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ABSTRACT 

Several works have been made on the simulation of unidirectional composite microstructure using 

Representative Volume Elements (RVE). These simulations, especially for the consideration of non-

uniform distributed fibers tend to be computationally expensive, using hundreds of thousands of finite 

elements to complete. In the present work, a generalized finite element approach to the simulation of 

RVEs is shown. A polygonal generalized finite element enriched in such way that a circular fiber 

naturally exists in its domain is made to efficiently simulate a composite microstructure by using its 

Voronoi cells as a natural mesh. This proposition is not aimed at perfect accuracy comparing to 

traditional methods but to be a computationally efficient procedure for the simulation of non-uniform 

fiber unidirectional compositive microstructures to use in either identifying critical regions through 

statistical analysis that need several realizations or to create synthetic populations for optimization or 

training artificial neural networks that study RVEs. Results of the approach for accuracy and 

computational time are shown and compared to a classical approach using the ABAQUS commercial 

finite element software. Accuracy of up to 98% were obtained for maximum stress positions and a 

significant computational time and memory required decrease. 

 

1 INTRODUCTION 

In the field of material sciences and structural analysis, micro-mechanical computational analysis 

has been widely utilized over the past few decades. Numerous techniques have been developed to 

simulate and predict properties and phenomena in various classes of materials, from metals to 

polymers to ceramics to composite materials [1]. The study of predicting mechanical properties, 

damage evolution and failure in heterogeneous materials like composite materials with continuous 

fibers has been an ever-growing area of research that more and more use the tools of micromechanical 

analysis to correctly understand the complex physical behavior that appears when combining different 

phases in uniform or non-uniform distributions (Figure 1). 

 

  

(a) (b) 

Figure 1: Composite microstructures with Voronoi cells for (a) uniform fiber distribution (b) non-

uniform fiber distributions 

To better understand the physical behavior of non-uniformly distributed fibers in composite 

materials manufactured out of continuous fibers, it usual to use the Finite Element Method (FEM) to 
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create Representative Volume Elements (RVEs) containing hundreds of fibers and hundreds of 

thousands of elements to correctly predict the stress fields under different boundary conditions, which 

is a computationally expensive approach to both create the random distribution of fibers, and run the 

problem, especially when factoring number of degrees of freedom, memory allocation and size of the 

result files. 

Instead, Voronoi tessellation can be employed; this approach considers the fibers' cross sections as 

perfect circles and represents the material as a collection of neighboring polygons with varying 

numbers of sides, each associated with a fiber center and its corresponding Voronoi cell [2]. This 

procedure creates a natural mesh for a composite microstructure, which helps the discretization of such 

problems to use in a finite element or generalized finite element approach, where each Voronoi cell 

can be considered the domain of a polygonal n-gon generalized element (Figure 1). 

The concept of polygonal finite elements was first introduced by Ghosh in a series of works [3, 4, 

5], and has the advantages of being able to create adaptative meshes that can better accommodate for 

complex geometries, especially when using randomly populated nodes inside bidimensional domains, 

but its applicability was limited at the time due to the available computational tools. Despite the 

advantages offered by polygonal finite elements, triangular and quadrilateral elements are generally 

preferred over polygons; several reasons contribute to this preference: the difficulty in creating a 

polygonal mesh, the challenge of finding a family of functions that cover the entire polygonal domain 

while maintaining the partition of unity property and sufficiently describes the boundaries, the 

complexity of both transforming n-gons to and from a parametric uniform domain and integrating over 

the domain. However, as previously discussed, the natural formation of polygonal meshes with 

different-sided polygons through Voronoi tessellation in composite micro-structures may prove 

advantageous if a way to incorporate the fibers or can be found. 

Numerous studies have explored the use of polygonal finite elements. For example, [6] employed 

non-structured meshes with polygonal finite elements to accurately solve elastic problems such as 

cantilever beams and stress intensity factor calculations on crack edges. They used an integration 

strategy that divided the n-gon into n triangles using the barycenter and applied classic Gauss-

Legendre quadrature to integrate over these triangular sub-domains. [7] implemented a Reissner-

Mindlin polygonal membrane element with various families of barycentric shape functions 

(Wachspress, mean-value, Laplace, and piece-wise linear) and compared the solutions. [8] developed a 

high-order polygonal element integrated into a classic finite element method to study elasticity 

problems, including a unit cell for fiber-reinforced elastomer materials, which is relevant to the present 

work. 
The Generalized Finite Element Method (GFEM), initially proposed by [9, 10, 11], extends the 

classic FEM shape functions by incorporating additional enrichment functions, either implicitly or 

explicitly, to better represent the behavior of the element domain under different circumstances. The 

goal of this approach is to enable the simulation of non-uniform composite microstructures using 

polygonal finite elements, with negligible computational cost, in regions where the full influence of 

fiber presence is not significant.  

