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This paper presents a methodology to estimate the distance decay effect and spatial reach of 

spillover effects in the spatial Durbin (SD) model. Building on attributes of the concept of 

spatial autocorrelation developed by Arthur Getis, we adopt a distance-based negative 

exponential spatial weight matrix and parameterize it by a distance decay parameter that is 

estimated separately for each spatial lag. The methodology is illustrated based on the spatially 

augmented neoclassical growth framework, which we estimate using data for 266 NUTS-2 

regions in the EU over the period 2000-2018. We find distance decay parameters ranging from 

0.233 to 2.224 for the different spatial lags of the growth determinants in this model. This range 
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growth determinant spills over to other regions in terms of distance, slope, magnitude and 
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1. Introduction 

As the world economy becomes increasingly integrated, there is also growing evidence that 

economic growth is highly correlated across space. This pattern is clearly visible in the data and 

has been documented in an extensive body of empirical studies (Moreno and Trehan 1997; 

Lopez-Bazo et al. 2004; Ertur and Koch, 2007; Ramajo et al. 2008). Although this fact is 

increasingly recognized by economists and policymakers, there is still no consensus in the 

literature on the magnitude of observed growth spillovers and the range over which they 

operate. This lack of consensus has been highlighted in a recent article by Rosenthal and Strange 

(2020) whose title raises the pressing question: “How close is close”. Their answer draws on a 

range of research on agglomeration effects in economics and regional science, yet without 

providing a clear research methodology on how to estimate spillover effects. 

To address this question, we propose a novel approach for the estimation of growth 

spillovers within the spatially augmented neoclassical growth framework that allows us to 

capture how fast they decay in space. Our approach draws on the work of Arthur Getis regarding 

the concept of spatial autocorrelation, which we “translate” into present-day spatial 

econometrics. Our main novelty is that we parameterize the spatial weight matrix with a 

parameter that captures the rate at which interactions between economies decay in terms of 

distance and estimate that parameter separately for each growth determinant. This way we let 

the data determine the slope, magnitude and significance level of economic growth spillovers 

as a function of distance.  

We illustrate the power of this approach by using it to estimate spillover effects in GDP 

per capita growth across a sample of EU NUTS-2 regions over the period from 2000 to 2018. 

Our findings confirm not only the existence and importance of growth spillovers, but also their 

decrease in magnitude as distance increases, consistent with Tobler's first law of geography. 

Moreover, they reveal that the distance decay effect and spatial reach of each spillover effect 

vary significantly across different growth determinants. These findings extend prior work in the 

literature that has estimated spatially augmented versions of the neoclassical growth model 

(Lopez-Bazo et al. 2004; Ertur and Koch 2007, 2011; Elhorst et al. 2010). It also suggests that 

growth-related externalities are subject to potential geographic barriers in their diffusion, as 

some of the literature has pointed out (Döring and Schnellenbach 2006). 

There is extensive work in the literature that has tried to estimate the magnitude of 

growth spillovers. Early work on spillovers used regional dummies (Easterly and Levine 1997) 

or control variables that are averaged across nearby countries (Ades and Chua 1995). Moreno 

and Trehan (1997) are among the first to test empirically the specific channels through which 

growth spillovers operate using spatial econometric techniques. They conclude that there is 

evidence of spillovers across countries operating both as a result of common shocks affecting 

economic activity and as a result of particular growth determinants. More recent work has used 

various approaches to measure spillovers at the sub-national level and to analyze how wide the 

distribution is in space (Jaffe et al. 1993; Bottazzi and Peri 2003; Funke and Niebuhr 2005; 

Rodriguez-Pose and Crescenzi 2008). There is also an extensive body of literature that looked 
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at spillovers between urban regions (Glaeser et al. 1992; Henderson et al. 1995). While this 

literature has provided empirical evidence regarding the existence of growth spillovers, the 

results have been inconclusive regarding the magnitude of these spillovers (Funke and Niebuhr 

2005; Ramajo et al. 2008; Benos et al. 2015; Marquez et al. 2015). One reason is that the 

literature has either used indirect ways to account for growth spillovers (Enflo and Hjertstrand 

2009; Gardiner et al. 2011), or has attempted to estimate growth spillovers directly, using 

econometric specifications and spatial weight matrices which limit the decay and the spatial 

range of the spillovers. 

Our analysis avoids the above issues by linking the magnitude of spillovers with 

distance in a flexible way. We let the rate of decay of growth spillovers across space be 

determined by the data and we permit that rate to be different across growth determinants. 

Utilizing the structure of the spatial Durbin (SD) model (LeSage and Pace 2009), we compute 

the direct and spillover effects of each growth determinant on growth rates given the estimated 

rates of distance decay.  

The setup of this paper is as follows. In Section 2 we link our approach to attributes of 

the concept of spatial autocorrelation developed by Arthur Getis. In Section 3 we present the 

spatially augmented neoclassical model of economic growth that we use for our analysis and 

explain how it takes the form of the SD model. In Section 4 we introduce the parameterizations 

of the spatial weight matrices and show their relationship with the direct and spillover effects 

of the growth determinants in the SD model. In Section 5 we describe the data, report and 

discuss the basic results, graph the spillover effects of the economic growth determinants and 

examine four potential model changes. Finally, Section 6 concludes. 

 

2. Arthur Getis: The concept of spatial autocorrelation  

In a survey article to the Handbook of Applied Spatial Analysis (Fischer and Getis 2010), 

Arthur Getis summarized his contributions to the field of spatial econometrics by eleven 

attributes of the concept of spatial autocorrelation (Getis 2010). In this section we review these 

attributes and translate them into present-day spatial econometrics. According to Getis (2010, 

pp.257-259), ‘the list should convince all of those who deal with georeferenced data that an 

explicit recognition of the concept is basic to any spatial analysis’: 

1. Proper specification [to avoid misspecification] requires that any spatial association is 

subsumed with the model proper. 

2. A thorough understanding of the effects of regressor variables on a dependent variable 

requires that any spatial effects in both dependent and independent variables be quantified. 

3. Spatial autocorrelation statistics are usually designed to test the null hypothesis that there 

is no relationship among realizations of a single variable, but the tests may be extended to 

consider spatial relations between variables. 

4. Measures of spatial autocorrelation will change in certain known ways when the 

configuration of spatial units changes. 

5. A focus on a single spatial unit’s effect on other units and vice versa. 
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6. Measures of spatial association can identify the parameters of distance decay (for example, 

the parameters of a negative exponential model). 

7. A series of measures of spatial autocorrelation over time sheds light on temporal effects.  

8. If the goal is to avoid, as much as possible, spatial autocorrelation in the sample, then a 

reasonable sample design would benefit from a study of spatial autocorrelation in the region 

where the sample is to be selected. 

9. Before engaging in many types of spatial analysis, it is necessary to make the assumption 

that spatial stationarity exists. 

