type regression. The

computational details are also outlined in the mathematical appendices of this

paper.

The first finding of Table 7 shows a positive γ, implying that the unobservable

determinants of signing PTAs and BITs positively correlate, echoing the results of

Bergstrand and Egger (2013). Second, the signs of µ2 and µ3 stay unchanged from

the results in Table 6, indicating one would obtain an underestimated PTA effect

and an overestimated BIT effect when the endogeneities of PTA and BIT are not

taken into account at all. Moreover, when we consider the endogeneities of PTA

and BIT simultaneously, their effects are
󰀅
exp(1.0040) − 1

󰀆
× 100% = 172.92%

and
󰀅
exp(−0.6309) − 1

󰀆
× 100% = −46.79%, respectively. These numbers are

smaller in absolute value than those in Table 6 where the endogenous decisions

of signing the PTA and BIT are not considered simultaneously.

Column (4) shows the results including an interaction term, PTAij ×BITij.

The coefficients of PTAij, BITij, and PTAij × BITij are 0.8342, −0.6893, and

0.2762, respectively. Comparing to the case where there is neither PTA nor

BIT between a specific country pair, negotiating a PTA increases the expec-

tation of the bilateral trade flow by
󰀅
exp(0.8342) − 1

󰀆
× 100% = 130.30%,

while signing a BIT increases the expectation of the bilateral trade flow by
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󰀅
exp(−0.6893) − 1

󰀆
× 100% = −49.81%. Furthermore, having both PTAs and

BITs raises the expectation of the bilateral trade flow by
󰀅
exp(0.8342−0.6893+

0.2762) − 1
󰀆
× 100% = 52.36% relative to the case without any PTA and BIT.

The positive PTA×BIT term suggests that the partial effect of BITs on trade

depends on whether this pair of countries signs a PTA in force and belongs to

the same trade bloc. This finding supports the argument that whether multina-

tional corporations adopt a strategy of horizontal FDI, or vertical FDI, or both,

depends on the trade barriers between the home country and host country. Ac-

cordingly, horizontal FDI dominates when the two countries are not in the same

trade bloc. A BIT will then encourage this FDI strategy and in turn decrease

the trade flow from the home country to the host country. In contrast, if the two

countries already have a PTA and join the same trade bloc, then signing a BIT

will benefit the motive of vertical FDI and enhance the positive effect of BIT on

trade through a rise in the trade of intra-firm intermediate goods trade.

We also summarize the estimated trade effects from different econometric

models in Table 8 for ease of comparison. Apart from the findings already dis-

cussed previously, we emphasize here that the combined effects of having both

PTA and BIT are shown in the rows of PPML and those of 2SPPML. The effects

found for these two models are
󰀅
exp(0.5302−0.2560)−1

󰀆
×100% = 31.55% and

󰀅
exp(1.0040− 0.6309)− 1

󰀆
× 100% = 45.22%, respectively.

IV. Conclusion

This study contributes to the literature on modeling selectivity in a Poisson

model via a full-information method that explicitly specifies both the selection

process of the BEEVs and the Poisson regression equation. We develop a novel

two-stage Poisson pseudo-maximum likelihood (2SPPML) estimator by extend-

ing the econometric model of Terza (1998) to estimate the effects of dual BEEVs
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Table 4: Descriptive Statistics of the Egger et al. (2011) Dataset

Variable Description Mean SD Min. Max.

Xij Nominal exports in million US dollars 305.9274 3,257.2670 0 213,763.06

Iij Indicator variable taking a value one if 0.6280 0.4834 0 1.0000

Xij > 0

PTAij Indicator variable taking a value one 0.2226 0.4160 0 1.0000

if two countries belong to a common

PTA since 2005 or earlier

BITij Indicator variable taking a value one 0.1879 0.3907 0 1.0000

if two countries belong to a common

BIT since 2005 or earlier.