The present study showcases a novel approach for simulating non-uniform distributed fiber RVEs 

using a generalized finite element method. In this methodology, a Voronoi cell of a composite 

microstructure is treated as a single generalized element, where enrichment functions are employed to 

consider the stress effects of the fiber and the variation in elastic properties within its domain. The 

proposed method involves enriching a polygonal generalized finite element with a naturally occurring 

circular fiber within its domain. By using this approach together with leveraging the Voronoi 

tessellation of a microstructure and taking its cells as elements of a naturally occurring mesh, the 

simulation of composite microstructures becomes highly efficient. However, some problems exist with 

the approach such as the discretization of the boundary of the elements, the integration over the 

different domain, capturing the stress concentrations that naturally occur around the edges of the fiber, 

and the compatibility between the boundary of two neighboring elements. All these issues are solved 

using specially chosen enrichment functions and classic numerical techniques such as Lagrange 

penalization. 

Although this approach does not strive for perfect accuracy when compared to traditional methods, 

its primary objective is to provide a computationally efficient procedure for simulating non-uniform 



23rd International Conference on Composite Materials 

Belfast, 1- 6th August 2021 

fiber unidirectional compositive microstructures. The resulting simulations can be utilized in various 

applications, such as identifying critical regions through statistical analysis that require multiple 

realizations [12]. Additionally, they can be employed to generate synthetic populations for 

optimization purposes or for training artificial neural networks that study RVEs [13]. As such, by 

offering an efficient alternative to traditional methods, this generalized finite element approach opens 

new possibilities for advanced microstructure analysis and modeling. 

 

2 MATHEMATICAL FORMULATION AND METHODOLOGY 

The generalized polygonal finite element is a polygon of domain Ω that may be divided into two 

different domains containing the fiber and matrix phases Ω𝑓 and Ω𝑚 respectively such as Ω = Ω𝑚 ∪

Ω𝑓; the boundary of this polygon Γ defined by 𝑛 sides Γ𝑖 such as Γ = ⋃ Γ𝑖𝑖  (n-gon –Figure 2). Follows 

a concise version of the formulation, based upon previous works of the author and other works [14, 15, 

16]. 

 

 

Figure 2: Domain nomenclature 

2.1 Shape functions and enrichment functions 

The proposed generalized finite element uses Wachspress functions [2] to establish the partition of 

unity base. These functions, denoted as 𝜑𝑛 , serve as fundamental shape functions basis for the 

element. Various methods exist for defining and computing Wachspress functions; in this formulation, 

we adopt an approach inspired by the work of [17], as presented in Equation 1. Here, the Wachspress 

functions 𝜑𝑛 are obtained by evaluating auxiliary area projection functions 𝑤, defined in Equation 2. 

 𝜑𝑛 =
 𝑤𝑛(𝑃)

∑ 𝑤𝑘(𝑃)𝑘
 (1) 

 𝑤𝑘 =
𝐴(𝑄𝑘−1,𝑄𝑘,𝑄𝑘+1)

𝐴(𝑄𝑘−1,𝑄𝑘,𝑃)𝐴(𝑄𝑘,𝑄𝑘+1,𝑃)
 (2) 

In this approach, the calculation of auxiliary functions for each point 𝑃 inside a convex n-gon 

involves 𝑛 distinct functions, each corresponding to a different vertex. To determine these auxiliary 

functions, the vertices of the n-gon are numbered in a counter-clockwise manner. For a given k-th 

vertex 𝑄𝑘 , the value of the corresponding k-th auxiliary area projection function 𝑤𝑘  at point 𝑃  is 

computed using three points: the preceding neighboring vertex 𝑄𝑘−1, the current vertex 𝑄𝑘, and the 

succeeding neighboring vertex 𝑄𝑘+1. These auxiliary functions are defined as the ratio of the area 

formed by the three vertices (represented by the wavy region in Figure 3) to the product of the areas 

formed by the two projected triangles visible to point 𝑃 (highlighted in blue and green in Figure 3). 