10. A means of identifying spatial clusters. 

11. A means of identifying outliers, both spatial and non-spatial. 

 

Translated into present-day spatial econometrics, this is a plea for the SD model in which the 

spatial weight matrices take an exponential form and negatively depend on a distance decay 

parameter, which can differ for each spatial lag in the model. 

The SD model, which received much attention in applied spatial econometric studies 

thanks to the work of LeSage and Pace (2009), covers the first two attributes. According to 

these authors, the cost of ignoring spatial lags in the regressand and the regressor variables, 

when relevant, is high since the coefficients of the remaining variables may then be biased. By 

contrast, ignoring a spatial lag in the error term, if relevant, will only result in a loss of efficiency 

(see also LeGallo 2014).  

Regarding the third attribute, several spatial autocorrelation test statistics have been 

proposed and used in the applied literature to motivate the use of spatial econometric models. 

A common test statistic is Moran’s I applied to the regressand in raw form. However, the null 

hypothesis that the regressand is not spatially correlated generally needs to be rejected when 

using this statistic. This is because Moran’s I does not control for potential spatial lags in the 

regressor variables. Theoretically, it is possible that a standard linear regression without any 

spatial lags is sufficient since the regressor variables may also be spatially correlated in such a 

way that they fully cover the spatial correlation in the regressand. In this regard, Anselin and 

Rey (2014) label Moran’s I as a “non-constructive test in that the alternative is diffuse, and not 

a specific (focused) model’’ (p. 107).  

Another commonly used approach to motivate the use of spatial econometric models is 

to apply the robust Lagrange multiplier tests, developed by Anselin et al. (1996). These tests 

analyze whether the linear regression model estimated by OLS should be extended to include a 

spatial lag in the regressand or the error term, known as respectively the spatial autoregressive 

(SAR) model and the spatial error (SE) model. However, these tests also do not control for 

potential spatial lags in the regressor variables. When estimating the SD model, which includes 

spatial lags in the regressor variables, this potential misspecification can be avoided. 

Furthermore, since the OLS, SAR and SE models are special cases of the SD model (LeSage 

and Pace 2009), it can also be tested using Wald or likelihood ratio (LR) ratio tests whether the 

SD model simplifies to one of these models (Elhorst 2014; Juhl 2021). The residuals of the SD 
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model (or one of these simpler models) can then be used to test for any remaining spatial 

dependence. This is one of the best ways to deal with the third attribute of spatial 

autocorrelation. A recent test that can be used for this purpose is the cross-sectional dependence 

(CD) test of Pesaran (2015), because it does not require any pre-specified spatial weight matrix, 

which also fulfills the fourth attribute. If the CD test applied to the residuals of the SD model 

still points to any remaining spatial dependence, only then further adjustments may be necessary 

to find a proper model. 

Another advantage of the SD model in empirical research over other spatial econometric 

models (SAR, SE and SARAR3) is its flexibility in modeling spillovers, and thus the fifth 

attribute. The main interest of many empirical researchers is not the parameter estimates of the 

regressor variables, but the marginal impact of changes they have on the regressand. Two 

marginal effects stand out: the direct effect of changing the regressor of one unit on the 

regressand of that unit itself, and the cumulative effect of changing the regressor of one unit on 

the regressand of all other units (LeSage and Pace 2009). This cumulative effect is also known 

as the indirect effect or, alternatively, the spillover effect, the term we employ throughout this 

paper. Halleck Vega and Elhorst (2015) demonstrate that only models that at least include 

spatial lags of the regressor variables are able to produce spillover effects that can take any 

empirical value relative to the direct effects. By contrast, the popular SAR, SE and SARAR 

models are less flexible since they impose restrictions on the magnitude of spillover effects in 

advance. In the SE model they are zero by construction and in the SAR and SARAR models 

they are the same for every regressor. 

Up to now, the sixth attribute of measuring distance decay received relatively little 

attention in the spatial econometric literature. Most studies adopt one common spatial weight 

matrix for all spatial lags in the SD model. By parameterizing the distance-based negative 

exponential spatial weight matrix by a distance decay parameter that differs for each spatial lag, 

we also try to give shape to this particular attribute of Artus Getis. The present study illustrates 

the benefits of this approach in the context of a spatially augmented neoclassical growth 

framework. For this purpose, we use data of 266 NUTS-2 regions in the EU over the period 

2000-2018.  

Using data over a period that covers the financial crisis of 2008-2009 and the resulting 

Great Recession, followed by the European debt crisis of 2009-2015, we also cover the seventh 

attribute, as growth rates were relatively high before this recession and relatively low in the 

period immediately after it. Figure 1 displays the average growth rate of GDP per capita across 

all regions, which dropped precipitously in 2009 and then recovered gradually. Furthermore, 

by using data at the sub-national level, which will be characterized by a substantial level of 

spatial autocorrelation, we also can test whether the proposed SD model is able to cover the 

eighth attribute by applying the CD test on its residuals. 

<< Figure 1 around here >> 

                                                           
3 The abbreviation SARAR stands for the spatial autoregressive (SAR) model with spatial autoregressive (AR) 

error terms and thus combines the SAR and the SE models. 
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To test whether the ninth attribute of spatial stationarity is satisfied, we will specify in 

the next section which restriction on the parameters needs to be verified in the SD model. The 

last two attributes, the identification of spatial clusters and outlier observations, recur in our 

empirical analysis in Sections 5.3 and 5.4. 

 

3. The spatially augmented neoclassical growth framework 

The world’s evolving distribution of incomes lies at the heart of the economic growth literature. 

Within this literature, the neoclassical growth framework is the most commonly used 

framework to understand the pattern of economic growth and the evolution of per capita 

incomes across countries and regions. The framework originates from theoretical contributions 

by Solow (1956) and Swan (1956) associating economic growth with the process of capital 

accumulation under diminishing returns. Following the standard empirical implementation of 

the neoclassical framework in a panel data context due to Islam (1995) leads to the following 

expression: 

 

∆ ln 𝑦𝑖,𝑡 =  𝛽1 ln 𝑖𝑛𝑣𝑖,𝑡 + 𝛽2 ln(𝑛𝑖,𝑡 + 𝑔 + 𝛿) + 𝛽3 ln 𝑦𝑖,𝑡−1 +  𝜇𝑖 +  𝜉𝑡 + 𝜀𝑖,𝑡,  (1) 

 

where ln 𝑦𝑖,𝑡 denotes the natural logarithm of GDP per capita of economy 𝑖 (= 1, … , 𝛮) in 

period 𝑡 (= 1, … , 𝛵) and ∆ ln 𝑦𝑖,𝑡 = ln 𝑦𝑖,𝑡 − ln 𝑦𝑖,𝑡−1 its growth rate.4 𝑖𝑛𝑣𝑖,𝑡 denotes the 

investment rate whose impact is measured by the parameter 𝛽1. 𝑛𝑖,𝑡 denotes the rate of 

population growth, 𝑔 the rate of technological progress and 𝛿 the depreciation rate.5 The 

combined effect of these three variables is measured by parameter 𝛽2. ln 𝑦𝑖,𝑡−1 is the natural 

logarithm of the initial level of GDP per capita at the beginning of each time period whose 

effect is captured by 𝛽3. The specification also includes cross-sectional fixed effects, 𝜇𝑖, which 

reflect all time-invariant factors that lead to differences in growth rates across economies, such 

as geographic and institutional factors. Since growth rates are also affected by common trends, 

time period fixed effects, 𝜉𝑡, are also controlled for.6 Finally, 𝜀𝑖,𝑡 represents the independently 

and identically distributed error term for all 𝑖 with zero mean and variance 𝜎2. 

