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Imposing complex strain histories on a material microstructure can result in a specific sequence of 
stress states that accurately emulates entirely different modalities of loading. Specifically, it was 
suggested by Doshi & Dealy (1987)1 and later demonstrated by Kwan et al. (2001)2 that an exponential 
shear strain will move the microstructure of a polymeric liquid through a similar sequence of stress 
states as a planar extensional flow.  Fundamentally, this is enabled by the mechanical coupling between 
the normal and shear stresses that develop in complex fluids at large strains. Here we develop a periodic 
version of this concept, to probe dynamic extensional properties of complex fluids, using a conventional 
shear rheometer. The strain history is given by the following function: 𝛾(𝑡) = 𝐴 sinh(𝛼 sin(𝜔𝑡)), 
where A controls the maximum amplitude of the imposed strain and is normalized such that 𝐴 =
𝛾!"#/sinh	(𝛼), 𝜔 is the frequency of the cyclic deformation and the flow type parameter 𝛼 effectively 
tunes the signal between a weak sinusoidal (𝛼 ≪ 1) deformation (e.g. SAOS with 	𝛾!"# 	<< 1, or LAOS 
for 𝛾!"# ≥	1) and a strong (𝛼 ≫ 1)	deformation with exponential character. A representative Composite 
Harmonic Exponential Waveform (or CHEW strain history) is shown in Fig 1a, for 𝛼=10. 

The benefits of expanding such a protocol to the periodic domain are two-fold: First, we can study 
the time-evolution of both shear and extensional properties of a complex fluid analogous to the 
convergence of medium- or large-amplitude oscillatory deformations into a limit cycle over the course 
of cyclic loading. Second, by measuring the shear stress and normal stress difference simultaneously 
we can also extract time-averaged extensional properties without specialized rheometric hardware (e.g. 
CABER).   

We demonstrate this method experimentally on a viscous fluid with no elasticity, and a canonical 
viscoelastic fluid (3% wt PIB solution) as shown in Fig. 1b. Using CHEW and a standard torsional 
rheometer (Ares G2, TA Instruments), we can compute an appropriate periodic extensional viscosity 
function3 (𝜂!"# = Δ𝜎/(𝛼𝜔) ) from the time-evolving principal normal stress difference (see: Fig 1c). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: (a) A Composite Harmonic Exponential Waveform (black dotted) is shown in the limit of periodic 
exponential shear. The resulting shear stress response for a viscoelastic fluid (3 wt% PIB) is shown in blue. (b) 
Stress vs. strain rate for a Newtonian vs. viscoelastic fluid at 𝛼 = 10. The linearity of the Newtonian response is 
evident and the maximum stress scales with the deformation rate �̇�! = 𝐴𝛼𝜔 (c) Evolution in the principal stress 
difference, Δ𝜎(𝑡) = ,𝑁1(𝑡)" + 4	𝜎#$(𝑡)"  for a viscoelastic fluid over one cycle at 𝛼 = 0.1  vs 𝛼 = 10 .   
 

Additionally, to study the long-term adaptive effects (arising for example from thixotropic effects, 
or the Payne or Mullins effect in a complex fluid), we have constructed a nonlinear theoretical model 
to interpret the material response arising from CHEW. Finally, we use the CHEW protocol to measure 
the rheological response of multiphase semi-solid food materials and how they evolve with deformation 
time. 
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