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There has been a growing interest in copper catalysis based on boronation1 and 
aminoboronation2,3 processes over the past decade. Advancements in catalytic systems 
have enabled the hydroamination4,5 of alkenes utilizing tris(trimethylsilyl)silane (TMS3SiH) 
as a hydrogen source. Significant efforts have also been directed toward developing 
modifications of boron-mediated amination reactions, such as boroalkylation,6 
borylacylation,7 and alkynylboration.8 Recently, new approaches have emerged for copper-
catalysed transformations, including hydrosilylation9,10 and initial attempts towards 
aminosilylations.11 For instance, Hirano et al. 202212 demonstrated that the aminosilylation 
is feasible for α,β-unsaturated esters; however, this method presents notable limitations. 
Specifically, the reaction typically yields diastereomeric mixtures with diastereomer ratios 
ranging from 1:1 to 4:1. To improve the diastereoselectivity, the authors employed an 
excess of cyano reagents, necessitating additional reagents. Moreover, 
pivaloylhydroxylamines were used as limiting agents only with α,β-unsaturated esters as 
starting materials. 
Here, we aimed to develop a mild, copper-catalysed protocol applicable to hydrosilylations 
and aminosilylations across a broad spectrum of substrates, including heterobicyclic 
alkenes and various open-chain alkenes. The presented approach is summarized in Figure 
1, which illustrates the optimized conditions for the copper-catalysed transformation. 
 

 
Figure 1. Copper-Catalysed Protocol for the Hydrosilylation and Aminosilylation. 
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