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Introduction 

 

CO₂ geological storage is universally recognized as an underpinning technology in advancing climate 

goals, facilitating industrial decarbonization, and enhancing net atmospheric CO₂ removal capabilities 

(Bui et al. 2018). Its large-scale implementation requires substantial evidence to demonstrate secure 

containment of significant CO₂ volumes across all stages of the CCUS (carbon capture, utilization, and 

storage) industrial chain, particularly under commercial-scale application. 

 

Atmospheric CO₂ concentrations show complex variations from multiple sources (Friedlingstein et al. 

2025). Under natural conditions, these fluctuations are governed by ecosystem carbon fluxes, regional 

topographic-climatic patterns, and extreme events (e.g., wildfires). From anthropogenic perspectives, 

industrial emissions, fossil fuel combustion, and potential CO2 leakage from geological storage 

formation contribute to the complexities of concentration anomalies. Within this context, achieving CO₂ 

attribution monitoring bears critical significance: Technologically, this approach improves monitoring 

network design by identifying actual leakage signals, thereby avoiding unnecessary deployment of 

complex equipment and reducing monitoring costs. Socially, it enhances the credibility of 

environmental risk assessments, mitigates public concerns regarding eco-environmental security, and 

provides quantifiable evidence of irreversible leakage for carbon accounting. 

 

This study aims to resolve the challenge of anomaly source identification in CO₂ geological storage 

monitoring. Through systematic literature review and data analysis, we comparatively analyze CO₂ 

attribution monitoring technologies and optimize monitoring reporting and verification (MRV) 

procedures. 

 

Method and/or Theory 

 

Peer-reviewed journals, books, technical reports (e.g. DOE/EPA/IPCC/IEAGHG), and 

EAGE/SPE/SEG publications were collected, and three key steps were taken to achieve the research 

objectives. First, we conduct systematic evaluations of CO₂ attribution monitoring technologies by 

analyzing their principles and methods. Second, we perform comparative assessments of their technical 

feasibility, costs, and field application results. Finally, an optimized MRV procedure is proposed. 

 

Results 

 

CO2 attribution monitoring technologies can be classified into five major categories: eddy covariance, 

accumulation chamber monitoring, tracer-based techniques, process-based analysis, and deep learning 

algorithms (Fig. 1).  

 

Eddy covariance primarily measures atmospheric CO₂ fluxes, while accumulation chambers monitoring 

focus on soil gas CO₂ fluxes. Both methods require comparison with background values to identify CO₂ 

anomalies.  

 

Tracer-based techniques are further categorized into natural tracers and artificial tracers. Natural tracers 

primarily include radiogenic/stable isotopes (e.g., δ¹³C), noble gases (e.g., helium), hydrocarbons, and 

water chemistry indicators. Artificial tracers involve substances like sulfur hexafluoride (SF₆), 

chlorofluorocarbons (CFCs), perfluorocarbons (PFCs), halocarbons (HFCs), and esters. Tracers are 

non-reactive substances with low background concentrations in the environment. Their high sensitivity 

makes them effective tools for detecting, attributing, and quantifying potential CO₂ leakage. 

 

Process-based analysis identifies anomalous CO₂ sources by analyzing gas-component correlation plots 

(e.g., O₂–CO₂, CO₂–N₂, CO₂–N₂/O₂ ratios). Deviations from established trendlines or baseline zones 

indicate potential leakage signals. This method eliminates the need for long-term background 
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monitoring or complex statistical analyses, thereby offering greater operational flexibility and detection 

accuracy. 

 

The deep learning algorithms detect anomalous CO₂ patterns trained on extensive background datasets. 

However, this technology currently has lower maturity compared to traditional methods. 

 

Building upon conventional MRV frameworks, this study integrates attribution monitoring plan 

between base-case and contingency monitoring plans. This makes MRV more efficient and cost-

effective by reducing unnecessary complex monitoring techniques when anomalies are detected (Fig. 

2). 

 

 
Fig. 1 CO2 attribution monitoring technology system 

 

 
Fig. 2 MRV flow diagram considering CO2 attribution monitoring 

 

Conclusions 

CO2 attribution technologies can be classified into five major categories: eddy covariance, accumulation 

chamber monitoring, tracer-based techniques, process-based analysis, and deep learning algorithms. 

Eddy covariance, accumulation chamber monitoring, and deep learning techniques require extensive 

baseline data for comparison. Tracer-based techniques and process-based analysis demonstrate higher 

sensitivity and operational efficiency and therefore are recommended for prioritized application. 

Building upon conventional MRV frameworks, an optimized workflow is proposed by adding CO2 

attribution monitoring plan between base-case plan and contingency plan. 
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