

TWENTY-THIRD INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS (ICCM23)

Probabilistic evaluation of filament-wound composite pressure vessel under material uncertainty

Mariana Pimenta Alves

Sung Kyu Ha

Carlos Alberto Cimini Junior

August 02, 2023

Composite pressure vessels for fuel cell vehicles

- ✓ Hydrogen fuel cell technology: <u>clean</u> and <u>emissions-free</u>
- ✓ Motors powered by <u>electricity</u>: <u>hydrogen-powered</u> vehicles complementing <u>battery electric</u> cars
- ✓ Hydrogen storage: <u>safe</u>, <u>lightweight</u> and <u>cost-competitive</u>
- ✓ <u>Type IV</u> pressure vessels: thin <u>polymer liner</u> overwrapped with <u>carbon fibers wound layers</u>

Probabilistic structural design

- Reliability analyses are vital to quantify and evaluate structural safety
- ✓ <u>Stress-strength</u> reliability approach
- ✓ Distributions compared: applied stress to strength

PROBLEM STATEMENT

This work investigates:

- Effects of uncertainties on structural performance
- ☐ Filament-wound pressure vessels
- Burst pressure
- ☐ Type IV composite pressure vessels (COPV)
- Variability in material properties
- Probabilistic design: uncertainty and sensitivity analyses

METHODOLOGY

Case study and general guidelines

o Based on the work from Alam et. al (2020)

Type IV: CF/Epoxy

o Layup: [-13°/+13°/+88°/-13°/+13°]

 $t_{helical} = 0.8382 \text{ mm}; t_{hoop} = 0.2286 \text{ mm}$

Strength analysis

- Static, linear elastic
- Design: burst pressure
- First Ply Failure (FPF)
- Classical Laminate Theory
- Failure criterion: Max Stress

Probabilistic evaluation

- Monte Carlo Simulation with random sampling: 1,000 simulations
- Random input variables: material properties
- Normal distribution
- Uncertainty propagation: PDF + CDF
- Sensitivity analyses: Pearson's coefficients +
 One-factor-at-a-time investigation

T800/epoxy

Parameter	Mean	Std. deviation
E ₁ [GPa]	176.8	8.0
E₂[GPa]	10.336	0.519
ν ₁₂ [-]	0.3300	0.0208
G ₁₂ [GPa]	4.895	0.296
X ^T [MPa]	3364.8	112.0
X ^c [MPa]	1723.75	137.9
Y ^T [MPa]	96.53	3.99
Y ^c [MPa]	289.59	16.11
S [MPa]	96.53	0.59

RESULTS – Estimated Burst Pressure

Histogram

Cumulative density function - CDF

- o P_{burst} from Alam *et al.* (2020)
 - → FEM: 15.64 MPa; experiments - mean: 16.09 MPa
- Different hypotheses:
 - → Non-linear geometry and material, dome modeling

Pearson's correlation coefficients

Parameter	Correlation coefficient	
E ₂	-0.4909	
γc	-0.0589	
Xc	-0.0540	
S	-0.0447	
χ ^T	-0.0263	
ν ₁₂	+0.0290	
G ₁₂	+0.0291	
E ₁	+0.3883	
Υ	+0.7485	

Tornado plot: One-factor-at-a-time analysis

- \circ Y^T,E₁,E₂: stronger correlations
- Y^T: dominates the burst pressure
 - → Its variation will reflect in a wider fluctuation of P_{burst}

Uncertainty Analysis

CONCLUSIONS

- Simplified analytical methodology able to describe the effect of uncertainties of material properties on structural performance
- Uncertainty propagation and sensibility analysis
- Allowable burst pressure of COPV more sensitive to YT (most), E2 and E1
- Design may vary with changes in vessel geometry (such as layup, thickness), failure criteria, among other
- Better understanding of limitations of current deterministic design strategies

Got book?

Thank you