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ABSTRACT 

The high-stiffness 3D-printed continuous carbon fiber reinforced polymer composite structure was 

proposed based on concurrent topology and material orientation optimization. The multi-variable 

topology optimization was performed with the Cartesian representation of orientation. The 3D print 

path was developed from the optimized result by means of the stripe pattern method. To reduce the 

number of fiber-cutting processes due to discontinuous paths, a modified travel salesman problem was 

adopted.  

 

1 INTRODUCTION 

 Topology optimization provides optimal material distribution that minimizes material usage 

with high stiffness. The topology-optimized structures have complex geometry that is difficult to build 

with conventional manufacturing processes. Additive manufacturing technologies enable the 

fabrication of these complex structures. In recent developments in additive manufacturing, continuous 

carbon fiber reinforced polymer (CFRP) composites are also 3D-printable [1]. However, topology-

optimized complex structures have holes and branches that cause fiber discontinuity and limit 

mechanical performance. The material orientation and its continuity are essential as well as the 

external shape design for the CFRP structures. 

           The material properties vary everywhere in the optimized CFRP structure. Free Material 

Optimization (FMO) method provides the highest degree of freedom of the design space, which results 

in the numerically best structure [2]. However, the optimized material properties vary everywhere in 

the structure, and it is often difficult to fabricate. Discrete Material Optimization (DMO) method 

assumes a finite number of material properties and optimizes the weight vector that selects the material 

properties [3]. For example, four directions of material orientation i.e., 0°, 45°, 90°, and 135° are 

selected and optimized for CFRP. However, in the 3D printing of CFRP, the material orientation 

changes arbitrary because the curvilinear printing path is enabled. Continuous Fiber Angle 

Optimization (CFAO) method provides both optimized material distribution and the material angle 

using an Eulerian angle representation [4]. However, optimization of the Eulerian angle becomes a 

local optimum problem due to the non-convex design space. The Cartesian vector representation of 

material angle overcomes this problem [5]. The print path needs to be continuous for continuous 

carbon fiber printing although the discretised material angle is obtained by the optimization. The de-

homogenization approach is needed to generate a continuous print path that follows the discretised 

material angle field. The stripe pattern projection-based approach is suitable to generate optimized 

print paths from the discretised material angle field [7].  

           This study investigated the numerical optimization scheme for the high-stiffness continuous 

carbon fiber-reinforced polymer lattice structures. The scheme was based on the homogenized multi-

field optimization method with Cartesian orientation representation. The stripe pattern-based de-

homogenization method was adopted to generate the continuous 3D printing path from the discretized 

material angle field obtained by the optimization. The print paths were arranged by solving the 

modified travel salesman problem to minimize the number of fiber-cutting process. 
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2 OPTIMIZATION FORMULATION 

 

2.1 Design variables 

 The design domain 𝐷 is given, and the topology variable 𝜒 was defined as follows: 

 

𝜒(𝐱) = {
1          for ∀𝐱 ∈      Ω 
0          for ∀𝐱 ∈ 𝐷\Ω

(1) 

 

where 𝐱 is the position vector on the design domain 𝐷, Ω represents the material region, and 𝐷\Ω 

indicates the void region. This topology variable leads to the ill-posed problem because of its 

discontinuity in the design space. The hyperbolic tangent-based Heaviside filter was adopted to relax 

the topology variable of Eq. (1) as follows: 

 

�̃�(𝐱) = 𝐻(𝜙(𝐱)) =
tanh 𝛽𝜂 + tanh 𝛽(𝜙(𝐱) − 𝜂)

tanh 𝛽𝜂 + tanh 𝛽(1 − 𝜂)
(2) 

 

 
where 𝛽, 𝜂 are constants. 𝜙(𝐱) is defined as the precursor variable for the topology.  

 The material orientation was defined with Cartesian representation: 

 

𝜽(𝐱) = [
𝜃1

𝜃2
] . (3) 

This vector should be unity, 

 
‖𝜽‖ = 1. (4) 

 

However, these constraints cause the discontinuity of design space and lead the non-convex ill-posed 

optimization. Here the constraint was relaxed as 

 
‖𝜽‖ ≤ 1. (5) 

 

This relaxation was similar to the Heaviside projection of the topology variable (Eq. (2)). The 

constraint of Eq. (5) is the position-wised constraint. The isoparametric projection method was 

adopted to reduce the constraint of optimization. The isoparametric projection projects a vector on the 

natural coordinate system to the Cartesian coordinate system: 

 

𝑁: 𝒩 → ℛ, 𝒩 = { 𝒂 | ∀𝒂 ∈ [−1,1]2} → ℛ = { 𝒃 | ∀𝒃 ∈ ‖𝒃‖ ≤ 1} (6) 

 

The precursor vector variable for orientation 𝝑  was proposed and the orientation vector was 

represented as follows: 

 

𝜽(𝐱) = 𝑁(𝝑(𝐱)). (7) 

 
The isoparametric projection was detailed in Ref. [5]. 