 One important limitation of the standard neoclassical growth framework is the 

assumption that each economy operates in isolation of others. This assumption seems 

implausible especially when this framework is applied to sub-national economies between 

which production factors are highly mobile and technology can be easily transferred 

(Beugelsdijk et al. 2018). Over the past two decades, awareness of this issue has increased, 

leading to increased interest in the influence of an economy's spatial location on its growth rate. 

                                                           
4 The presentation of this equation is based on annual data. The index t-1 can be replaced by t-p if GDP per capita 

growth is measured over p years. In that case the growth rate should correspond to an average over this time period. 
5 In line with the common assumptions of the neoclassical growth framework, the rates of technological progress 

and depreciation, 𝑔 and 𝛿, are not indexed as they are assumed to be common for all economies and time periods 

(see also Islam 1995). In Section 5.4 we investigate what happens if we extend our specification to incorporate 

endogenous elements.  
6 See Section 5.4 for an alternative approach. 
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A prominent example is the study of Ertur and Koch (2007). In their neoclassical spatially-

augmented economic-theoretical growth model, they allow for productivity spillovers between 

economies due to capital investment. Their model builds on and is supported by a large body 

of other studies highlighting the importance of technological and knowledge spillovers (e.g., 

Grossman and Helpman 1991; Audretsch and Feldman 2004; Autant‐Bernard and LeSage 

2011). Ertur and Koch (2007) also demonstrate that the empirical counterpart of their spatially 

augmented version of the neoclassical growth model takes the form of an SD model. This 

empirical model has been applied and extended in several follow-up studies, including LeSage 

and Fischer (2008), Elhorst et al. (2010), Yu and Lee (2012), Pfaffermayr (2012), and Lee and 

Yu (2016). These studies have shown that for a panel of N cross-sectional observations over T 

time periods this model in vector form reads as 

 

∆𝑌𝑡 = 𝜌𝑊(𝛿0)∆𝑌𝑡 + 𝜏∆𝑌𝑡−1 + 𝜂𝑊(𝛿1)Δ𝑌𝑡−1 + 𝜆𝑌𝑡−1 + 𝜋𝑊(𝛿2)𝑌𝑡−1+ 

[𝑋1𝑡 , … , 𝑋𝐾𝑡]𝛽 + [𝑊(𝛿1)𝑋1𝑡 , … , 𝑊(𝛿𝐾)𝑋𝐾𝑡]𝜃 + 𝜇 + 𝜉𝑡𝜄𝑁 + 𝜀𝑡,    (2) 

 

where ∆𝑌𝑡 = (∆ ln 𝑦1𝑡 , … , ∆ ln 𝑦𝑁𝑡)𝑇 denotes an 𝑁 × 1 vector of the regressand introduced in 

Equation (1). 𝑊(𝛿0)𝑌𝑡 represents the contemporaneous vector of the regressand 𝑌𝑡 observed in 

neighboring economies and 𝜌 the spatial autoregressive response parameter of this vector. 

∆𝑌𝑡−1 and 𝑊(𝛿1)Δ𝑌𝑡−1 denote the corresponding vectors of one-period time lags of these two 

variables, and 𝑌𝑡−1 and 𝑊(𝛿2)𝑌𝑡−1 the initial levels of GDP per capita at the start of each time 

period. [𝑋1𝑡, … , 𝑋𝐾𝑡] is an 𝑁 × 𝐾 matrix of the regressor variables introduced in Equation (1) 

and [𝑊(𝛿1)𝑋1𝑡, … , 𝑊(𝛿𝐾)𝑋𝐾𝑡] an 𝑁 × 𝐾 matrix of spatial lags of these regressor variables. 

The impacts of these regressor variables and their spatial lags are measured by the 𝐾 × 1 vectors 

β and θ, respectively. As explained above, 𝜇 = (𝜇1, … , 𝜇𝑁)𝑇 and the set 𝜉𝑡 (𝑡 = 1, … , 𝑇), where 

𝜄𝑁 is an 𝑁 × 1 vector of ones, denote cross-sectional and time fixed effects respectively. The 

spatial weight matrix, symbolized by 𝑊, is an 𝑁 × 𝑁 matrix describing the spatial arrangement 

between each pair of economies 𝑖 and 𝑗, whose elements 𝑤𝑖𝑗 in this paper are assumed to depend 

on a distance decay parameter (𝛿𝑘). Its functional form is the topic of the next section. 

Overall, Equation (2) shows that the GDP per capita growth rate of a given economy 

depends on the investment rate and the rates of population growth, technological progress and 

depreciation, both in the given economy and that of its neighbors, which determine the long-

run equilibrium or steady state level of GDP per capita. It further depends on its lagged growth 

rate, as well as the contemporaneous and lagged growth rates of its neighhbors. Finally, it 

depends on the initial GDP per capita level in both the given and neighboring economies at the 

start of each time period, which reflects how far each economy is from its long-run equilibrium. 

To find out under which parameter condition the spatially augmented version of the 

neoclassical growth framework leads to convergence or divergence, we rearrange and express 

Equation (2) in terms of GDP per capita levels, to get:  
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𝑌𝑡 = 𝜌𝑊(𝛿0)𝑌𝑡 + (1 + 𝜏 + 𝜆)𝑌𝑡−1 + (−𝜌𝑊(𝛿0) + 𝜂𝑊(𝛿1) + 𝜋𝑊(𝛿2))𝑌𝑡−1  − 𝜏𝑌𝑡−2 

         −𝜂𝑊(𝛿1)𝑌𝑡−2+[𝑋1𝑡, … , 𝑋𝐾𝑡]𝛽 + [𝑊(𝛿1)𝑋1𝑡, … , 𝑊(𝛿𝐾)𝑋𝐾𝑡]𝜃 + 𝜇 + 𝜉𝑡𝜄𝑁 + 𝜀𝑡,  (3) 

 

Assuming row-normalized spatial weight matrices, Yu et al. (2012) show that the sum of the 

coefficients of the first five terms on the right-hand of this equation determines spatial 

stationarity, i.e., converge or divergence. This yields: 

 

𝜌 + (1 + 𝜏 + 𝜆) + (−𝜌 + 𝜂 + 𝜋) − 𝜏 − 𝜂 = 1 + 𝜆 + 𝜋.    (4) 

 

Convergence occurs if the latter sum is smaller than 1, and thus if the coefficients of the initial 

levels of GDP per capita in the given and neighboring economies are smaller than 0, i.e., 𝜆 +

𝜋 < 0. In contrast divergence occurs if the sum is greater than 1, i.e., 𝜆 + 𝜋 > 0. A special case 

of neither convergence or divergence occurs when 𝜆 + 𝜋 = 0, which Yu et al. (2012) label as 

spatial co-integration. This corresponds to a situation in which GDP per capita growth rates in 

different economies fluctuate over the business cycle to a varying extent, but eventually remain 

on the same path during the entire sample period.  

