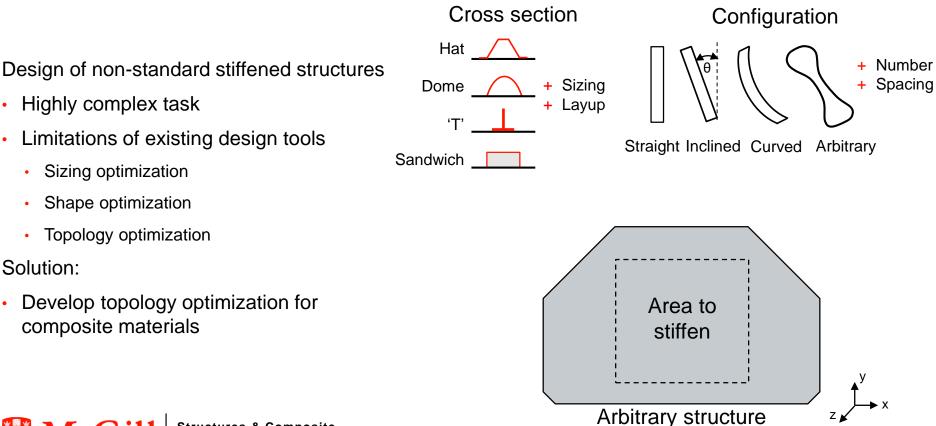

3D Topology Optimization for Composite Sandwich Structures by the Coating Approach

Background



•

•

•

Solution:

Design variables $\rho_i \& \theta_i, \forall i \in \Omega$ $\rho_i^j, j = 1n_c \& \forall i \in \Omega$ $\rho_i \& V_i^j, \forall i$	$\forall i \in \Omega \& j = 112$		
Optimization schemeSimultaneous or sequentialSimultaneousSequence	Sequential		
Example Anisotropic P Anisotropic	nd contour fibre angles fibre angles fibr		

Overview of topology optimization for composite structures

- Limited to 2D problems
- Handles material orientations through additional design variables
- · Poor control on manufacturability of the solution, no experimental demonstration/evaluation

Structures & Composite Materials Laboratory

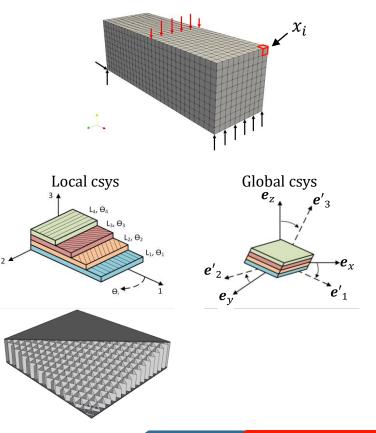
Project objectives

- 1. Develop a 3D topology optimization approach for sandwich structures with anisotropic shells
 - Assume laminate properties are known a priori (constant stiffness and thickness)
 - Core has constant relative density
- 2. Develop an approach to approximate local material orientations based on the manufacturing process
 - Fabric draping
 - Material extrusion additive manufacturing
- 3. Conduct an experimental benchmark for AM structures optimized for minimum compliance
 - Isotropic vs the developed anisotropic approach

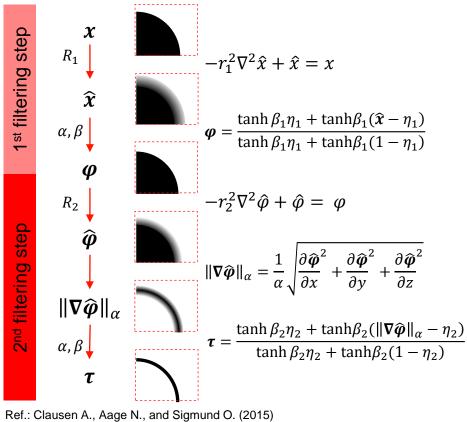
Methodology

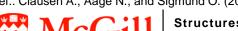
Minimize compliance :

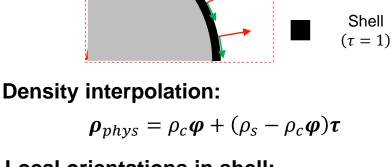
$$C = \boldsymbol{U}^T \boldsymbol{K}(\boldsymbol{x}) \boldsymbol{U}$$


