

KU LEUVEN

MATERIALS ENGINEERING

Proper tension-tension fatigue testing of unidirectional composites

Babak Fazlali, Stepan V. Lomov and Yentl Swolfs

Specimen designs for tension-tension fatigue tests

Rectangular end tabs

Reduce stress concentration by reducing geometric discontinuity.

Delamination over tapered section of the end tabs.

Rectangular specimen with tapered end tabs

Continuous tabs

Avoid or minimized stress concentration.

Determining stress required back-calculation.

Inconsistent cross-section in co-curing continuous tabs and specimen.

Butterfly specimen

Remove stress concentrations from gauge section.

Longitudinal splitting reduced the geometry to rectangular.

Stress concentration owing to introducing geometric discontinuity.

Experimental results of tension-tension fatigue

Carbon/epoxy (Hs40/736LT) Layup: $[0]_{10}$ Stress ratio: 0.1 Frequency: 5 Hz

Concerns in performing tension-tension fatigue tests

Grip misalignment

Normal misalignment

Tilted grip misalignment

Rotated grip misalignment

Tilted specimen

Normal misalignment

Normal misalignment

Tilted specimen

Tilted specimen

Conclusions

- Specimen designs affect the fatigue life.
- Butterfly design shows the lowest fatigue life.
- Rectangular specimen with rectangular end tab shows the highest fatigue life.
- Significant effect of test setup on fatigue life.
- 0.5 mm normal misalignment reduces the fatigue life by an order of magnitude.
- Specimen tilted by 0.5° reduces the fatigue life by more than two orders of magnitude.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No *765881*.

babak.fazlali@kuleuven.be HyFiSyn.eu @HyFiSyn