 

4. Parameterization and estimation 

Following Arthur Getis’ sixth attribute, a negative exponential functional form is used to 

specify 𝑊(𝛿𝑘). Its diagonal elements are set to zero to prevent economies from influencing 

themselves and its off-diagonal elements are specified by 𝑤𝑖𝑗(𝛿𝑘) = exp (−𝛿𝑘𝑑𝑖𝑗), where 𝑑𝑖𝑗 

denotes the geographic distance between each pair of economies i and j. Although this 

functional form is commonly used, the novelty of our study is that the distance decay parameter 

(𝛿𝑘 > 0) is estimated rather than pre-specified and is allowed to be different for each spatial 

lag 𝑘 (𝑘 = 0,1,2,3,4). Here 𝑘 = 0 refers to the distance decay parameter of the spatial lag in 

the regressand, 𝑘 = 1 and 𝑘 = 2 to the distance decay parameters of the time-lagged GDP per 

capita growth rate and the initial level of GDP per capita, and 𝑘 = 3 and 𝑘 = 4 to the distance 

decay parameters of the investment rate and the rates of population growth, technological 

progress and depreciation. After row-normalizing the elements 𝑤𝑖𝑗(𝛿𝑘) of the negative 

exponential distance decay matrix, we obtain 

 

𝑤𝑖𝑗(𝛿𝑘) =
exp (−𝛿𝑘𝑑𝑖𝑗) 

∑ exp (−𝛿𝑘𝑑𝑖𝑗) 𝑁
𝑗=1

.         (5) 

 

It should be noted that previous studies generally adopt one common 𝑊 matrix for each spatial 

lag. This may be rather restrictive and lead to incorrect inferences regarding the degree of spatial 

interactions as it may be different for each variable. We examine whether this restriction is 

supported by the data in Section 5.2. 

To draw conclusions regarding the marginal effects of the regressor variables and their 

spatial lags, the direct and spillover effects have to be invoked, as the parameters 𝛽 and 𝜃 alone 
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provide an incomplete picture of the marginal effects in the SD model (LeSage and Pace 2009; 

Elhorst 2014). The direct effect (𝐷𝐸𝑘) measures the average impact of a change in the 𝑘th 

regressor of a given economy on its own growth rate, while the spillover effect (𝑆𝐸𝑘) measures 

the cumulative effect of changing this regressor on the growth rates of all its neighbors. The 

formulas for the direct and spillover effects of each standard regressor (𝑘 = 3, 4) read as: 

 

𝐷𝐸𝑘 =
1

𝑁
𝑡𝑟 {(𝛪𝛮 − 𝜌𝑊(𝛿0))

−1
(𝛽

𝑘
𝛪𝛮 +  𝜃𝑘𝑊(𝛿𝑘))},     (6a) 

        𝑆𝐸𝑘 =
1

𝑁
𝜄𝑁
′ {(𝛪𝛮 − 𝜌𝑊(𝛿0))

−1
(𝛽

𝑘
𝛪𝛮 +  𝜃𝑘𝑊(𝛿𝑘))} 𝜄𝑁 

                     −
1

𝑁
𝑡𝑟 {(𝛪𝛮 − 𝜌𝑊(𝛿0))

−1
(𝛽

𝑘
𝛪𝛮 +  𝜃𝑘𝑊(𝛿𝑘))}.     (6b) 

 

Similarly, if 𝑘 = 1 (GDP per capita growth rate), 𝛽𝑘 and 𝜃𝑘 need to be replaced by 𝜏 and 𝜂 and 

if 𝑘 = 2 (the initial level of GDP per capita) by 𝜆 and 𝜋. Halleck Vega and Elhorst (2015) 

demonstrate that only models that at least include spatial lags of the regressor variables 

(𝜃𝑘 , 𝜂, 𝜋 ≠ 0), such as the SD model, are able to produce spillover effects that can take any 

empirical value. By contrast, in the SE model they are zero by construction and in the SAR and 

SARAR models they are the same for every regressor. Parameterizing the spatial weight matrix 

of every regressor in the SD model enhances this flexibility by the decay parameters 𝛿𝑘 and 𝛿0. 

This is because the slope of the distance decay effect and the distance at which they may still 

have effect on other units, i.e., the spatial reach, may also be different from one regressor to 

another. This will be further illustrated in Section 5.3. 

When the distance parameters and therefore the spatial weight matrices are different, 

the existence of convergence, divergence or spatial cointegration can still be tested by 

considering 𝜆 + 𝜋. This is because the sum of the direct and spillover effect of the initial level 

of GDP per capita is equal to 
1

𝑁
𝜄𝑁
′ {(𝛪𝛮 − 𝜌𝑊(𝛿0))

−1
(𝜆𝛪𝛮 +  𝜋𝑊(𝛿𝑘))} 𝜄𝑁, which is smaller than, 

greater than or equal to zero if 𝜆 + 𝜋 is smaller than, greater than or equal to zero. Alternatively, 

one may test whether the sum of the direct and spillover effect of the initial level of GDP is 

smaller than, greater than or equal to zero. 

  We use the nonlinear quasi-maximum likelihood (QML)7 estimator developed by Tan 

(2023) to estimate the parameters of Equation (2) and the corresponding variance-covariance 

matrix. This estimator allows us to obtain the parameter estimates of the regressor variables and 

the distance decay parameters simultaneously from the data, instead of relying on an arbitrarily 

specified 𝑊 matrix. The delta method (Arbia et al. 2020) or bootstrapping (LeSage and Pace 

2009; Elhorst 2014) can be used to calculate the t-statistics of the direct and spillover effects.  

 

 

 

                                                           
7 The term quasi is used since the usual assumption of normality of the error terms is not required. If the error 

terms are also assumed to be normally distributed, the QML estimator simplifies to an ML estimator. 
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5. Empirical analysis 

5.1 Data 

We perform the estimation of our spatial-augmented neoclassical growth framework based on 

a sample of 266 EU NUTS-2 regions across 27 countries over the period 2000-2018 

provided by Eurostat’s regional database. Conducting the analysis with EU NUTS-2 

regions has the advantage of working with harmonized data on GDP and other 

macroeconomic aggregates, such as investment spending, which are not available at a more 

disaggregate level. Based on these data we can compute real GDP per capita in constant 

prices and adjusted for PPP (y), the investment rate (inv) and the population growth rate 

for each NUTS-2 regions (popg).8 In one of the alternative model specifications, we also 

use data provided by Eurostat on the educational attainment of the population (educ) and 

the share of employment in science and technology (sci_tech). All variables are expressed 

in natural logarithms. 

