Random Vibration Fatigue Analysis of a Multi-material Battery Pack Structure

<u>Hye-gyu Kim¹</u>, Gyeongchan Kim¹, Wooseok Ji¹⁺

¹ Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST)

August 1, 2023

Introduction

- Electric motors are appealing as power source for eco-friendly automotives
- Weight reduction for fuel efficiency \rightarrow possibly in battery pack component
 - Increasing usage of fiber-reinforced plastic (FRP) due to high specific stiffness
- Concern: steady <u>random vibration loading</u> during drive
 - Fatigue life of the structure must be considered
 - Possible reduction in design costs by using numerical method
- In this research,

Numerical fatigue analysis of a multi-material battery pack through a typical mode-based approach

Composite material

- The multi-material battery pack consists of metal frames and composite casings
- Proposed composite structure
 - Laminate structure: $[LFT_1/WFT_3/LFT_1]_T$ (0.7 mm thickness)
 - LFT : Long Fiber Thermoplastic (discontinuous glass fiber/Polypropylene)
 - WFT : Woven Fiber Thermoplastic (2/2 twill woven glass fiber/Polypropylene)

Flowchart of the analysis 1/2

Flowchart of the analysis 2/2

Fatigue analysis stage

Apply <u>random vibration loading</u> to the structure

Finite Element Modelling

- Multi-material structure
 - Composite : Cover, Carrier
 - Aluminum : Frames, Plate
 - Rigid body : Batteries
- Composite: [LFT₁/WFT₃/LFT₁]_T (0.7 mm)
- *TIE constraints between connected parts
 No relative motion between two surfaces
- Elements of parts:

Parts		Material	Element type	Number of elements
Cover		Composite	Shell (S4R)	61034
Carrier			Continuum shell (SC8R)	33841
Frame	Internal	Aluminum	Continuum solid (C3D10)	54742
	External			166052
Plate				179403
Batteries		Rigid body	Rigid solid (R3D4)	4496×8

Frequency Analysis

• Extraction of natural modes and natural frequencies

Solving eigenvalue problem

$$(-\omega_{\alpha}^{2}M^{MN} + K^{MN})\phi_{\alpha}^{N} = 0$$

 M^{MN} : mass matrix F^N C^{MN} : damping matrix u^M K^{MN} : stiffness matrix M.

F^N: load at the tip
u^M: displacement of the tip
M, N: degrees of freedom

 α : mode number ω_{α} : natural frequency ϕ_{α} : mode shape

These natural modes are

- Harmonic oscillation
- ➤ Harmonic loading (input) → Harmonic motion (response)
- \succ Linear combination of modes \rightarrow Any vibration shape

→ Harmonic response analysis for relation between input and response

Abaqus 6.14 Documentation: Abaqus Theory Guide, Ch. 2.5.7 Steady-state linear dynamic analysis

Harmonic Response Analysis

• Frequency response function (FRF), H_{α} (complex function)

Loading and Response

- Broad-band loadings in three direction
 - Distributed over wide range of frequencies

Loading $\mathbf{G} = \begin{bmatrix} F_{\chi}(f) & 0 & 0 \\ 0 & F_{y}(f) & 0 \\ 0 & 0 & F_{z}(f) \end{bmatrix}$

 F_x , F_y , F_z : vibration in x, y, z-directions f: frequency

• Single vector containing six stress FRFs (for each direction)

 $\mathbf{H}^{i}(f) = \begin{bmatrix} H^{i}_{\sigma_{xx}}(f) & H^{i}_{\sigma_{yy}}(f) & H^{i}_{\sigma_{zz}}(f) & H^{i}_{\tau_{xy}}(f) & H^{i}_{\tau_{yz}}(f) & H^{i}_{\tau_{xz}}(f) \end{bmatrix}^{T} \quad i = 1, 2, 3 \text{ (for } x, y, z)$

- Single response calculation
 - Representative response: Von Mises stress $A = \begin{bmatrix} 1 & -0.5 \\ -0.5 & -0.5 \end{bmatrix}$

$$G_{\text{mises}}(f) = \sum_{i=1}^{5} \sum_{j=1}^{5} (\mathbf{H}^{j})^* \mathbf{A} \mathbf{H}^{i} G_{ij}$$

$$\mathbf{A} = \begin{bmatrix} 1 & -0.5 & -0.5 \\ -0.5 & 1 & -0.5 \\ -0.5 & -0.5 & 1 \\ & & & 3 \\ & & & & 3 \\ & & & & 3 \end{bmatrix}$$
$$\mathbf{H}^*: \text{ complex conjugate}$$

T. Dirlik and D. Benasciutti, "Dirlik and Tovo-Benasciutti Spectral Methods in Vibration Fatigue: A Review with a Historical Perspective", *Metals* **2021**, 11(9), 2021. G.M. Teixeira et al., "Random Vibration Fatigue: Frequency Domain Critical Plane Approaches", ASME, IMECE2013-62607, 2013.