 An additional design variable i.e., material density variable 𝜌 is introduced. This variable is 

the independent variable of topology. The material density variable 𝜌 varies the stiffness tensor ℂ𝜌(𝜌) 

that was associated with the lattice configurations. In this study, the material density of the lattice was 

controlled by the hatch spacing of the print path. The relationship of ℂ𝜌 and 𝜌 was obtained by the 

asymptotic homogenization, as discussed in the following. The material density variable was defined 

as follows: 
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Figure 1: Relationship between the material density and effective stiffness ratios. 

 

 
𝜌(𝐱) ∈ [𝜌𝑚𝑖𝑛 , 𝜌𝑚𝑎𝑥]. (8) 

 

where 𝜌𝑚𝑖𝑛, 𝜌𝑚𝑎𝑥 represent the lower and upper bounds of material density.  

 

2.2 Material representation 

 This subsection represents the material constitutive equations associated with the above design 

variables. The relationship between the stiffness tensor ℂ𝜌 and the material density 𝜌 was calculated 

by asymptotic homogenization. Here, the symmetric cross-plied lattice configuration was assumed, as 

illustrated in Fig. 1. The material density was varied with the hatch spacing between paths. The 

orthotropic properties directed to the print paths were used because the modulus is maximum in the 

printing direction and minimum in the transverse direction. The homogenized lattice properties exhibit 

the same modulus for the two orthogonal directions because of the cross-plied configuration. Thus, the 

number of independent elements of the stiffness tensor was three, 𝐶11(= 𝐶22), 𝐶12, and  𝐶66. The 

normalized components of stiffness tensor obtained by the asymptotic homogenization were plotted in 

Fig. 1. 

 The reduced stiffness tensor ℂ𝜌(𝜌) was rotated by the orientation vector 𝜽. Here, the rotation 

tensor 𝑇(𝜽) was defined, and the rotated stiffness tensor ℂ𝜽 was represented as follows: 

 

ℂ𝜽(𝜌, 𝜽) = 𝑇−1(𝜽)ℂ𝜌(𝜌)𝑇(𝜽), (9) 

 

where 𝑇−1 represents the inverse tensor of the rotation tensor.  

 The topology variable was inserted into the stiffness tensor that defined the optimized external 

design. Here the penalization approach was used, and the stiffness tensor was defined as follows: 

 

ℂ(𝜌, 𝜽, 𝜒) = ℂ𝑣𝑜𝑖𝑑 + �̃�𝑝(ℂ𝜽(𝜌, 𝜽) − ℂ𝑣𝑜𝑖𝑑). (10) 
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where 𝑝 = 3 is the penalty and ℂ𝑣𝑜𝑖𝑑 is the void tensor that was set to be a small value.  

 

2.3 Regularization of design variables 

 The regularization of the design vector was conducted to make the optimization process a 

well-posed problem. The regularization was based on a partial differential equation type filter, 

Helmholtz filtering. All (precursor) design variables were vectorized as a single design vector: 

 

𝒅 = [

𝜌

𝝑
𝜙

] , 𝑑 ∈ [𝜌
𝑚𝑖𝑛

, 𝜌
𝑚𝑎𝑥

] × [−1,1]2 × [0, 1]. (11) 

 

Then, the Helmholtz equation was defined as follows: 

 

−𝑅2∇2𝓭 + 𝓭 = 𝒅 (12) 

 

where 𝑅 is the filter radius and 𝓭 is the filtered design vector. 

 

2.4 Compliance minimization problem 

 A compliance minimization problem is selected in this study. The problem is defined as 

follows: 

 

min
𝓭

𝐹 = ∫ 𝛆 ∶ ℂ(𝜌, 𝜽, 𝜒): 𝛆

 

𝐷

 dΩ. (13𝑎) 

Subject to: 

𝛆 =
1

2
(∇𝒖 + ∇𝒖𝑇) (13𝑏) 

∇ ∙ (𝛆 ∙ ℂ) = 0 in 𝐷, 𝒖 = 0 on 𝛤𝐷 , ∇ ∙ (𝛆 ∙ ℂ) ∙ 𝒏 = 𝒕 on 𝛤𝑁 (13𝑐) 

𝑔(𝓭) = ∫ �̃�𝜌 dΩ − �̅�

 

𝐷

≤ 0 (13𝑑) 

 

where 𝛆 and 𝒖 are strain tensor and displacement vector, respectively. 𝛤𝐷  and 𝛤𝑁  are Dirichlet and 

Neumann boundaries. 𝒕 and 𝒏 represent the traction vector and the normal vector, respectively. �̅� is 

the volume fraction of the whole structure. The displacement vector 𝒖 was discretized on the first-

order triangle Lagrange element space. The design vector 𝓭 was also defined on the same element 

space. The finite element method (FEM) was conducted to resolve the elastic equilibrium. The FEM 

was performed in Python 3.11 with the FEniCS 2019, a FEM package based on PETSc. The method of 

moving asymptotes that was built in the NLopt package updated the design vector iteratively. 

