a? FORMLLE

Event-Driven Data Analysis for System Verification and
Operation

Requirements as code

Get Started

Akos Nagy, Mérton Szabé

https://formule.dev/

) R ' _ ’ T "
i 2 g :» 1000 lines..

e y < L F i R |)
4 4 - = ol 1. T e e

> 10 lines

Formule

THEN ystem.g I" : il ol
WITHIN 500ms "

THEN system.s
WITHIN SOK. 15

The Problem: A Car That Wouldn’t Start

Our story began with a critical issue: brand new test vehicles were failing to start. <= @
Root cause Tiny communication delays between ECUs.

Effect: A cascade of failures aborting the car’s startup.

A major bottleneck: analysts spent hours manually digging through massive log files for each failed car just to

find the problem.

Systems work as expected.
www.formule.dev

https://www.formule.dev/

The First Attempt: A Brute-Force Automation

= A custom tool in Java and Groovy to implement the same checks the analysts were performing
= A partial victory, successfully cutting diagnosis time from hours down to minutes ¥

» The catch: it only worked for already known root causes

= Created a new monster: a codebase with thousands of lines of complex logic.

m Slow adaptation: implementing checks for new issues and requirements significant software test
engineering effort.

= No adoptation: while the developers worked on the tests, the analysts resolved the issues manually. By the
time the automation was done, the analyst team already moved on to the next issue.

Systems work as expected.

www.formule.dev

https://www.formule.dev/

The Breakthrough: g’FI]RMULE

Shift our thinking from coding the hunt for errors to simply describing the rules for success. '+

= Formule has born, an executable Domain-Specific Language (DSL).

m PoC, a dramatic simplification: thousands of lines of Java test code replaced by just few dozen lines of
readable DSL.

= Not only found many issues, but also provided the first and most complete documentation of the
subsystem’s (High Voltage Controller Wake-up Sequence) behavior.

= Not just shorter code; a paradigm shift to empower domain experts.

Systems work as expected. g
www.formule.dev FI]RMI-“-E

https://formule.dev/
https://www.formule.dev/

For the first time, analysts were able to read, write,
and modify test scenarios themselves, without
needing a programmer.

Verifying Complex Space Systems

The complexity of space systems is continuously increasing, driven by demands for greater autonomy and
sophisticated mission capabilities.

Verifying these systems presents significant challenges.

Communication Clarity Requirements Traceability

Ensuring clear communication between diverse Managing traceability across the application
teams (Requirements, Software, V&YV, Root Cause lifecycle and complex mission phases.
Analysis).

Interaction Validation Methodological Limitations
Validating hardware-software and component-to- Overcoming limitations of traditional verification
component interactions under critical operational methods.

constraints.

Systems work as expected. g F[IRM“LE

www.formule.dev

https://www.formule.dev/

The science behind Formule

Formule is a practical application of Temporal Logic, a formal system for reasoning about properties of
systems over time. It simplifies complex logical concepts into an intuitive, event-driven syntax.

The DSL directly maps to concepts found in formal languages like Linear Temporal Logic (LTL):

= G(<condition>) inLTL becomes "ASSERT <condition>"

m G(trigger-F(post_condition)) inLTL turnsinto 'WHEN <trigger> THEN <post-condition>"
= Real-time constraints from Metric Temporal Logic, e.g.. WITHIN <time>"

In essence, our DSL provides the power of formal verification without the steep learning curve of writing raw
LTL formulas, making it ideal for engineering requirements.

Systems work as expected.

J FORMLILE

www.formule.dev

https://www.formule.dev/

From text to test

Real-time validation of satellite bus telemetry against operational limits

Let’s check this requirement from the YAMCS* quickstart demo:

Requirement text
9 Pseudo-code

Formule
When the sun sensor
, when Sunsensor was < 10 Same as the pseudo
measures sunlight, —
, , and Sunsensor >= 10 code, but
the satellite shall switch to -
then Mode_Day = 1 within executable!

'day mode'

o 500 ms
within half a second

* YAMCS /jaemz/ is an open source mission control software developed by Space Applications Services. This

Systems work as expected. g F[IRM“LE

www.formule.dev

https://yamcs.org/
https://github.com/yamcs/quickstart.git
https://www.formule.dev/

Turn 1t iInto a Formule!

Requirement: When the sun sensor measures sunlight, the satellite shall switch to 'day mode' within half a
second.

[requirement id: "REQ-001"] .
when myproject — Sunsensor was < 16 and = REQ-001: When the signal of the sun sensor

myproject — Sunsensor = 10 changes from a value less than 10
then myproject — Mode_Day = 1 within 500 ms

= _..:to avalue greater than or equal to 10

m ... then 'mode day'is active within 500 ms

Notice how close it is to our pseudo-code!