Implementation wise an explicit equation using the coordinates of 𝑃 and the points 𝑄𝑘−1, 𝑄𝑘 , and 

𝑄𝑘+1 is used. 
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Figure 3: Area definitions for the calculation of the Wachspress functions 

It should be noted that this definition is not valid when point 𝑃 lies on one of the boundaries of the 

n-gon. In such cases, an approximation is employed by selecting a point 𝑃∗ within a tolerance radius 

of 𝑃 that lies inside the n-gon. The tolerance value should be chosen as small as possible and, through 

numerical experimentation, it was determined that the stability of calculations remained intact for 

tolerances as small as 10−16 ; this approach is of extreme importance for the integration of the 

generalized element over the domain Ω𝑚 = Ω ∖ Ωfiber, since it imposes that quadrature rules used 

need to have strictly internal integration points. 

The fundamental shape functions are then enriched by using locally defined enrichment functions 

as per the GFEM method. The enrichment functions work in two different groups: global enrichment 

functions ψg and stress concentration functions ψs. 
The global enrichment functions serve to increase the degree of the discretization for low sided 

polygons like triangles or quadrilaterals, and to increase the degree of the discretization over the 

boundaries so that the strain distributions, and consequently the stresses, are not constant. This needs 

to be done so the strain compatibilization can be correctly evaluated between elements through a 

penalization procedure (See Session 2.2 and Equation 16). This is achieved by using a family of 

binomial polynomials written on the global 𝑥 and 𝑦 coordinates of the whole system, centered on the 

centroid of a given n-gon (�̅�, �̅�). These functions can be written as. 

 𝜓𝑝𝑞
𝑔 (𝑥, 𝑦) = (𝑥 − �̅�)𝑝(𝑦 − �̅�)𝑞−𝑝, 𝑝 = 1. . 𝑞 (3) 

[18] created a method to procedurally develop high order Wachspress bases for any m-face 

polygon, and applied that to a Discontinuous Galerkin Method obtaining results similar to what is 

done on the present paper using the global enrichment functions . 

The stress concentration enrichment functions 𝜓𝑠, are local to the element coordinates and work by 

using radial basis functions centered on the edge of the fiber to capture the stress concentration around 

the fiber. In particular, the approach taken in this paper is that 𝑛 of such functions, each one centered 

on the intersection of the fiber edge to the line connecting two neighboring fibers. While this does not 

necessarily indicate a stress concentration region, most of the stress concentration points happens in 

areas close to these regions, and for the regions where that do not happen, the equilibrium will make it 

so the enriched degrees of freedoms will be small, coupled with the multiplying Wachspress functions 

this will suppress these regions and get the correct behavior. 

Mathematically these can be written as, as per Figure 4. 

 𝜓𝑝
𝑠(𝑥, 𝑦) = {𝑒

−
(𝑟−𝑟0)

2

𝜎2 ,   𝑖𝑓 (𝑥, 𝑦) ∈ Ω𝑚
0, 𝑖𝑓 (𝑥, 𝑦) ∈ Ω𝑓

 (4) 
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Figure 4: Geometric definitions for the stress concentration enrichment functions 

As such the final shape functions of the element 𝜙 are written as: 

 𝜙(𝑥, 𝑦) = 𝜑(𝜉, 𝜂) + 𝜑(𝜉, 𝜂)𝜓𝑔(𝑥, 𝑦) + 𝜑(𝜉, 𝜂)𝜓𝑠(𝑥, 𝑦) (5) 

 𝜙 = 𝜑⊗ {1 𝜓𝑔 𝜓𝑠} (6) 

where ⨂ denotes the Kronecker product. 

 

2.2 Element compatibility 

 

Since neighboring elements may not necessarily have the same shape functions since these depend 

on both the number of sides of a particular Voronoi cells and the position of the fiber center in that 

element in relation to the boundaries, which may affect the stress concentration enrichment functions, 

the classical superposition method used for classic finite element method cannot guarantee a smooth 

transition of displacements and strains through the sides of each neighboring polygonal element. 