Subject to :

$$K(\mathbf{x})\mathbf{U} = \mathbf{F}$$
$$g(\mathbf{x}) = V(\mathbf{x}) - v_f V_{tot} \le 0$$
$$0 \le x_{min} \le x_i \le 1, \ i = 1, \dots, Ne$$


Finite element stiffnesses:


$$\boldsymbol{k}_{lam,i} = \int \boldsymbol{B}^{T} \boldsymbol{D}_{i}(x_{i}, \boldsymbol{D}_{lam}, \{\boldsymbol{e'}_{1}, \boldsymbol{e'}_{2}, \boldsymbol{e'}_{3}\}_{i}) \boldsymbol{B} \, d\Omega$$
$$\boldsymbol{k}_{core,i} = \int \boldsymbol{B}^{T} \boldsymbol{D}_{i}(x_{i}, \boldsymbol{D}_{core}) \boldsymbol{B} \, d\Omega$$



Two-step filtering approach with local material orientations

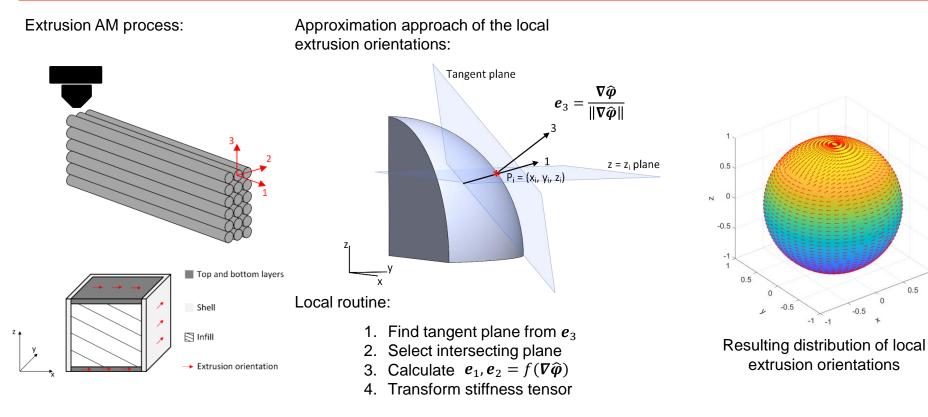
Structures & Composite Materials Laboratory

 $\nabla \widehat{\boldsymbol{\varphi}}_i$

Local orientations in shell:

$$\|\nabla \widehat{\varphi}\|_{\alpha} \neq 0 \rightarrow \nabla \widehat{\varphi} \perp \text{shell} \rightarrow \theta(\nabla \widehat{\varphi})$$

$$\boldsymbol{D}_{phys} = \boldsymbol{D}_{c}\boldsymbol{\varphi}^{p} + (\boldsymbol{D}_{s}(\boldsymbol{\theta}) - \boldsymbol{D}_{c}\boldsymbol{\varphi}^{p})\boldsymbol{\tau}^{p}$$