Systems work as expected. g
www.formule.dev FI]RMI-“-E

https://www.formule.dev/

One more thing ...

event day_mode_alert
output signal day_mode_error is int

when myproject — Sunsensor was < 10 and myproject — Sunsensor = 10
then myproject — Mode_Day = 1 within 500 ms
on fail emit day_mode_alert
on fail set day_mode_error to 1
on fail collect myproject — Sunsensor, myproject — Mode_Day from -5s to +2s

» Use normal Formule requirements like before

» Define what to do when the verification check passes or fails
= Emit events
= Send output signals
m Capture relevant signals in a defined time frame

= Use C , Python or Lua bindings to handle collected data

Systems work as expected.
www.formule.dev

https://www.formule.dev/

Meet a? FORMULE

m A DSL designed to empower domain experts.

= An event-driven data analytics engine.

m Directly interacts with system data like telemetry and command (TC) logs.
m Supports real-time analysis.

= Run on a PC, server, cloud, or embedded device.

» |ntegrate into existing pipelines.

= Stream filtered data to other systems.

Systems work as expected.
www.formule.dev

https://www.formule.dev/

Architecture of the Formule

T loT
devices

A =

Airplane ﬁ Train

Factory

logs

Cloud —>»
g Event
Services bub
Kubernetes -
Database

Data source

Data can be captured from
various sources, either real
time or recorded into trace
files

Systems work as expected.
www.formule.dev

%

in-house
tools

Standard

analytic tools

4
Log
Management

Dissector

In order to analyze data, it
shall be dissected into
events, messages and
signals

Requirements
as Formule scripts

<

Analytics engine

Analysis

Formule scripts declare
time-bound requirements on
events, messages and

signals

Time series
dataset

Results

Triggering events and
checks can be either
persisted into time series
data or processed with
Python scripts

Ecosystem

Slides

-N

Dashboards

Visualization

Put your results on real time
dashboards, channel into
health monitoring systems or
generate printable reports,

- PowerPoint slides, etc.

FORMLLE

https://www.formule.dev/

How this helps you reducing costs?

Requirements as code Lower data volume
e Domain Experts to maintain their own tests e Filter telemetry, reduce data
e Faster turnaround, less dependency on e Lower bandwidth and storage usage
programmers e Cut telemetry files, focus on relevant data

e Replace requirements text, no need to sync

Stream data to other systems Like a query language
e Control test benches Analysts can write Formule scripts to catch typical

e Trigger external loggers root causes of issues, narrowing down the problem,
eliminating repetitive work in root cause analysis.
e Update dashboards grep y

e Send alerts

Systems work as expected. gFﬂRM“LE

www.formule.dev

https://www.formule.dev/

What about that big elephant in the room?

Options for using LLMs

T —Fransformrequirementstoexecutabtecode
No, we don't do that.

Tried with limited success back in 2023. Nowadays it is possible,
but requires deep review of generated code.

No, we don't do that, either.
We want deterministic results and we want them fast.

3. Translate requirements from text to Formule script

Since Formule DSL is very close to the language of requirements,
it is possible to translate requirements to Formule using LLMs with
high accuracy and low effort.

4. Make Formule output available to LLMs and let the user ask questions about it

We can stream Formule output (Test results, incoming / generated signals, events) into a database.
Then we might use RAG to make this data available for LLMs.

Systems work as expected. g FORMLLE

www.formule.dev

https://www.formule.dev/

From requirements to Formule using LLMs

®» |nput: Formule language specification and the YAMCS example
= Prompt: Requirements text (see comments below)

®» Qutput: Formule script

when SYS_state turns from SYS_STATE_INIT to SYS_STATE_RUN
then BMS_modus is BMS_MODE_READY within 500 ms

when BMS_modus turns BMS_MODE_READY
then U_STACK = U_STACK_NORMAL_MIN and U_STACK < U_STACK_NORMAL_MAX within 50 ms

assert U_STACK < U_STACK_MAX

when BMS_modus is BMS_MODE_READY and (U_STACK < U_STACK_NORMAL_MIN or U_STACK > U_STACK_NORMAL_MAX)
then BMS_modus is BMS_MODE_ERROR within 50 ms

Systems work as expected. g,F[IRM“LE

www.formule.dev

https://www.formule.dev/

Conclusion

Formal, declarative language
Human-readable. No software engineering skills are
needed. Executable. Automated verification of

requirements.

Improved traceability

Reduce costs by removing the need to manually
sync requirements and tests. Use Formule for both
requirements and test specifications.

Stable and deterministic

No Al, no LLMs, no uncertainty in the core. Pure
verification. Each execution on the same dataset
yields the same results.

Al in the loop
Use LLMs to prepare requirements or postprocess
Formule output.

Ready for on-board execution

Embedded runtime with minimal dependencies and
a small footprint. Update Formule scripts without
changing the system software.

Reduce data volume
Capture and transmit only relevant diagnostic data.
Cut telemetry files so analysts can focus on relevant

Systems work as expected.
www.formule.dev

data.
8’ FORMLLE

https://www.formule.dev/

(E? FORMULE

Ready to Transform Your System Specifications?

Get Started - Documentation - Contact Us

Requirements to Verification - Systems work as expected.

https://formule.dev/
https://docs.formule.dev/
https://formule.dev/

