

Derivation and Validation of a Mechanically Consistent Continuum Damage Model for Brittle Composite Materials

Claudio Findeisen and Jörg Hohe Fraunhofer Institute for Mechanics of Materials IWM, Wöhlerstraße 11, 79108 Freiburg, Germany

Continuum Damage Mechanics of Brittle Anisotropic Materials Motivation

- Damage modeling of brittle Ceramic Matric Composites (CMCs)
 - Stiffness degradation caused by microcracks due to mechanical or thermal loading
 - Due to the (woven) microstructure anisotropic damage evolution and effect
 - Damage effect is deactivated due to crack closure for "compressive" loading
 - Small amount of plastic deformation possible
- <u>Damage deactivation</u> with a continuous stress-strain relation [Chaboche 1993]
- Mechanically consistent if stiffness decreases by damage [Wulfinghoff2017]:

 $\varphi(\varepsilon, D) \ge \varphi(\varepsilon, D + dD)$ for all admissible ε, D, dD

→ For most Models not fulfilled [Lemaitre 1996, Chaboche 2001,...]

Stress-strain behavior of a damaged brittle composite material

Continuum Damage Mechanics of Brittle Anisotropic Materials

Model Formulation

Model Validation by Homogenization Results

 90° 120° 60° 150° 30° $300_{0^{\circ}}$ 100 180° 330° 210° 300° 240° 270° $L_0(\omega)$ - Undammaged State $\tilde{L}(\omega)$ - From Homogenization $L(\omega)$ - Model 1 $L(\omega)$ - Model 4 $L(\omega)$ - Chaboche Model

- Model formulation
 - Neglects plastic deformation (1. Step)
 - Linear damage effect
 - Based on an invariant representation with orthotropic Invariants I_1, \ldots, I_{18}
 - Reduction by restricting the damage state D to in-plane damage
 - Reduction by the damage growth criterion
 - Mechanically consistent damage effect model with 6 Material Parameters
 - Damage deactivation that results in a continuous (C⁰) stress-strain relation
- Model validation by virtual test data using simple homogenization approach (dilute crack distribution in anisotropic matrix)

Continuum Damage Mechanics of Brittle Anisotropic Materials

Model Formulation

Damage Deactivation by closed microcracks

 90° 120° 60° 150° 30° $300 \\ 0^{\circ}$ 100 180° 330° 210° 240° 300° 270° $L_0(\omega)$ - Undammaged State $L(\omega)$ with $g_1 < 0, g_2 < 0$ $L(\omega)$ with $q_1 < 0, q_2 > 0$ $L(\omega)$ with $g_1 > 0, g_2 > 0$

- Model formulation
 - Neglects plastic deformation (1. Step)
 - Linear damage effect
 - Based on an invariant representation with orthotropic Invariants I_1, \ldots, I_{18}
 - Reduction by restricting the damage state D to in-plane damage
 - Reduction by the damage growth criterion
 - Mechanically consistent damage effect model with 6 Material Parameters
 - Damage deactivation that results in a continuous (C⁰) stress-strain relation
- Model validation by virtual test data using simple homogenization approach (dilute crack distribution in anisotropic matrix)