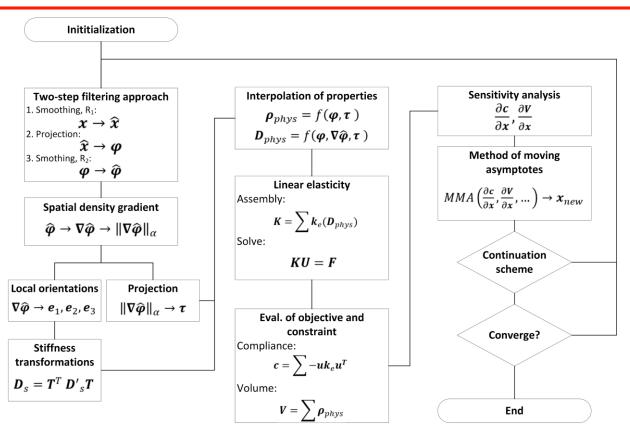

Void

 $(\varphi = 0)$

Core

 $(\varphi = 1, \tau = 0)$

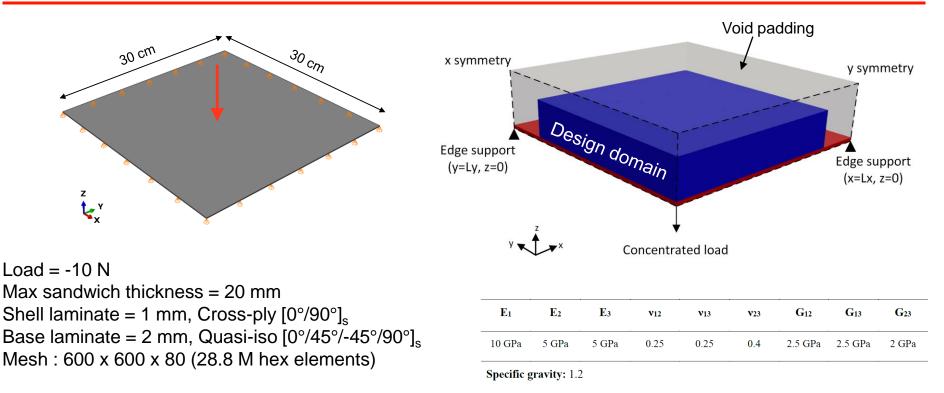
Approximation approach for local material orientations in 3D problems



0.5

-0.5

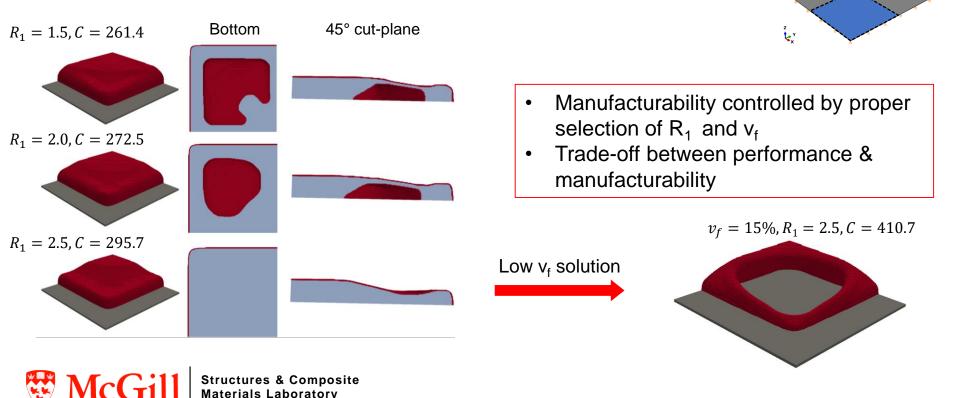
Optimization flow chart



Results

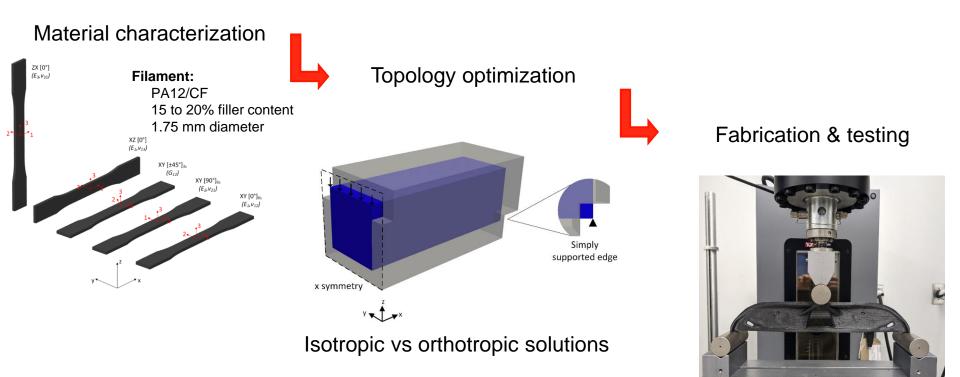
- Design of a composite stiffened panel
- Experimental benchmark using extrusion additive manufactured MBB beams

Composite stiffened panel problem


Triangular honeycomb core (SG = 1.44, $E_{core,s}$ = 10 GPa, ν = 0.25)

Effect of base structure filter radius size

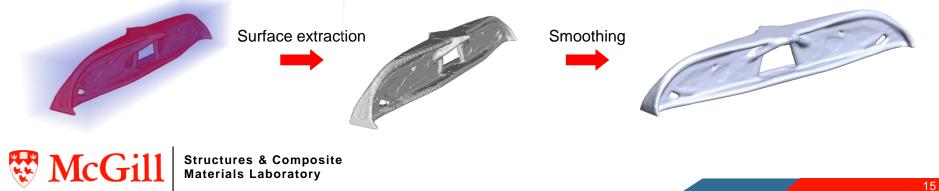
Volume fraction = 30%, Core rel. Density = 30%