 

5.2 Basic results 

Table 1 reports the estimation results of our spatially augmented neoclassical growth model 

for four different specifications of the spatial weight matrix or matrices. The estimates in 

column [1] are based on one common spatial weight matrix for all spatial lags based on the 

six nearest neighbor principle. This column is representative of a wide range of previous 

empirical studies on economic growth. Although most adopt a binary contiguity matrix 

based on the principle of sharing a common border, one problem is that many EU regions 

are islands, which would become isolated if the contiguity principle were applied to them 

(Anselin and Rey 2014, pp.38-40). Since the number of neighbors for non-island regions 

appears to be 5.98 on average, we used a six nearest neighbor matrix in column [1] so that 

islands can also be included in the analysis.  

<< Table 1 around here >> 

The estimates in column [2] are based on one common row-normalized exponential 

distance decay matrix using a pre-specified value of 𝛿 = 0.01. This value of 0.01 has been 

used in several other studies based on EU regions (Pfaffermayr 2012; Ezcurra and Rios 

2020) and also turns out the best choice when carrying out a Bayesian comparison test for 

a series of values starting with 0.01 and step size 0.01 (LeSage 2015). Using the value of 

0.01 implies that all distances between regions measured in kilometers are first divided by 

100. The rows of this matrix are then normalized to 1.  

The estimates in column [3] are based on one common row-normalized exponential 

distance decay matrix whose distance decay parameter is estimated rather than pre-

specified, using the non-linear estimation techniques developed by Tan (2023). The 

obtained estimate appears to be 1.088 (t-value 14.89), which after scaling is close to the 

                                                           
8 Just as in previous studies the growth rate of the population is incremented by 0.05 to account for the rate of 

technological progress and the depreciation rate of capital.  
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pre-specified value of 0.01 in column [2]. Just as in column [2], the distances measured in 

kilometers are first divided by 100. If not, the estimate of the distance decay parameter 

would change to 0.01088. In column [4] of Table 1, the distance decay parameters of each 

spatial lag in the model are estimated separately.  

 Overall, the estimation results show a plausible model structure. To illustrate this, 

we focus on the estimates reported in column [4], unless otherwise stated, and explain this 

choice below. 

The coefficient of the lagged GDP per capita growth rate in a given region is found 

to be positive but small and statistically insignificant, indicating that recent growth rates 

are not persistent. By contrast, the coefficients of both the contemporaneous and lagged 

growth rates in neighboring regions are found to be much larger and significant. Comparing 

the magnitudes of the direct and spillover effects for the lagged growth rate also reveals a 

staggering difference. A 1% increase in the growth rate of a region in the previous year 

will only lead to a 0.030% (t-value 2.08) increase in the current growth rate, whereas the 

resulting increase would be 0.478% (t-value 7.29) if such an increase occurred in all the 

neighboring regions. 

Looking at the estimates for the investment rate we see a similar picture. The effect 

of the investment rate in the region itself and its corresponding direct effect are found to 

be positive, but small and insignificant. This stands in contrast with the coefficient of the 

investment rate in neighboring regions and its corresponding spillover effect which are 

much larger and statistically significant; a 1% increase in the investment rate in 

neighboring regions is associated with an increase in the GDP per capita growth rate of 

0.027% (t-value 2.19), while such an increase in the region itself is nine times smaller.  

Turning to the coefficient estimates of the population growth rate in the own and in 

neighboring regions, as well as its direct and spillover effects, they all appear to be 

negative. The difference with the previous two determinants is that only the coefficient in 

the region itself and its direct effect are significant. The direct effect is −0.009 (t-value 

−7.15), which implies that if the population grows by 1%, for example from 1 million to 

1.01 million due to an influx of migrants, GDP per capita growth slows down by almost 

0.1%. 

Finally, looking at coefficient estimates for the initial level of GDP per capita in a 

given region, we see a strong and significant negative effect on GDP per capita growth 

(−0.090, t-value −16.25), suggesting convergent dynamics. Yet one needs to be careful 

since the initial level of GDP per capita in neighboring regions has a strong and significant 

positive effect on GDP per capita growth (0.087, t-value 6.61). The same applies to the 

corresponding direct (−0.090, t-value −16.43) and spillover (0.080, t-value 2.43) effects, 

which have opposite signs and almost sum to zero. Since we cannot reject the hypothesis 

that this sum is different from zero, the evidence is rather in favor of spatial cointegration, 

a situation that is characterized by neither convergence nor divergence over the entire 

sample period. This finding could be driven by the observation period and the impact of 
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the Great Recession in 2008-2009. Some regions were hit harder than others, while after 

this recession some but often other regions were able to recover faster.9 

Comparing the values of the log-likelihood function values (LogL) and two R-

squared measures10 across the four columns, it appears that as we allow for more flexibility 

in the spatial weight matrix, this leads to a better fit of the data. When replacing the 

relatively sparse six nearest neighbor matrix in column [1] with a denser exponential 

distance matrix in column [2],11 all these statistics increase substantially. When the distance 

decay parameter in column [3] is estimated subsequently, both statistics increase further, 

albeit the improvement is limited since 0.01 in this particular case was already a good guess 

of this distance decay parameter. Finally, when conducting an LR test on the LogL value 

in column [4] relative to column [3], we obtain a test statistic of 21.4 (p-value 0.00), which 

exceeds all relevant critical values at four degrees of freedom, representing the additional 

number of parameters to be estimated. This finding provides empirical evidence that the 

distance decay parameters associated with each spatial lag should be estimated rather than 

pre-specified and allowed to be different. Indeed, the distance decay parameters in column 

[4] appear to range from 0.233 for the population growth rate to 2.224 for the initial level 

of GDP per capita. Apparently, the slope of the distance decay effect and the spatial reach 

of the spillover effects are significantly different for the different growth determinants.  

Lastly, when running Pesaran’s CD-test statistic on the raw data we obtain 302.3, 

indicating that GDP per capita growth rates are strongly spatially autocorrelated. Yet, when 

applied to the residuals of the four models estimated in Table 1, the test statistics drop to 

values between −0.908 to −0.605, which is within the confidence interval of 

(−1.96,+1.96).12 This indicates that the spatial association between the regressand and 

regressors in these models is properly specified.  