DISTij∗ Log distance divided by 10 0.8200 0.0827 0.3247 0.9419

BORDij Common border indicator variable 0.0210 0.1432 0 1.0000

LANGij Common language/ethnicity indicator 0.1393 0.3463 0 1.0000

variable

COLONYij Colony indicator variable 0.0152 0.1225 0 1.0000

COMCOLij Common colonizer indicator variable 0.0777 0.2677 0 1.0000

CURCOLij Colony after 1945 indicator variable 0.0084 0.0912 0 1.0000

SMCTRYij Same country indicator variable 0.0088 0.0935 0 1.0000

CONTij Same continent indicator variable 0.2303 0.4211 0 1.0000

RGDPsumij
∗ Log of sum of real GDPs divided by 100 0.2523 0.0181 0.1993 0.3018

RGDPsimij
Similarity of real GDPs -2.1131 1.4877 -9.7690 -0.6931

DKLij Difference between log of capital-labor 1.8217 1.2944 0.0001 6.1001

relative factor endowments

between pair ij

DROWKLij Difference between log of capital-labor 1.4852 0.6493 0.0659 3.7327

relative factor endowment between pair

ij and rest of the world

DURABij∗ Durability of an exporter’s and an 0.2940 0.2922 0 1.0000

importer’s political regime divided

by 100

POLCOMPij∗ Political competition index divided 0.8896 1.9944 0 9.8000

by 10

AUTOCij∗ Autocracy index divided by 10 0.7987 1.8947 0 9.8000

Observations 15,750

Note: The rescaled variables are marked with ∗.
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Table 5: Estimation Results of the Gravity Model for Trade

Exogenous

PTA BIT PTA and BIT

Regression E(Xij|·) E(Xij|·) E(Xij|·)
Estimator PPML PPML PPML

(1) (2) (3)

PTAij 0.5548 – 0.5302

(0.1256) (0.1176)

BITij – -0.2939 -0.2560

(0.0945) (0.0947)

DISTij∗ -4.9979 -5.5027 -4.9964

(0.4924) (0.5158) (0.4821)

BORDij 0.7263 0.7375 0.6924

(0.0726) (0.0733) (0.0702)

LANGij 0.1553 0.1719 0.1781

(0.0813) (0.0829) (0.0795)

CONTij 0.2736 0.5010 0.2912

(0.1222) (0.0905) (0.1151)

DURABij∗ -0.3789 -0.4334 -0.3686

(0.0899) (0.0786) (0.0841)

POLCOMPij∗ 0.7374 0.7290 0.8956

(0.3266) (0.3271) (0.3100)

AUTOCij∗ -1.0387 -1.0075 -1.2089

(0.3254) (0.3177) (0.3155)

CURCOLij 0.7246 0.7012 0.7987

(0.1695) (0.1836) (0.1652)

COLONYij – – –

COMCOLij – – –

SMCTRYij – – –

γij – – –

µ2 – – –

µ3 – – –

Notes: All regressions include importer and exporter fixed effects. Standard errors are in the parentheses.

The rescaled variables are marked with ∗ as described in Table 4. Since we model the endogeneity as

Eq. (5), µ2 and µ3 measure the potential endogeneity for PTAij and BITij , respectively, and γ estimates

the level of correlation between these two BEEVs.
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Table 6: Estimation Results of the Gravity Model for Trade

Endogenous

PTA BIT

Regression Pr(PTAij = 1|·) E(Xij|·) Pr(BITij = 1|·) E(Xij|·)
Estimator Probit ML PPML Probit ML PPML

(1) (2) (3) (4)

PTAij – 1.1471 – –

(0.3847)

BITij – – – -0.7276

(0.2052)

DISTij∗ -10.7370 -3.9706 -4.8596 -6.2448

(0.5006) (0.6780) (0.3679) (0.6384)

BORDij -0.4687 0.7405 -0.8360 0.6214

(0.1652) (0.0757) (0.1368) (0.0842)

LANGij -0.1193 0.2079 0.3356 0.2184

(0.0676) (0.0701) (0.0637) (0.0782)

CONTij 0.7650 0.1506 -0.0198 0.4911

(0.0499) (0.1582) (0.0525) (0.0907)

DURABij∗ -0.7190 -0.4054 1.9551 -0.2628

(0.0905) (0.0862) (0.1292) (0.1074)

POLCOMPij∗ -0.4829 1.0437 0.3355 0.7295

(0.1029) (0.2712) (0.0932) (0.3222)

AUTOCij∗ 0.4800 -1.3906 -0.4303 -1.0219

(0.1109) (0.2909) (0.1005) (0.3155)

CURCOLij 0.5189 0.6179 -0.5549 0.7570

(0.2741) (0.1855) (0.2296) (0.1840)

COLONYij 0.1356 – 1.0337 –

(0.2107) (0.1830)

COMCOLij 0.5519 – 0.2571 –

(0.0798) (0.0809)

SMCTRYij 1.2275 – -0.0703 –

(0.3279) (0.1817)

γij – – –

µ2 – -0.3708 – –

(0.1818)

µ3 – – – 0.2412

(0.0869)

Notes: All regressions include importer and exporter fixed effects. Standard errors are in the parentheses.