 

3 TOOL-PATH GENERATION 

 This subsection represents the generation of continuously varied stripe pattern that 

follows the optimized design vector 𝓭. The stripe pattern projection approach was adopted. The i-

th parameterization 𝜑𝑖 drived the stripe pattern Φ𝑖 such as cosine projection: 

 

Φ𝑖 = cos 𝑝𝜑𝑖 (14) 

 

where wavelength 𝑝 was related to the material density 𝜌 and topology 𝜒: 

 

𝑝 =
𝜋𝜌𝜒

𝑤0

(15) 
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where 𝑤0 is print path width. The parameterization 𝜑𝑖 was defined based on the optimized material 

orientation 𝜽𝑖 . The parameterization 𝜑𝑖  was computed by minimizing the following latest-squares 

error: 

 

min
𝜑𝑖

Ψ = ∫|∇𝜑𝑖 − 𝜽𝑖
⊥|

2
 dΩ

 

𝐷

. (16) 

 

 𝜽𝑖 is the i-th layer of the orientation field that was cross-plied sequence as follows: 

 

𝜽𝑖 = [∠𝜽 ∠𝜽⁄ + 90° = 𝜽 
⊥](𝑁 2)𝑆⁄ (17) 

 

𝑁 and 𝑆 are the numbers of total layers and symmetric symbols, respectively. To obtain the lattice 

structure, Eq. (17) needs to be resolved with two vector fields, 𝜽𝑖
⊥ and 𝜽𝑖

 . 

 The print paths 𝒞𝑗 on j-th layer are extracted from a contour line of the stripe pattern. The 

paths 𝒞𝑗 were arranged to reduce the number of fiber-cutting processes. In this study, a modified travel 

salesman problem with a greedy solver was conducted. Each path has a start node 𝒙𝑗
𝑆 and end node 𝒙𝑗

𝐸. 

The identical number was labeled to all nodes as: 

 

𝒙 = {𝒙1
𝑆, 𝒙2

𝑆, … , 𝒙𝑗
𝑆, … , 𝒙𝑀

𝑆 , 𝒙𝑀+1
𝐸 , 𝒙𝑀+2

𝐸 , … , 𝒙𝑀+𝑗
𝐸 , … , 𝒙2𝑀

𝐸 } (18) 

 

where 𝑀 represents the total number of paths. The distance matrix 𝔻 was calculated based on the 

above node vector. However, the nodes between the start and end points of each path should be 

connected. The modified distance matrix �̂� was defined with the following distance function �̂�𝑘𝑙: 

 

�̂� = �̂�𝑘𝑙 = {
‖𝒙𝑘 − 𝒙𝑙‖     if 𝑙 − 𝑀 ≠ 𝑘
0                      if 𝑙 − 𝑀 = 𝑘

(19) 

 

The connecting path information was embedded into the modified distance matrix �̂�. The greedy 

solver was adopted to solve the travel salesman problem.  

 

4 OPTIMIZED STRUCTURES 

 The proposed optimization framework was applied to a two-dimensional bracket problem as 

shown in Fig. 2(a). The bracket has three holes where deformation is constrained at a hole and loads 

are applied at the other holes. The weight reduction rate was set to be 50% and the upper and lower 

bounds of the material density variable were 𝜌𝑚𝑖𝑛 = 0.5, 𝜌𝑚𝑎𝑥 = 1.0 , respectively. Fig. 2(b) 

represents the optimized material direction and material density. Fig. 2(c) shows the obtained print 

path based on the optimized result in Fig. 2(b).  

 

5 CONCLUSIONS 

 This study proposed the concurrent optimization of the material orientation and distribution 

for the 3D-printed continuous carbon fiber reinforced polymer composite lattice structures. The multi-

variable topology optimization based on Cartesian orientation and Helmholtz filter was conducted. 

The Helmholtz filter improved the continuity of the material orientation field. The stripe pattern 

projection approach was used to generate the 3D print paths that aligned to the optimized material 

orientation. The modified travel salesman problem was adopted to reduce the fiber-cutting process by 

arranging the print path. The method was applied to a two-dimensional bracket problem. Optimized 

print path was obtained based on the optimized result of the material orientation and material density. 
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Figure 2: Optimized 3D print path for 3-hole and multi-loading bracket example. (a) The geometrical 

setting and boundary conditions. The color map shows displacement magnitude. (b) Optimized 

material distribution and orientation. (c) Print path conformed optimization result. 
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