

Research on recycled carbon fiber reinforced thermoplastic for application on floating vertical axis wind turbine structures

Peng Xue¹, Yi Wan¹, Takumi Morishima¹, Hiromichi Akimoto², Jun Takahashi¹

¹ Department of Systems Innovation, School of Engineering, The University of Tokyo

² Albatross Technology Inc, Tokyo, Japan

Paper Number:1247

1. Research Background

2. Analytical Model

3. Numerical Study

4. Conclusions

Hokkaido

Tohoku

ansa

Hokuriku

Chugoku

Kyushu

7.75~ 11.90GW

0.30~0.

9.55~ 14.65GW

Tokyo

AFFORDABLE AND

LEAN ENERGY

Chubu

Development of Deep Wind

The Oceans around Japan are deep, and there is not enough continental shelf. ٠

1. Research Background

Floating Vertical Axis Wind Turbine

Floating Vertical axis wind turbine^[1]

Floating Horizontal axis wind turbine^[2]

Merits

- No dynamic self-load, more potential to be large-scaled, more simple blade shape
- The low foundation costs are associated with a low center of gravity.

Primary problems:

- Balance of the structure weight and stability
- Practical design method considering the use of composite materials

Design Load Case

• Extreme wind load (Design load cases 6.1)

- The wind turbine class is I, so the <u>reference 50-year return</u> wind speed average over 10 min is **50m/s**, the **gust** value is **1.4** times of reference wind speed.
- IEC specifies a load safety factor of 1.35.
- Safety factor for composite material 2.205.

Normal force and tangential force for blade with different AoA (Angle of attack)

Predefined Structure Type & Design parameters

6 nodes Truss section ^[1]

structure model

Truss Wind turbine structure^[2]

Design parameters

7 structure parameters for the Isotruss structure to be decided; **5 parameters** for the Cylinder structure:

- 1. Degree of the support arms
- 2. Inner radius of the tower
- 3. Outer radius of the tower
- 4. Height of the support truss
- 5. Height of the link truss
- 6. Height of the support arm element
- 7. Width of the support arm element

 [1] https://www.compositesworld.com/news/isotruss-carbon-fiber-cell-towerssupport-global-demand-for-5g-telecom-rollout
[2] https://www.windpowermonthly.com/article/1823639/suzlon-wins-200mw-pluswind-turbine-order-india

Cylinder wind turbine structure model

Materials applied to the model & Design parameters

Composite material for Iso truss structure (beam elements):

Design parameters: Thickness of plies/tubes

Structure Optimization: Different Structure size

Parameters	Structural Size			
Blade height	10	30	80	160
Blade Chord	1	3	8	16
Blade load ft (n/m^2)	159	159	159	159
Blade load fn (n/m^2)	5740	5740	5740	5740
Rotor Diameter	8	25	67	133
Tower Height	12.5	37.5	100	200
Design wind speed	12	12	12	12
Extreme wind Speed	70	70	70	70
Power of Wind Turbine	25KW	238KW	1.7MW	6.7MW
Tip Speed Ratio	7	7	7	7

Parameters for different size wind turbine

Blade Weight estimation: optimization for composite materials blades

Blade Weight estimation: the influence of support arms

numbers and different blade length

Structure model: Hypostatically indeterminate / Statically indeterminate

3. Numerical study

Optimization Strategy flow chart

Optimization Result: Influence of Size & Material

- The weight of CFRP structures can be less than half of the steel structures.
- Applying CFRP on support arms rather than on the tower can better reduce the weight of the structure.
- Truss structures are more sensitive to the scale of the wind turbines.

3. Numerical study

Optimization Result: Distribution of structure parameters

Hyperstatic parameters

- Optimal range for the degree of support arms is [-5°,15°]
- Optimal range for the hyperstatic parameters is [0,1]
- Optimal range for the number of support arms is [2,3]

4. Conclusions

Summary of the structure optimization

- NSGA or GA method combined with FEM can solve the problem of floating vertical axis wind turbine structure optimization, especially for discrete parameters.
- Applying CFRP materials on the wind turbine structure, especially the support arms can effectively reduce the structural mass.
- The optimal value range for the wind turbine can be decided based on the optimizations.

Future task:

- Verify the dynamic and other performance of the wind turbine designs
- Develop more detailed optimization models for blades using recycled CFRP
- Experiments to prove the reliability of the optimization method

Thank you for Your Attention!

Acknowledgment:

This work was supported by JST SPRING, Grant Number JPMJSP2108. The authors would like to express sincere thanks to the members who have provided valuable information and useful discussions.

Presentations from Takahashi-Wan lab

Name	Date	Venue	Room	Title
Qian GAO	Wed	Recycling and sustainability - S3	1 B	Prediction of strength and its variation of carbon fiber mat reinforced thermoplastics using Monte-Carlo method
Weizhao HUANG	Thu	Structural health monitoring - S1	Arc	Inversing spatial modulus distribution of cfrtp by a vibrational method and its hydrothermal aging application
Peng XUE	Mon	Structural analysis and optimization - S2	3B	Optimization of floating vertical axis wind turbine structures using recycled carbon fiber reinforced thermoplastic
Xiaohang TONG	Tue	Mechanics of composites - S2	3A	The influence of tape geometry on the mechanical performance of bolted CFRTP-SMC joints
Zihao ZHAO	Tue	Liquid composites moulding - S2	2A	Simulation of fiber orientation during compression molding process of CFRTP-SMC
Ruochen XU	Wed	Multiscale modelling - S5	Studio	Morphology analysis and shape optimal of CFRTP-SMC based on Monte-Carlo simulation
Zhiyu WANG	Mon	Process modelling - S1	Studio	A state-based peridynamic model for progressive damage analysis of CFRTP-SMC base