The rescaled variables are marked with ∗ as descibed in Table 4. Since we model the endogeneity as

Eq. (5), µ2 and µ3 measure the potential endogeneity for PTAij and BITij , respectively, and γ estimates

the level of correlation between these two BEEVs.
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Table 7: Estimation Results of the Gravity Model for Trade

Endogenous

PTA and BIT

Regression Pr(PTAij = 1|·) Pr(BITij = 1|·) E(Xij|·) E(Xij|·)
Estimator Bivariate Probit ML PPML PPML

(1) (2) (3) (4)

PTAij – – 1.0040 0.8342

(0.4219) (0.4437)

BITij – – -0.6309 -0.6893

(0.2158) (0.2176)

PTAij × BITij 0.2762

(0.1353)

DISTij∗ -10.7430 -4.8873 -4.8505 -4.9253

(0.4995) (0.3678) (0.7332) (0.7171)

BORDij -0.4727 -0.8371 0.6028 0.6437

(0.1646) (0.1361) (0.0876) (0.0840)

LANGij -0.1201 0.3370 0.2584 0.2358

(0.0676) (0.0637) (0.0680) (0.0674)

CONTij 0.7649 -0.0195 0.1822 0.2244

(0.0499) (0.0526) (0.1608) (0.1657)

DURABij∗ -0.7156 1.9612 -0.2310 -0.2540

(0.0898) (0.1283) (0.1046) (0.1046)

POLCOMPij∗ -0.4781 0.3397 1.1150 1.1981

(0.1029) (0.0934) (0.2520) (0.2512)

AUTOCij∗ 0.4747 -0.4328 -1.4746 -1.5594

(0.1109) (0.1007) (0.2789) (0.2829)

CURCOLij 0.5134 -0.5650 0.7555 0.7967

(0.2752) (0.2296) (0.1771) (0.1760)

COLONYij 0.1424 1.0399 –

(0.2115) (0.1833)

COMCOLij 0.5507 0.2514 –

(0.0797) (0.0809)

SMCTRYij 1.2344 -0.0757 –

(0.3296) (0.1814)

γ 0.0626

(0.0281)

µ2 – – -0.2915 -0.2459

(0.2091) (0.2158)

µ3 – – 0.2199 0.1895

(0.0948) (0.0891)

Notes: All regressions include importer and exporter fixed effects. Standard errors are in the parentheses. In

column (3) & (4), robust standard errors are reported using the method in White (1994) and Wooldridge (2010).

The rescaled variables are marked with ∗ as descibed in Table 4. Since we model the endogeneity as Eq. (5),

µ2 and µ3 measure the potential endogeneity for PTAij and BITij , respectively, and γ estimates the level of

correlation between these two BEEVs.
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Table 8: Summary of Estimated Trade Effects

Econometric Method
Effects on Trade Values

PTA BIT Combined

PPML 69.93% −22.59% 31.55%

PPML of Egger et al. (2011)
214.90% – –

– −51.69% –

2SPPML
172.92% −46.79% 45.22%

130.30% −49.81% 52.36%

Notes: PPML summarizes the estimates in column (3) of Table 5.

PPML of Egger et al. (2011) reports the estimates in columns (2) and (4)

of Table 6. 2SPPML shows the estimates in columns (3) and (4) of

Table 7.

in the count regression model. Our methodology can deal with the structural

gravity model based on the Poisson model consisting of both two-way fixed ef-

fects and dual BEEVs. Since we derive the analytical form of the gradient and

Hessian matrices of the log-likelihood function of the proposed model, we are

able to accelerate the computational speed by thousands of times as compared

to the one relying on software to approximate these gradient and Hessian matri-

ces. In so doing, we conduct the Monte Carlo simulations with a large number of

data observations in an econometric model and estimate hundreds of parameters

with ease. Doing so shows its promising potential for application in many fields

such as international economics, health economics, management, and industrial

organization.

For the purpose of illustration and comparison, we apply our method to the

dataset of Egger et al. (2011) covering 126 countries for the year 2005 in order

to evaluate the impacts of PTAs and BITs on bilateral trade flows of country

pairs. We find that the decisions of signing PTAs and BITs positively correlate.

While PTAs have a strong positive impact on trade, which is consistent with

the literature, BITs impose a negative effect on bilateral trade flow, supporting
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the proximity-concentration motive of horizontal FDI. Most notably, we also

find an interaction effect exists among the effects of these policy instruments.