Vibration Counting

- Dirlik's method
 - calculates the probability of the occurrence of a certain amplitude in unit time

• Probability density p(S) of the occurrence of an amplitude of S is

$$p(S) = \left(\frac{c_1}{\tau}e^{-\frac{Z}{\tau}} + \frac{c_2Z}{\alpha^2}e^{-\frac{Z^2}{2\alpha^2}} + c_3Ze^{-\frac{Z^2}{2}}\right) / (2\sqrt{m_0})$$

$$z = \frac{S}{2\sqrt{m_0}} \qquad m_n = \frac{1}{\pi} \int_0^\infty f^n G_{\text{mises}}(f) df$$

$$x_m = \frac{m_1\sqrt{m_2}}{m_0\sqrt{m_4}} \quad \gamma = \frac{m_2}{\sqrt{m_0m_4}} \quad c_1 = \frac{2(x_m - \gamma^2)}{1 + \gamma^2} \quad c_2 = \frac{1 - \gamma - c_1 + c_1^2}{1 - \alpha}$$

$$\alpha = \frac{\gamma - x_m - c_1^2}{1 - \gamma - c_1 + c_1^2} \quad \tau = \frac{1.25(\gamma - c_3 - c_2\alpha)}{c_1} \qquad c_3 = 1 - c_1 - c_2$$
ystemes Simulia Corp., fe-safe 2017: fe-safe USER GUIDE, 2016.

Dassault Systemes Simulia Corp., fe-safe 2017: fe-safe USER GUIDE, 2016. T. Dirlik, "Application of Computers in Fatigue Analysis", University of Warwick Thesis, 1985.

Life Prediction

- Palmgren-Miner Rule
 - Vibration linearly accumulates damage on the structure
 - Failure criterion: Fails at damage $D \ge 1$
 - > Damage when applied *n* loading cycles (fixed amplitude):

$$D = \frac{n}{N}$$

Damage under variable amplitude load:

$$D = \sum_{i=1}^{k} \frac{n(S_i)}{N(S_i)}$$

> Damage under load according to p(S):

$$D = \int_0^\infty \frac{\mu \, p(S)}{N(S)} \, dS$$

n : number of applied loading cycles

N : fatigue life at this load level (amplitude)

k : number of the different amplitudes S_i : amplitudes of load $n(S_i)$: number of cycles of amplitude S_i $N(S_i)$: fatigue life for amplitude S_i

p(S) : probability of amplitude *S* μ : number of peaks <u>per unit time</u>, $\mu = \sqrt{m_4}/\sqrt{m_2}$

Dassault Systemes Simulia Corp., fe-safe 2017: fe-safe USER GUIDE, 2016. T. Dirlik, "Application of Computers in Fatigue Analysis", University of Warwick Thesis, 1985.

Material Properties and Applied Loadings

Mechanical properties and fatigue properties

Applied random vibration (PSD form)

- Loading time: 21 hours

Freq. (Hz)	X-dir. (g²/Hz)	Y-dir. (g²/Hz)	Z-dir. (g²/Hz)
5	0.0125	0.04	0.05
10	0.03	0.04	0.06
20	0.03	0.04	0.06
200	0.00025	0.0008	0.0008
Standard: GE	3/T 31467.3	Unit g = 9.81 m/s ²	

Applied random vibration

[1] ASM Matweb, "Aluminum 6061-T6; 6061-T651", http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA6061T6, Retrieved in 2020-04-17.
 [2] Yahr, G. T. "Fatigue Design Curves for 6061-T6 Aluminum", United States, doi:10.1115/1.2842286, https://www.osti.gov/servlets/purl/10157028, 1993.

[3] Bureau, M. N. and Denault, J. "Fatigue Resistance of Continuous Glass Fiber/Polypropylene Composites: Consolidation Dependence", Composite Science and Technology, 64, 2004

Boundary Conditions and Intermediate Results

Frequency Analysis

- Boundary conditions
 - Fix lower faces of external frame (Ux=Uy=Uz=0)

- Harmonic Response Analysis
- Boundary Conditions and applied loadings

	X-dir.	Y-dir.	Z-dir.		
Loading	Amplitude = $1g (9.81m/s^2)$				
Loading	Frequency range: 0.1 Hz ~ 200 Hz				
Location	Lower faces of frame				
Constraint	Ux=free	Uy=free	Uz=free		
Constraint	Uy=Uz=0	Ux=Uz=0	Ux=Uy=0		

• Results : FRFs for 6 stress components

Results: Total 20 natural modes

Results – Accumulated Fatigue Damage

- 21 hours of random vibration
 - Standard: GB/T 31476.3
- No damage appeared in composite
- Weak regions appeared in Al frames
 - Due to heavy batteries

Weak region at the connections

Local weak regions

Results – Fatigue Damage on Al Frame

- A: Weak region inside the frame
- B: Section top view inside the frame
 - Fatigue accumulated at the root of cantilever
- C, D: Weak region at local points
 - Frame was connected to heavy batteries

Results – Al+Composite vs. Full Al

- With same thickness, 12% weight reduction
- Similar locations of weak region (frame-plate connection)
- Only local reinforcement at the concentration point was needed

Discussions

- Mode-based numerical fatigue analysis on multi-material battery pack structure
 - Evaluation stage: Harmonic response of the structure
 - Frequency analysis: eigenmodes and natural frequencies
 - Harmonic response analysis: frequency response functions
 - Fatigue analysis stage: Fatigue analysis using random vibration
 - Variable stress amplitude corresponding to random vibration
 - Fatigue life based on accumulation of fatigue damage
- Fatigue analysis results
 - Regions to be reinforced and to be reduced could be identified
 - Cover and carrier appeared to be safe from fatigue failure
 - Connection of frames and batteries were weak points
- Future works
 - Fatigue properties dependent to composite direction
 - Fatigue failure criteria according to anisotropic stress

Thank you