The compatibility between neighboring elements is therefore imposed through a penalization 

condition using Lagrange multipliers on every common side Γ; in Equation 7 this is identified as Γ− 

and Γ+  for two neighboring elements, where the minus indicates the element with the smaller 

numbering identification in an algorithmic implementation. Equation 7 therefore describes the extra 

terms of virtual energy created in the system by the compatibility occurring in the common side Γ  

 𝛿ΠΓ = δ(∮ 𝜆𝑢 ∙ (𝑢|Γ− − 𝑢|Γ+)𝑑ΓΓ
) (7) 

This penalization is continuous through every Γ𝑖 side using classic unidimensional cubic Hermite 

polynomials 𝜒 for the discretization of the penalizing forces 𝜆, found in Equations 8 and 9, where the 𝜁 

coordinate is a local coordinate existing in the Γ𝑖 side, varying from [−1,+1], as per Figure 5. 

 

Figure 5: Local boundary coordinate definition 
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 𝜒 =

{
 
 

 
 
1

2
(1 − 𝜁) −

1

2
(1 − 𝜁2) +

1

16
(−9𝜁3 + 𝜁2 + 9𝜁 − 1)

1

2
(1 + 𝜁) −

1

2
(1 − 𝜁2) +

1

16
(+9𝜁3 + 𝜁2 − 9𝜁 − 1)

(1 − 𝜁2) +
1

16
(27𝜁3 + 7𝜁2 − 27𝜁 − 7)

1

16
(−27𝜁3 − 9𝜁2 + 27𝜁 + 9) }

 
 

 
 

 (8) 

 𝜆 = 𝜉𝑝𝜆𝑝 (9) 

2.3 Governing equations and numerical integration 

 

An isoparametric space is needed to define the integration points of the quadrature. By utilizing the 

Wachspress functions 𝜑𝑛 , the polygonal finite element can be mapped to an isoparametric space, 

where the n-gon is inscribed within a unit circle, as depicted in Figure 6 for a pentagonal unit cell. 

Figure 6 also illustrates the impact of the isoparametric transformation on the fiber. A perfectly 

circular fiber undergoes distortion, and its boundaries are not trivially identifiable. In this work, the 

boundary is determined by inverting the isoparametric relation using a Newton-Raphson procedure. 

 

Figure 6: Transformation from parametric and global system 

The final elemental energetic contributions to the equilibrium equation Π𝑒𝑙𝑒𝑚 is written as: 

 𝛿Π𝑒𝑙𝑒𝑚 = 𝛿𝑢𝑇 (∫ 𝐵𝑇𝐶𝑚𝐵𝛺
𝑑𝛺 + ∫ 𝐵𝑇(𝐶𝑓 − 𝐶𝑚)𝐵𝛺𝑓

𝑑𝛺) 𝑢 + 𝛿𝑢𝑇 (∮ (𝑁𝜙
−|
Γ−
−𝑁𝜙

+|
Γ+
)
𝑇
𝑁𝜆𝑑ΓΓ

) 𝜆 +

𝛿𝜆𝑇 (∮ 𝑁𝜆
𝑇 (𝑁𝜙

−|
Γ−
− 𝑁𝜙

+|
Γ+
)𝑑Γ

Γ
) 𝑢 − 𝛿𝑢𝑇 (∫ Nϕ𝛺

𝑏𝑑𝛺 + ∮ 𝑁𝜙|Γ𝑓
𝑡𝑑Γ𝑓Γ𝑓

) (10) 

where 𝑁𝜆, 𝑁𝜙, 𝐵 are the classic displacement and strain discretization matrixes but using the enriched 

shape functions, and Cf and Cm are the classic plane strain constitutive matrices. 

 𝑁𝜆 = [
𝜒⊗ {1 0}

𝜒⊗ {0 1}
] (11) 

 𝑁𝜙 = [
𝜙⊗ {1 0}

𝜙 ⊗ {0 1}
] (12) 

 𝐵 = [

𝜙,𝑥⊗ {1 0}

𝜙,𝑦⊗ {0 1}

𝜙,𝑥⊗ {0 1} + 𝜙,𝑦⊗ {1 0}

 ] (13) 

 𝐶𝑚|𝑓 =
𝐸𝑚|𝑓

(1+𝜈)(1−2𝜈)
[

1 − 𝜈𝑚|𝑓 𝜈𝑚|𝑓 0

𝜈𝑚|𝑓 1 − 𝜈𝑚|𝑓 0

0 0
1−2𝜈𝑚|𝑓

2

] (14) 