Specifically speaking, the trade effect of BITs depends on whether this country

pair possesses a PTA and belongs to the same trade bloc.

Relative to the case where neither a PTA nor a BIT exists between a specific

country pair, establishing a PTA alone, signing a BIT alone, and having both a

PTA and a BIT increase trade by 130.30%, decrease trade by 49.81%, and raise

trade by 52.36%, respectively. The positive coefficient of the PTA× BIT term

indicates that the negative effect of BITs on trade has been mitigated when a

PTA exists between the country pair. This finding implies the distinct motives of

FDIs between the situation with PTAs and the case without PTAs. For country

pairs that are not in the same trade bloc, the horizontal FDIs dominate market

access and BITs decrease the bilateral trade flows of country pairs. In contrast,

if the two countries already have a PTA and are in the same trade bloc, then a

BIT will encourage multinational firms to conduct a vertical FDI strategy and

increase the bilateral trade flow by raising trade of intra-firm intermediate goods

through global value chains.

Notes

1. PPML offers several benefits when estimating gravity equations that economists cannot eas-

ily overlook. Notably, Santos Silva and Tenreyro (2006) find that the PPML estimator re-

mains consistent under heteroskedasticity, while the OLS estimator is biased. In addition, the

PPML estimator is asymptotically unbiased with a single fixed effect or a two-way fixed effect

(Fernández-Val and Weidner, 2016).

2. Country pairs may theoretically self-select into PEIAs to enhance trade and welfare. Influential

research by Baier and Bergstrand (2004) and Bergstrand and Egger (2013) indicates that
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the establishment of PEIAs is driven by various factors associated with trade levels, such as

distance, remoteness, country size, and capital-labor ratio.

3. This method, originally developed by Terza (1998), has been widely applied in various scientific

fields such as finance and health economics. For example, Fahlenbrach (2009) explore the

comparative effects of founder-CEOs and successor-CEOs on a company’s acquisition count.

Kenkel and Terza (2001) investigate the effects of receiving physician advice on a drinker’s

alcohol consumption.

4. Terza (1998) develops a Poisson model that accommodates one BEEV and provides three

different estimators: a full information maximum likelihood estimator, a two-stage method of

moments estimator, and a non-linear weighted least-square estimator.

5. The choice of an econometric model should be contingent upon the specific economic question

under consideration. For an extensive discussion comparing instrumental variables with struc-

tural models, see Hechman and Urzúa (2010). They discuss the limitation of IV estimation.

6. Fernández-Val and Weidner (2016) show the estimates of two-way fixed effect probit or Pois-

son models to be asymptotically unbiased and consistent. This implies that, under appropriate

regularity conditions, the first-stage estimation of bivariate probit model described by Eqs. (3)–

(4) is also asymptotically unbiased and consistent. Furthermore, integrating these first-stage

estimates into the second-stage estimation of Poisson model (Eq. (2)) preserve asymptotically

unbiasedness and consistency. In conclusion, our proposed two-stage estimator is asymptot-

ically unbiased and consistent. Our Monte Carlo experiments further confirm such results.

However, it is important to note that such properties do not hold in the three-way fixed effects

case, as demonstrated by Weidner and Zylkin (2021), who elaborate on the distinctions from

Fernández-Val and Weidner (2016)’s findings.

7. The terms “pseudo-likelihood” and “pseudo-likelihood” are used interchangeably when the

distributional assumptions of their underlying econometric models are not satisfied (Gourieroux

and Monfort, 1993). Following the conventions of the international economics literature, we

use the term “pseudo-likelihood” throughout this paper.

8. The negative trade effect of BITs is in stark contrast with the results of Heid and Vozzo (2020)

who show a strong positive effect of BITs, which supports vertical FDI. While they include

1990–2015 international and domestic trade data for 172 countries from the EORA26 database,
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we use the dataset of Egger et al. (2011) covering 126 countries for the year 2005 for illustration

and comparison.

9. With their calibrated quantitative model, Tintelnot (2017) explores how the trade and in-

vestment agreement between Canada and the European Union (Comprehensive Economic and

Trade Agreement, CETA) affects the structure of multinationals’ global production. He finds

that EU multinationals would divert around 5% of their production from the United States to

Canada if the agreement yields a 20% reduction of variable and fixed production costs between

the signatories.

10. See Greene (2012) concerning the ML estimation for the bivariate probit models in greater

detail.
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