

Introduction

Underground sequestration of carbon dioxide is an effective way to reduce atmospheric emissions of greenhouse gases (IPCC 2005). Several large-scale carbon capture, utilization and storage (CCUS) and carbon capture and storage (CCS) projects are under operation globally (Global CCS Institute 2024). For example, Petrobras Santos Basin Pre-Salt Oil Field CCUS project in Brazil has carbon capture capacity of 10.6 million tonnes per annum (Mtpa), with CO₂ used for enhanced oil recovery, Chevron Gorgon CCS project in Australia has carbon capture capacity of 4 Mtpa, with CO₂ stored in deep saline formation (Global CCS Institute 2024).

Large amounts of flue gas from burning fossil fuels such as coal contain low concentrations (approximately 15%) of CO₂ and other components such as N₂ (Hu and Hao 2020). The cost of low concentration CO₂ capture under current technology is high, which restricts the large-scale application of CO₂ underground storage (McGuire et al. 2016). It has been reported in the literature that transport of CO₂-N₂ mixture in underground porous medium can cause chromatographic partitioning (Bachu and Bennion 2009). This can help separating CO₂ and N₂, leaving CO₂ storage in the formation. High purity N₂ can then be used for energy storage in the form of compressed gas.

This paper is focused on the effect of phase behavior, transport properties, chemical reactions and adsorption on CO_2 -N₂ chromatographic partitioning.

Method and/or Theory

Solubility experiments were performed with flue gas with 15 mol% CO_2 and 85 mol% N_2 in formation brine solutions with different salinity and ion compositions. Based on solubility experiments, fractional flow analysis was performed to investigate the effect of solubility and transport properties on CO_2-N_2 chromatographic partitioning (Fig. 1). Numerical simulation models were constructed to investigate the effect of mineral composition and adsorption on chromatographic partitioning.

Fig. 1 CO₂-N₂-H₂O ternary diagram (95°C and 20.7MPa)

Results

Effect of CO_2 -N₂ differential solubility: Experimental results show that solubility difference between CO_2 and N₂ decreases with increasing of salinity. Fractional flow analysis shows that the partitioning distance between CO_2 front and N₂ front increases as CO_2 -N₂ solubility difference and two-phase flow

region increases (Fig. 2). As two-phase flow saturation increases from 0.6 to 0.85, the partitioning distance between CO_2 front and N_2 front increases 3 times at 0.5PVI.

Effect of chemical reaction and adsorption: Numerical simulation results indicate that quartz and calcite have little effect on chromatographic partitioning, however, the presence of olivine can increase partitioning distance. Adsorption difference between CO_2 and N_2 can also potentially increase partitioning distance.

Fig. 2 Fractional flow analysis of CO₂-N₂ chromatographic partitioning

Conclusions

The chromatographic partitioning of CO_2 -N₂ is mainly driven by three mechanisms including solubility difference, chemical reaction difference and adsorption difference between CO_2 and N₂, in a natural and spontaneous manner without external energy input. This research presents the feasibility of separating CO_2 and N₂ in saline aquifer, providing a potentially low-cost CO_2 capture technology.

Acknowledgements

This research was funded by the National Key R&D Program of China "Research and Application of Key Technical Standards for CO₂ Storage in Large Oil and Gas Reservoirs" (grant No. 2023YFF0614100 and No. 2023YFF0614101), the Major Science and Technology project of the CNPC in China (grant No. 2021ZZ01-05), Research project of CNPC in China (grant No. 2023D-5008-06 and No. 2024DQ0533)

References

Bachu, S and Bennion, D. B. [2009] Chromatographic Partitioning of Impurities Contained in a CO₂ Stream Injected into a Deep Saline Aquifer: Part 1. Effects of Gas Composition and In-Situ Conditions. *International Journal of Greenhouse Gas Control*, 2009, **3**:458-467.

Global CCS Institute. Global status of CCS [2024]. Melbourne: Global CCS Institute, 2024.

Hu, Y and Hao, M. [2020] Development characteristics and cost analysis of CCUS in China. *Reservoir Evaluation and Development*, **10**(3):15-22.

Intergovernmental Panel on Climate Change [2005] In: B. Metz et al., (Eds.). Special Report on Carbon Dioxide Capture and Storage. <u>http://www.mnp.nl/ipcc/pages_media/SRCCSfinal/ccsspm.pdf</u>

McGuire, P. L., Okuno, R., Gould, T. L., Lake, L. W. [2016] Ethane-Based Enhanced Oil Recovery: An Innovative and Profitable Enhanced-Oil-Recovery Opportunity for a Low-Price Environment. *SPE Reservoir Evaluation & Engineering*, **20**(01): 042-058. <u>https://doi.org/10.2118/179565-PA</u>