

Fluorescent HaloTag® Ligands

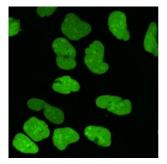
HaloTag[®] Ligands for Super Resolution Microscopy

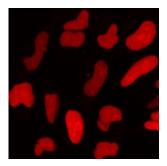
The Janelia Fluor® HaloTag® Ligands enable characterization of HaloTag® fusions in endogenous cellular settings. These bright, fluorogenic, cell-permeable dyes cover the visible spectrum.

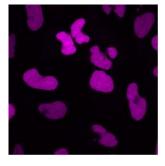
The JFX HaloTag® Ligands are even brighter analogs of the Janelia Fluor® dyes that incorporate deuterium into the alkylamino substituents of rhodamines. This inhibits photochemically induced spectral shifts and slows irreparable photobleaching.

The enhanced photostability of the Janelia Fluor® dyes enables their use in detection, single-molecule imaging studies in live cells. and in vivo studies via:

- Super-resolution and high-resolution imaging. (e.g., SIM, STED, dSTORM).
- Standard confocal imaging.
- FACS.


Janelia Fluor® HaloTag® Ligands Feature:


- · Expansive color palette with fluorogenic options
- · Rapid cell labeling
- · High signal-to-noise ratio and specificity
- Enhanced brightness compared to fluorescent proteins
- Resistance to photobleaching


Now Available

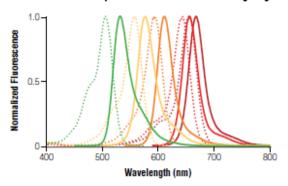
New DMSO-free Format

Janelia Fluor® HaloTag® Ligands

Live Cell labeling of U2OS cells expressing nuclear HaloTag® protein using DMSO-free Janelia Fluor® HaloTag® ligands. Parental U2OS cells and U2OS cells stably expressing HaloTag® protein fused to three copies of a nuclear localization sequence were adhered to glass-bottom chamber slides and labeled with Janelia Fluor® 503, Janelia Fluor® JFX554 or Janelia Fluor® 635 HaloTag® Ligand for 30 minutes at $37^{\circ}\text{C} + \text{CO}_2$ in a cell culture incubator. Cell medium was replaced with a phenol-red-free medium. Cells were imaged with 488nm laser excitation for Janelia Fluor® 503 HaloTag® Ligand (Panel A), 561nm laser excitation for Janelia Fluor® JFX554 HaloTag® Ligand (Panel B) and 637nm laser excitation for Janelia Fluor® 635 HaloTag® Ligand (Panel C). In HaloTag®-expressing cells, labeling was restricted to the nucleus. Parental cells (without HaloTag®) showed no labeling. Images were collected using a Nikon AX/AXR confocal microscope with a plan fluor 40X oil objective.

For more information about HaloTag® Ligands for Super Resolution Microscopy, visit: www.promega.com/SuperResolution

References


- Chong, S. et al. (2018) Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science 361, eaar2555.
 PMID: 29930090
- Courtney, N. et al. (2018) Excitatory and inhibitory neurons utilize different Ca²⁺ sensors and sources to regulate spontaneous release. Neuron 98, 977–91. PMID: 29754754.
- Damon, L.J. et al. (2022) Single molecule microscopy to profile the effect of zinc status on transcription factor dynamics. Scientific Reports12, 17789. PMID: 36273101
- 4. Grimm, J. et al. (2015) A general method to improve fluorophores for live-cell and single-molecule microscopy. Nature Methods 12, 244–50. PMID: 25599551
- 5. Grimm, J. B et al. (2017) A general method to fine-tune fluorophores for live-cell and in vivo imaging. *Nature methods* **14(10)**, 987–994. PMID: 28869757
- Guo, M. et al. (2018) Single-shot super-resolution total internal reflection fluorescence microscopy. Nat. Methods 15, 425-8. PMID: 29735999
- 7. Presman, D.M. et al. (2017) Quantifying transcription factor binding dynamics at the single-molecule level in live cells. Methods 123, 76–88. PMID: 28315485.
- 8. van Leeuwen W, et al. (2022). Stress-induced phase separation of ERES components into Sec bodies precedes ER exit inhibition in mammalian cells. Journal of Cell Science 135(23) PMID: 36325988

Fluorescent HaloTag® Ligands

New DMSO-free formulation available in Early Access provides:

- A 5-pack of smaller aliquots so that more independent experiments can be executed with each purchase, which means less waste.
- Direct resuspension of the ligand in aqueous solutions including cell media.
- Greater accuracy of quantity of the HaloTag[®] Ligand being delivered to your cells.
- Clear visualization of the HaloTag® Ligand in the vial.

Excitation and emission spectra and table for the HaloTag® Ligands.

HaloTag® Ligand	Excitation maximum (dotted lines)	Emission maximum (solid lines)
Janelia Fluor® 503	503nm	529nm
Janelia Fluor® 549	549nm	571nm
Janelia Fluor®585	585nm	609nm
Janelia Fluor®635	635nm	652nm
Janelia Fluor®646	646nm	664nm

For more information, please contact Proteomics@Promega.com or your Promega representative.

Ordering Information

Product	Size	Cat.#
Janelia Fluor® 503 HaloTag® Ligand	Lyo 5 pack; 1nmol/tube	HT1010
Janelia Fluor® 525 HaloTag® Ligand	>2µg	<u>CS315102</u>
	5µg	<u>GA1110</u>
Janelia Fluor [®] 549 HaloTag [®] Ligand	3 x 5µg	<u>GA1111</u>
	Lyo 5 pack; 1nmol/tube	HT1020
Landia Chara IFVEFALIAL-Tara I	>2µg	<u>CS315101</u>
Janelia Fluor® JFX554 HaloTag® Ligand	Lyo 5 pack; 1nmol/tube	HT1030
Lamatia Chian [®] COC Hala Tan [®] Limon d	>2µg	<u>CS315105</u>
Janelia Fluor [®] 585 HaloTag [®] Ligand	Lyo 5 pack; 1nmol/tube	HT1040
Lamalia Chian [®] COC Hala Tan [®] Limon d	>2µg	<u>CS315103</u>
Janelia Fluor® 635 HaloTag® Ligand	Lyo 5 pack; 1nmol/tube	HT1050
	5µg	GA1120
Janelia Fluor® 646 HaloTag® Ligand	3 x 5µg	GA1121
	Lyo 5 pack; 1nmol/tube	HT1060
Lamalia Fluar® IFVCFO HalaTar®Limond	>2µg	<u>CS315104</u>
Janelia Fluor® JFX650 HaloTag® Ligand	Lyo 5 pack; 1nmol/tube	<u>HT1070</u>