Which can be summarized in matrix form as: 
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 [
𝐾 𝐿𝑇

𝐿 0 ] {
𝑢
𝜆
} = {

𝐹
0} (15) 

Where K is a matrix containing every local stiffness matrix of every n-gon element without 

superposition, relating to duplicate degrees of freedom in neighboring elements, 𝐹 is a force vector 

integrated over the either the whole system for body efforts 𝑏 or over defined boundary conditions Γ𝑓 

with traction efforts 𝑡 and 𝐿 is a matrix containing a set of penalization equation through every side 

created in the Voronoi diagram shared by two cells, each pair generating a matrix 𝐿Γ for that side Γ. 

Though concentrated efforts could be accounted for energy wise in the formulation, they are neglected 

in the present formulation due to not naturally occurring in the equilibrium and possibility creating 

singularities with the penalizations and the enrichments. 

To account for the different elastic properties existing between the two different phases, the 

integration of the elemental stiffness matrixes 𝐾𝑒𝑙𝑒𝑚  is made through the summation of the Ω𝑚 

domain with the matrix constitutive matrix 𝐶𝑚  and the Ω𝑓  domain with “fiber minus matrix” 

constitutive matrix 𝐶𝑓 − 𝐶𝑚. 

 𝐾𝑒𝑙𝑒𝑚 = ∫ 𝐵𝑇𝐶𝑚𝐵𝛺
𝑑𝛺 + ∫ 𝐵𝑇(𝐶𝑓 − 𝐶𝑚)𝐵𝛺𝑓

𝑑𝛺 (16) 

 𝐿Γ = ∮ 𝑁𝜆
𝑇 (𝑁𝜙

−|
Γ−
−𝑁𝜙

+|
Γ+
) 𝑑Γ

Γ
 (17) 

The integration of stiffness matrix is done in a simple way by separating the n-gon into 𝑛 triangles 

and the circle domain (Figure 7). Each triangle is integrated using an adaptative Xiao-Gimbutas [19]. 

This particular quadrature was chosen for having strictly internal integration points, which could 

create problems if it was not the case for how the Wachspress functions were defined on the boundary. 

The circle domain is then integrated using a King-Song adaptative quadrature [20], which does not 

suffer from the same problem; in fact, some outside points were found to be in fact desirable with this 

approach since that contributes to affect the stress concentration enrichment function on the fiber 

domain. Adaptative quadrature were chosen since the degree of the Wachspress functions and the 

global enrichment functions varies depending on the number of sides of each polygonal element, and 

as such, a single degree of integration cannot guarantee an exact result for every possible domain. 

 

Figure 7: Integration domains 

3 NUMERICAL CASE STUDIES 

Several different case studies were conducted by first analyzing composite microstructures with 

different volume fractions (𝜈 = 40.75%, 61.90%, 69.87%) [21] and obtaining Weibull statistical 

distributions that generate their non-uniform fiber distributions. 

For the present work, the images were analyzed by initially developing a code that identifies the 

radius and positions of fibers within the material sample through algorithms based on Laplacians of 

color layers of expanded matrices from image files (Figure 8). 
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(a)   (b) 

Figure 8: (a,b,c) Example of microscopy or SEM original images [21], (d) Fiber identification 

algorithm 

The distribution of fiber center positions is then adjusted to a hexagonal uniform distribution 

created with a fiber volume fraction equivalent to the original image material, using a genetic 

optimization algorithm. The obtained quantities are adjusted to a Weibull-type statistical distribution 

using the maximum likelihood analysis relationships contained in Equations 11 and 12 [22]. 

 𝑘𝑗+1
−1 =

∑ 𝑥
𝑖

𝑘𝑗
ln 𝑥𝑖

𝑛
𝑖=1

∑ 𝑥
𝑖

𝑘𝑗𝑛
𝑖=1

−
1

𝑛
∑ 𝑥

𝑖

𝑘𝑗 ln 𝑥𝑖
𝑛
𝑖=1  (11) 

 𝜆𝑗 =
1

𝑛
∑ 𝑥

𝑖

𝑘𝑗𝑛
𝑖=1  (12) 

Based on these parameters, possible uniform or non-uniform fiber distribution models can be 

created, as well as finite element models. Examples of this procedure and possible realizations are 

shown in Fig. 9 below. 