 

5.3 Graphing spillover effects 

Although the coefficient estimates and the direct effects may not seem to differ much across 

the four columns of Table 1 at first glance, a different picture emerges when we compare 

the spillover effects. To illustrate this in more detail, we decompose the spillover effects in 

21 distance categories and graph the obtained results in Figure 2 (the distinguished distance 

categories are spelled out in the note to this figure). The following explanation using the 

lagged GDP per capita growth rate as an example is intended to better understand these 

graphs and this decomposition. According to column [4] of Table 1, the spillover effect of 

the lagged GDP per capita growth rate is 0.478. This summary measure represents the 

average cumulative effect of changing this regressor in a given region on the regressand of all 

                                                           
9 See also Breinlich et al. (2014), as well as Billé et al. (2023) for a similar finding in Italian regions. 
10 The corrected R-squared measures the explanatory power of the model excluding the contribution of fixed 

effects. 
11 A matrix is sparse if it contains many zeros and dense when it contains many nonzero elements. 
12 The CD test statistic of Pesaran (2015) converges to a standard normal distributed if N and T go to infinity, 

which implies that its critical values are ±1.96 at the 5% significance level. 
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other 265 regions in the sample, whether near or far, and is determined by Equation (6b). The 

decomposition breaks down this summary measure based on the distance to these other regions. 

If the distance of region i to another region j is 𝑑𝑖𝑗 kilometers, region j is assigned to distance 

category [𝑑𝑎, 𝑑𝑏], such that 𝑑𝑎 < 𝑑𝑖𝑗 < 𝑑𝑏. When applied to all regions, this results in the 

summary measure of 0.478 reported in Table 1 being equal to the surface area under the 

solid line of the lagged GDP per capita growth rate in Figure 2. In addition to the lagged 

GDP per capita growth rate, Figure 2 also graphs the decomposed spillover effects of the 

other growth determinants, as well as their 95% confidence intervals, based on the 

estimation results reported in column [4] of Table 1.  

<< Figure 2 around here >> 

The first thing worth emphasizing is that the confidence intervals in Figure 2 also 

account for the uncertainty in the distance decay parameters. If spatial weight matrices are 

prespecified, as in the first two columns of Table 1, this type of uncertainty is ignored, as 

if the researcher does know the right specification of the spatial weight matrix. This 

explains why the t-values of the direct and spillover effects reported in Table 1 are lower 

when the distance decay parameters are estimated together with the other parameters in 

model, unless they take on a clearly different value than that imposed by a pre-specified 

spatial weight matrix. In this respect note that the t-values of the spillover effects in column 

[3] compared to those in column [2] go down slightly. One example is the t-value of the 

initial level of GDP per capita, which decreases from 2.03 in column [2] to 2.00 in column 

[3]. Conversely, if the distance decay parameter in column [4] is substantially different 

from the reported value of 1.088 in column [3], the t-values of the spillover effects increase 

again. One example is again the t-value of the initial level of GDP per capita, which 

increases from 2.00 in column [3] to 2.43 in column [4], since its distance decay parameter 

of 2.224 is substantially different from 1.088. 

The graphs in Figure 2 show several notable patterns. For the first two distance 

categories up to 50 kilometers, the spillover effect of lagged GDP per capita growth in 

neighboring regions is greater than the direct effect in the own region. Whereas the direct 

effect amounts to 0.030, the spillover effect can be as high as 0.076 in these distance 

categories. This can be explained by the fact that some regions in our sample are located 

so close to each other geographically that they form a cluster. It concerns regions around 

the capitals of Brussels, London, Berlin, Prague and the cities of the Hague and Rotterdam 

(located in the same region). It is to be noted that the situation of having neighboring 

regions within a distance of 50 kilometers only occurs for a limited number of regions in 

our sample (0.13%). Normally, one would expect the spillover effect to be smaller than the 

direct effect, even though it is a cumulative effect measured over all other regions in the 

sample (see eq. 6b). However, when regions form a cluster, such as the above urbanized 

areas, the spillover effect may exceed the direct effect. 

The spillover effect of the investment rate also decreases with distance markedly, 

as does GDP per capita growth, but the difference is that it only exceeds the direct effect 
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when it comes to nearby regions up to 25 kilometers. For the spillover effect of the 

population growth rate, which is negative, we see that its absolute value decreases with 

distance, gradually reaches a value of zero, and that even for nearby regions in the smallest 

distance category of 25 kilometers, it is approximately five times as small as the direct 

effect. 

Finally, the spillover effect of the initial level of GDP per capita exhibits a more 

complex relationship with distance. It is negative at first, then decreases in magnitude with 

distance, becomes positive around 100 kilometers, increases further up to 350 kilometers 

and finally falls back to zero over a range of 350 to 1250 kilometers. It shows that nearby 

regions with high levels of GDP per capita strengthen the convergence effect, whereas 

regions with high levels of GDP per capita located farther away and especially in the range 

of 150 to 500 kilometers weaken the convergence effect. Regions that do already well in 

terms of growth apparently benefit from richer regions within this particular spatial range, 

which often concern centrally-located regions in the EU though in different countries. 

Another notable observation from Figure 2 is that the slope with which the spillover 

effects decay and their spatial reach are different for different growth determinants. The 

first is most obvious for the initial level of GDP per capita, which follows a completely 

different distance decay pattern than the other growth determinants. The second is most 

obvious for the population growth rate, which turns out to have a spatial reach even beyond 

1500 kilometers, whereas the spatial reach of the investment rate does not tend to be greater 

than 700 kilometers and of both the growth rate and the initial level of GDP per capita not 

to be greater than 1250 kilometers. If we would have adopted one common spatial weight 

matrix for all spatial lags in the model, as in columns [1], [2] or [3] of Table 1 and 

constructed the same graphs, their slope and spatial reach would be exactly the same for 

every growth determinant. More specifically, the graph of the initial level of GDP per 

capita would change in a downward sloping graph only, while the spatial reach of the 

population growth rate would become the same as that of the other growth determinants.  

To illustrate this, Figure 3 graphs the spillover effects of the initial level of GDP per 

capita and the population growth rate based on the six nearest neighbor matrix and the 

estimation results reported in column [1] of Table 1. Instead of the inverse U-shaped form 

in Figure 2 starting with negative values first, the spillover effects of the initial level of 

GDP per capita in Figure 3 starts with positive values and indeed is downward-sloping 

only. Similarly, instead of differing spatial ranges in Figure 2, the spatial range of both 

curves in Figure 3 indeed amounts to the same value of 500 kilometers. Further note that 

these differences are consistent with the estimated spillover effects reported in columns [1] 

and [4] of Table 1. The summary measure of the spillover effects in column [4] is 2.6 times 

as large for the initial level of GDP per capita and 4.2 times as large for the population 

growth rate compared to their counterparts in column [1]. 

<< Figure 3 around here >> 
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We conclude that the sensitivity of the spillover effects to the specification of the 

spatial weight matrix contrasts with the relative stability of the coefficient estimates and 

the direct effects seen across the different columns in Table 1. This contrast raises concerns 

for anyone who works with spatial econometric models in applied research. Empirical 

studies that want to verify whether their results are robust for the specification of the spatial 

weight matrix, should put more emphasis on the spillover effects rather than the parameter 

estimates and should consider not only different spatial weight matrices, but also different 

ones for each spatial lag in their model.  

 

5.4 Alternative model specifications 

Since the empirical literature usually works with different variants of the spatially-

augmented neoclassical growth framework, in this section we draw attention to four 

alternative specifications. Their results are reported in Table 2. 