Materials Laboratory

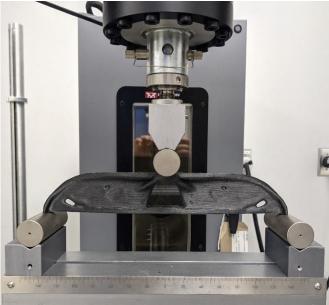
³⁰ ст

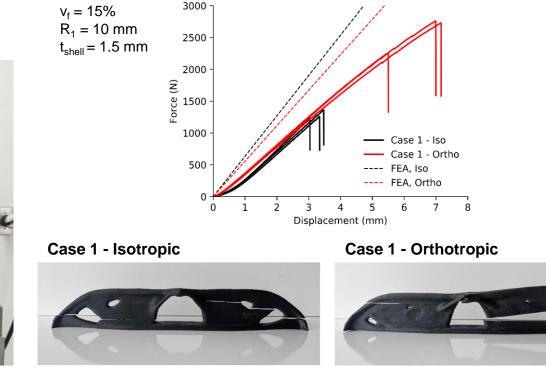
30 cm

Experimental benchmark using extrusion additive manufactured MBB beams

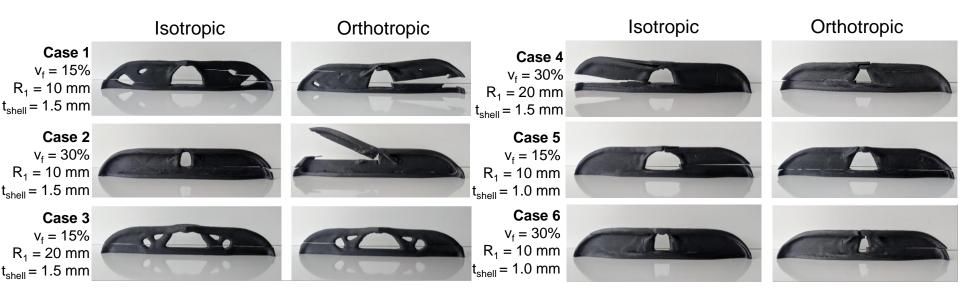

Topology optimization solutions to the MBB problem

Benchmark study


	Volume fraction	First filter radius	Shell thickness	
Case	(v_f)	(R_1)	$(t_s = 0.4R_2)$	
1	15%	10 mm	1.5 mm	
2	30%	10 mm	1.5 mm	
3	15%	20 mm	1.5 mm	
4	30%	20 mm	1.5 mm	
5	15%	10 mm	1.0 mm	
6	30%	10 mm	1.0 mm	


Numerical results Case 1 V+ Cut plane z = 34 mm Cut plane z = 34 mm Isotropic (c = 1441) Orthotropic (c = 1639)

Post-treatment


Load deflection curves for case 1 solutions

Experimental benchmark – Summarized results

	Bending stiffness			Maximum load			Maximum displacement		
Case	[N/mm]			[N]			[mm]		
	lso	Orth	Difference	lso	Orth	Difference	lso	Orth	Difference
1	457	437	4.4%	1282	2580	50.3%	3.3	6.6	49.8%
2	679	623	8.2%	4006	3781	5.6%	7.1	6.6	6.5%
3	316	294	7.0%	1226	1122	8.4%	4.1	4.0	3.2%

Structures & Composite Materials Laboratory

- The new parameterization opens new design opportunities for composite sandwich structures using topology optimization.
- Manufacturability of the solution requires proper selection of the topology optimization parameters.
- Accounting for material anisotropy improved load bearing capacity of the optimized designs.
- Future work
 - Apply method to broader sets of problems (buckling stability, combined loads, etc.)
 - Include modeling approaches to improve local material orientation approximations.
 - Improve modelling of the laminate.
 - Concurrent optimization of material orientations.

McGill Structures & Composite Materials Laboratory •

CRIAQ COMP 1601 Project:

l canada

CONSORTIUM FOR RESEARCH AND INNOVATION IN AFROSPACE IN OUÉBEC

Fonds de recherche sur la nature et les technologies * * Duébec 💀 💀

Centre de recherche sur les systèmes polymères et composites à haute performance

compute | calcul canada

Structures & Composite **Materials Laboratory**