 

 

 

a b 

Figure 9: (a) Optimization procedure, (b) Obtained realization of the non-uniform distribution 

Three realizations, one for each of those material cases were chosen, an example of which for the 

first case can be seen on Figure 10. These realizations define an RVE with approximately 20 x 10 

fibers, some near the edges which were suppressed, and were simulated using the present work 

element and ABAQUS commercial finite element software for simple traction and shearing boundary 

conditions, as per the diagrams in Figure 11. 
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Figure 10: Example of realization used for the study cases 

 

  
a b 

Figure 11: (a) Traction boundary conditions, (b) Shear boundary conditions 

 

Even though the images from each reference are manufactured with different matrices and fibers, 

for numerical verification of the model all cases are run with the same material properties, typical 

properties for carbon fiber and epoxy matrix, found in Table 1 below. 

Table 1: Properties for simulations 

𝐸𝑓 [GPa] 𝜈𝑓 [] 𝐸𝑚 [GPa] 𝜈𝑚 [] 

127 0.324 8.93 0.224 

 

The number of degrees of freedom on each model and the relative difference for displacements, 

maximum stress values and position of these maximum stress were compared between the two, as well 

as the computational time it took. 

 

4 RESULTS 

Three realizations for each of the volume fractions described in the previous section were simulated 

using both the present model and ABAQUS. Table 2 contains the average number of number of 

degrees of freedom obtained for convergence and the computational time needed to solve the system 

for each load case using a simple laptop for the three cases. Table 3 shows the maximum displacement 

for each of the cases and the difference obtained between the current work and ABAQUS. 
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Table 2: Degrees of freedom and computational times 

Volume fraction of 

fiber [%] 

Solver Number of degrees of 

freedom for 

convergence 

Time [s] 

40.75 Present Work 4423 7.636 

ABAQUS 5930564 1273.2 

61.90 Present Work 4940 8.536 

ABAQUS 6349848 1402.3 

68.87 Present Work 4780 7.838 

ABAQUS 6018381 1313.5 

Table 3: Results for different study cases 

Volume 

fraction of 

fiber [%] 

Load case Solver Maximum 

normalized 

displacement 

Average 

principal stress 

Maximum 

principal stress 

40.75 Traction Present Work 0,1034 14,0260 519,3400 

Abaqus 0,1034 14,0260 451,8258 

Shear Present Work 0,1450 19,6690 728,2814 

Abaqus 0,1450 19,2756 633,6048 

61.90 Traction Present Work 0,0887 12,0320 445,5073 

Abaqus 0,0888 11,8962 386,6903 

Shear Present Work 0,1043 14,1481 523,8604 

Abaqus 0,1043 13,8181 437,9473 

68.87 Traction Present Work 0,0768 10,4178 385,7380 

Abaqus 0,0768 10,2995 356,0362 

Shear Present Work 0,0993 13,4698 498,7472 

Abaqus 0,0992 13,4240 459,8801 

 

It can be seen from both tables that the number of degrees of freedom was about three orders of 

magnitude lower than the ones needed in the classic method to obtain convergence of maximum stress 

values. When separating the total time spent on Abaqus solution, the more than 68% of the time was 

taken by mesh generation (for example, in the first case it took 123 s on geometry creation, 873 s on 

mesh generation and 240 s on system solution), showing the main advantage of the method. The 

accuracy of maximum displacements was deemed to be good of 99% but given these are primary 

variables of the weak problem this is to be expected. The values of average stresses were found to be 

accurate which were deemed to be acceptable given the increased computational efficiency obtained. 

The values of maximum stresses were not as coherent which makes sense since the enrichment 

functions do not perfectly capture the physical behavior of clustering of fibers. 

However, when looking at the position of the largest stresses values the present methodology can 

correctly predict the location of stress concentration, which is a good result for the creation of 

synthetic populations for training of neural networks that may analyze UD composite microstructures. 

 

5 CONCLUSIONS 

The results obtained with the present methodology and a classical approach using a commercial 

solution with ABAQUS were compared: the accuracy in displacements, which for benchmarks tested 

was over 98%, accuracy in strains, which for benchmarks tested was an average of over 90%, 

computational time, and number of degrees of freedom and were both reduced by three orders of 

magnitude. The last result is a particular interesting result for use within optimization and artificial 

neural networks. 
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