<< Table 2 around here >> 

Column [1] shows the results when the lagged growth rate is removed from the 

baseline model. This simpler version has been estimated in several studies, among which 

the original study of Ertur and Koch (2007). Due to removing this regressor, the number 

of observations increases from 4522 to 4788. This model run shows that our baseline 

version, which includes both the lagged and spatially lagged growth rates, is a better choice 

as it also permits the determination of the spillover effects of the GDP per capita growth 

rate, which according to the first graph of Figure 2 are worth to consider. When conducting 

an LR test on the LogL values in column [1] of Table 2 and column [4] of Table 1, adjusted 

for the difference in the number of observations, we obtain a test statistic of 153.5 (p-value 

0.00), which indicates that this simplification is rejected by the data.  

Column [2] presents the results when the time fixed effects with homogenous 

coefficients are replaced by cross-sectional averages of the dependent variable at time t and 

t−1 with heterogeneous coefficients. This extension might be better able to distinguish 

global and local spillovers from each other.13 The objection to this model specification is 

that it does not properly specify the spatial association between the regressand and its 

regressors; Pesaran’s CD-test statistic applied to the residuals of this specification takes a 

value of 8.41, which is outside the desired confidence interval of (−1.96,+1.96).  

Column [3] continues with the results when the baseline model is extended to 

include additional explanatory variables taken from endogenous growth models (Ertur and 

Koch, 2011; Jung and Lopez-Bazo, 2017). It concerns the share of the population with 

tertiary education, as a proxy for regional differences in educational attainment, and the 

share of employment in science and technology, as a proxy for the share of resources used 

in research and development. The added-value of this extension appears to be limited 

                                                           
13 A detailed explanation of this approach is provided in Elhorst (2021), which is partly inspired by previous studies 

of Keller (2002), Ertur and Koch (2011) and Crescenzi and Rodriguez-Pose (2013).  
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though. Out of all the additional parameters, six in total, only the coefficient of the share 

of resources used in research and development appears to be statistically significant. When 

conducting an LR test on the LogL values in column [3] of Table 2 and column [4] of Table 

1, we obtain a test statistic of 9.4 (p-value 0.15), which indicates that this extension is 

rejected by the data.  

Column [4] shows the results when the baseline model is not estimated based on 

annual observations but three-year overlapping averages, as is more common in this 

literature, again when removing the lagged growth rate. Due to taking averages, the number 

of observations decreases from 4522 to 4256. When we compare the results in columns [1] 

and [4], we see that in particular the significance levels of almost all coefficient estimates 

and implicit effects improve. This finding may be due to a reduction in the impact of 

observations in the year 2009, which can be seen as an outlier according to Figure 1. If 

outliers are an issue, this approach is recommended to narrow the graphically displayed 

confidence intervals of the spillover effects. 

 

6. Conclusion 

In his contribution to the Handbook of Applied Spatial Analysis, Arthur Getis listed eleven 

attributes of the concept of spatial autocorrelation. In this paper we translate these attributes 

into present-day spatial econometrics and present a methodology to estimate the distance decay 

effect and spatial reach of spillover effects in a spatial Durbin model. We apply this 

methodology to study spillovers in GDP per capita growth across EU regions and to illustrate 

these effects and their confidence intervals as a function of distance. 

This approach contrasts with the standard practice in empirical studies of routinely 

reporting for each regressor the direct and spillover effects as two numerical summary 

measures. Instead, the exposition of the spillover effects based on the graphs developed in 

this paper is a major step forward in the literature. This is because they disentangle the 

spillover effects as a function of distance, which is one of the major topics in regional 

science, spatial economics and economic geography. Since the spillover effects of the 

regressors tend to be the main focus of many spatial econometric studies, these graphs may 

contribute to a better understanding of these effects. 

Our findings confirm not only the existence and importance of growth spillovers, but 

also their decrease in magnitude as distance increases, consistent with Tobler's first law of 

geography. Normally, one would expect the spillover effects to be smaller than the direct 

effects, but there might be exceptions. One such exception is that the distance to 

neighboring regions is so small that these regions can just as well be regarded as a cluster, 

as a result of which the spillover effects within this cluster exceed the direct effect.  

By parameterizing the spatial weight matrix of each spatial lag by a different 

distance decay parameter, we also found that the spatial reach of the spillover effect of each 

regressor is no longer the same, which from an empirical viewpoint further enhances the 

flexibility of these effects. This finding highlights the restrictiveness of the SD model based 
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on one common spatial weight matrix for all spatial lags, reflecting the standard in spatial 

econometric research up to now. In their 2009 spatial econometric textbook, LeSage and 

Pace (2009, pp.72-73) partitioned the spillover effects from first to ninth-ordered neighbors 

numerically in an attempt to disentangle the spillover effects across space. However, hardly 

any study has explored this further. We hope that graphing the spillover effects for each 

individual regressor, as in this paper, will be followed up in more studies.  
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Table 1: Estimation results of the spatially augmented neoclassical growth model for different spatial weight matrices− 

  [1]   [2]   [3]   [4] 

  Coeff. t-stat  Coeff. t-stat  Coeff. t-stat  Coeff. t-stat 

Δy(t-1) 0.014 0.94  0.012 0.78  0.009 0.62  0.008 0.56 

y(t-1) −0.094*** −16.73  −0.089*** −15.88  −0.088*** −15.84  −0.090*** −16.25 

inv(t) 0.002 0.82  0.002 0.55  0.001 0.48  0.002 0.52 

popg(t) −0.008*** −5.91  −0.008*** −6.03  −0.008*** −6.06  −0.008*** −6.48 

W(δ0)*Δy(t) 0.534*** 30.85  0.650*** 33.64  0.631*** 23.54  0.641*** 22.62 

W(δ1)*Δy(t-1) 0.191*** 7.62  0.194*** 6.73  0.198*** 6.95  0.174*** 6.36 

W(δ2)*y(t-1) 0.066*** 8.60  0.070*** 8.47  0.068*** 8.27  0.087*** 6.61 

W(δ3)*inv(t) 0.009* 1.94  0.009* 1.80  0.010* 1.94  0.009* 1.73 

W(δ4)*popg(t) −0.002 −1.00  −0.005* −1.82  −0.005* −1.90  −0.016 −1.14 

δ0       1.088*** 14.89  1.047*** 13.70 

δ1          2.224*** 3.33 

δ2          0.633*** 4.22 

δ3          1.483 0.95 

δ4          0.233 1.17 

DE_Δy(t-1) 0.035** 2.48  0.030** 2.13  0.029** 1.96  0.030** 2.08 

DE_y(t-1) −0.092*** −17.58  −0.088*** −16.49  −0.087*** −16.08  −0.090*** −16.43 

DE_inv(t) 0.004 1.30  0.003 0.83  0.002 0.83  0.003 0.89 

DE_popg(t) −0.009*** −6.62  −0.009*** −7.19  −0.009*** −6.92  −0.009*** −7.15 

SE_Δy(t-1) 0.404*** 9.29  0.560*** 8.08  0.532*** 7.85  0.478*** 7.29 

SE_y(t-1) 0.031** 2.57  0.035** 2.03  0.032** 2.00  0.080** 2.43 

SE_inv(t) 0.021*** 2.69  0.028** 2.32  0.027** 2.48  0.027** 2.19 

SE_popg(t) −0.014*** −3.29   −0.028*** −4.26   −0.026*** −4.19   −0.059 −1.48 

LogL 10919.1   10974.5   10975.5   10986.2  
R2 0.624   0.633   0.633   0.635  
R2 Excluding fixed effects 0.426   0.429   0.429   0.431  
CD test residuals −0.605   −0.789   −0.802   −0.908  

