OPTIMISING FORMING PROCESS BEHAVIOR USING ARTIFICIAL INTELLIGENCE

Muhammad. S. Saeed, Ayesha Quddus, Hamas Khan, Hadia Zulfiqar, Boris. Eisenbart, Racim Radjef, Matthias. Kreimeyer

Motivation and Research Objectives

- Forming process used to shape flat sheets of material into three-dimensional components
 - Stamp Forming using a stamping press as in Fig 1
 - Diaphragm Forming using a diaphragm or flexible membrane
- Artificial Intelligence to increase the simulation accuracy of forming process
 - Optimisation to improve simulations and time for computations, while reducing the cost _______.
 - Defect Detection to overcome defects by detecting them at early stage of design, using point cloud as shown in Fig 2

Fig 1: Stamp Forming

Fig 2: Point Cloud Scanned

Introduction

- Simulation-driven evaluations help in reducing the cost of forming processes by various Artificial Intelligence based optimisation steps as illustrated in Fig 3.
- Several Machine Learning techniques such as Genetic Algorithm are used to predict and classify forming behavior.
- Induced forming defects, such as wrinkles, bridging, voids, are optically inspected using point cloudbased system.

Fig 3: Process Chain

Initial Evaluations

- Optimisation Multiple Linear Regression (MLR) is implemented for curve fitting and Multiobjective Genetic Algorithm (GA) for finding optimas. Pareto plots and Open-source tools like Para
 View and HDF View are used for visualisations of simulations as seen in Fig 4.
- Defect Detection Defects are detected by analysing the surface normal. The normal vectors for the simulation and point cloud are compared and visualised as in Fig 5.

Fig 4: Beam Visualisations

Fig 5: Cloud Compare

Results and Future Outlook

- The optimisation tool has been deployed for a beam model, now it is being validated on a Double Dome geometry as displayed in Fig 6.
- The scanned points are being removed based on an angle threshold as in Fig 7. Additionally, preprocessing techniques such as Octrees, multithreading, KNNs, and distance threshold are used.

Fig 6: Double Dome Visualisation

Fig 7: Point Cloud Visualisation

Ayesha Quddus B.Eng. Student – National University of Science and Technology

Hamas Khan MSc. Student. – Technical University of Munich

Hadia Zulfigar B.Eng. Student – National University of Science and Technology

Prof. Dr. Matthias Kreimeyer

Muhammad Saeed

PhD Candidate – Swinburne University of Technology & University of Stuttgart msaeed@swin.edu.au

A/Prof. Dr. Boris Eisenbart Director of the Testlab beisenbart@swin.edu.au

Thank you

