Cooperative Catalysis of Titanocene and chromium-catalysts using [BH₄]⁻ as hydrogen atom source.^[1] ## **Thomas Heinrichs** 53121 Bonn, Gerhard-Domagk-Str.1 t.heinrichs@uni-bonn.de A great way of applying the general concepts of green chemistry onto the epoxide opening presented by A. Gansäuer is the efficient coupling of Ti- and Cr catalysis in a reaction that allows [BH₄] as stoichiometric hydrogen atom and electron source.^[1] Figure 1: "Catalysis globe" obtained by coupling of orthogonal catalytic cycles.^[1] The most significant step in the process is the unprecedented transfer of a hydrogen atom from [BH₄]⁻ to chromium via a titanocene hydride species.^[1] The transferred hydride is then formally divided into an electron and a hydrogen atom, generating the active chromium hydride species as well as the active titanocene(III) species.^[1] Subsequently, both the electron and the hydrogen atom is transferred to the substrate by the respective catalyst.^[1] [1] Michael Heinz, Gregor Weiss, Dr. Grigoriy Shizgal, Dr. Anastasia Panfilova, Prof. Dr. Andreas Gansäuer, *Angew. Int. Ed.*, **2023**, *62*, e202308680.