# Observations 4522     4522     4522     4522   
Notes: All variables are measured in natural logarithms. Regional and time fixed effects are controlled for in all columns.  
*,**,***=significant at respectively the 10%, 5% and 1% significance level. [1] = Estimates with 6 nearest neighbors matrix,  

[2] Estimates with negative exponential matrix but pre-specified distance decay parameter of 0.01, [3] Estimates with  

parameterized negative exponential matrix, distance decay parameter estimated, [4] Estimates with parameterized negative  

exponential matrix but different decay parameters for each spatially lagged variable. 
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Table 2: Estimation results of alternative specifications  

  [1]  [2]   [3]  [4] 

  Coeff. t-stat  Coeff. t-stat   Coeff. t-stat  Coeff. t-stat 

Δy(t-1)    0.022 −1.53  0.007 0.46    
y(t-1) −0.081*** −15.55  −0.083*** −15.73  −0.091*** −16.29  −0.099*** −29.80 

inv(t) 0.002 0.77  −0.002 −0.08  0.002 0.61  0.009*** 4.46 

popg(t) −0.007*** −5.62  −0.009*** −7.27  −0.008*** −6.43  0.003*** 2.58 

educ(t)       −0.004 −0.91    
sci_tech(t)       0.011** 2.07    
W(δ0)*Δy(t)      0.112*** 5.57  0.176*** 6.38    
W(δ1)*Δy(t-1) 0.015*** 2.86  0.098*** 12.25  0.078*** 5.33  0.091*** 12.84 

W(δ2)*y(t-1) −0.011 −1.36  0.005* 1.05  0.015** 2.26  0.015*** 3.84 

W(δ3)*inv(t) 0.698*** 26.86  −0.007 −1.00  −0.019 −1.16  −0.050*** −4.35 

W(δ4)*popg(t)       0.070 0.78    
W(δ5)*educ(t)       −0.007 −0.79    
W(δ6)*sci_tech(t)    0.730*** 27.01  0.637*** 22.35    
δ0 0.965*** 15.01  0.800*** 14.46  1.054*** 13.60  0.760*** 39.88 

δ1    2.702*** 2.30  2.213*** 3.35    
δ2 0.676*** 3.99  0.544*** 6.67  0.661*** 3.53  0.687*** 7.80 

δ3 1.316 1.58  1.516 0.54  1.296 1.39  1.284** 2.24 

δ4 0.352 1.29  0.282 0.92  0.218 1.21  0.366*** 4.29 

δ5       0.163 0.75    
δ6       2.946 0.36    
DE_Δy(t-1)    −0.009** −0.66  0.029** 1.97    
DE_y(t-1) −0.090*** −16.43  −0.081*** −15.77  −0.090*** −16.51  −0.100*** −30.56 

DE_inv(t) 0.003 0.89  0.000 0.09  0.003 1.16  0.012*** 6.12 

DE_popg(t) −0.009*** −7.15  −0.010*** −8.01  −0.009*** −7.08  0.000 0.18 

DE_educ(t)       −0.003 −0.65    
DE_sci_tech(t)       0.011** 2.07    
SE_Δy(t-1)    0.344*** 6.60  0.473*** 7.27    
SE_y(t-1) 0.080** 2.43  0.138** 6.16  0.057 1.53  0.067*** 2.64 

SE_inv(t) 0.027** 2.19  0.016** 1.25  0.042*** 2.64  0.086*** 6.70 

SE_popg(t) −0.059 −1.48  −0.049 −1.91  −0.066 −1.46  −0.195*** −4.16 

SE_educ(t)       0.185 0.75    
SE_lnsci_tech(t)       0.002 0.09    
LogL 11551.8    11391.9    10990.9   12908.5   

R2 0.617   0.694   0.633   0.802  
R2 Excluding fixed effects 0.373   0.492   0.431   0.489  
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# Observations 4788    4522     4522    4256   
Notes: All variables are measured in natural logarithms. Estimates are based on parameterized negative exponential matrices with different  

decay parameters for each spatially lagged variable. Regional and time fixed effects are controlled for in all columns. *,**,***=significant  

at respectively the 10%, 5% and 1% significance level. [1] = Model without lagged growth rates, [2] = Time fixed effects are replaced by 

cross-sectional averages of the regressand at time t and t-1 and heterogeneous coefficients, [3] = Model extended to include endogenous growth  

variables, [4] = Model estimated based on three-year averages rather than annual observations and without lagged growth rates.
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Figure 1: The average GDP per capita growth rate across all regions over time 
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Figure 2: Spatial spillover effects of the four explanatory variables of GDP per capita growth as a function of distance 

 

Notes: The solid lines denote spillover effects and the dotted lines the 95% confidence intervals. Spillover effects are synonymous with indirect effects. 

Distance is split up in 21 categories: 1 (0-25], 2 (25-50], 3 (50,100], 4 (100,150], 5 (150,200], 6 (200,250], 7 (250,300], 8 (300,350], 9 (350,400], 10 (400,450],  

11 (450,500], 12 (500,600], 13 (600,700], 14 (700,800], 15 (800,900], 16 (900,1000], 17 (1000,1250], 18 (1250,1500], 19 (1500,1750], 20 (1750,2000],  

and 21 >2000 kilometers. The graphs are based on the estimation results reported in column [4] of Table 1. 
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Figure 3: Spatial spillover effects of two explanatory variables of GDP per capita growth as a function of distance  

                based on one common six nearest neighbors spatial weight matrix 

 

 

Notes: The solid lines denote spillover effects and the dotted lines the 95% confidence intervals. Spillover effects are synonymous with indirect effects. 

Distance is split up in 21 categories: 1 (0-25], 2 (25-50], 3 (50,100], 4 (100,150], 5 (150,200], 6 (200,250], 7 (250,300], 8 (300,350], 9 (350,400], 10 (400,450],  

11 (450,500], 12 (500,600], 13 (600,700], 14 (700,800], 15 (800,900], 16 (900,1000], 17 (1000,1250], 18 (1250,1500], 19 (1500,1750], 20 (1750,2000],  

and 21 >2000 kilometers. The graphs are based on the estimation results reported in column [1] of Table 1. 


