
Event-Driven Data Analysis for System Verification and

Operation

Requirements as code

Get Started

Ákos Nagy, Márton Szabó

https://formule.dev/

From Hours of Debugging to a few lines of code:

The Story Behind Formule

The Problem: A Car That Wouldn’t Start

Our story began with a critical issue: brand new test vehicles were failing to start. 🚗💨

Root cause Tiny communication delays between ECUs.

Effect: A cascade of failures aborting the car’s startup.

A major bottleneck: analysts spent hours manually digging through massive log files for each failed car just to

find the problem.

Systems work as expected.

www.formule.dev

https://www.formule.dev/

The First Attempt: A Brute-Force Automation

A custom tool in Java and Groovy to implement the same checks the analysts were performing

A partial victory, successfully cutting diagnosis time from hours down to minutes ✅

The catch: it only worked for already known root causes

Created a new monster: a codebase with thousands of lines of complex logic.

Slow adaptation: implementing checks for new issues and requirements significant software test

engineering effort.

No adoptation: while the developers worked on the tests, the analysts resolved the issues manually. By the

time the automation was done, the analyst team already moved on to the next issue.

Systems work as expected.

www.formule.dev

https://www.formule.dev/

The Breakthrough:

Shift our thinking from coding the hunt for errors to simply describing the rules for success. ✨

Formule has born, an executable Domain-Specific Language (DSL).

PoC, a dramatic simplification: thousands of lines of Java test code replaced by just few dozen lines of

readable DSL.

Not only found many issues, but also provided the first and most complete documentation of the

subsystem’s (High Voltage Controller Wake-up Sequence) behavior.

Not just shorter code; a paradigm shift to empower domain experts.

Systems work as expected.

www.formule.dev

https://formule.dev/
https://www.formule.dev/

For the first time, analysts were able to read, write,
and modify test scenarios themselves, without

needing a programmer.

Verifying Complex Space Systems

The complexity of space systems is continuously increasing, driven by demands for greater autonomy and

sophisticated mission capabilities.

Verifying these systems presents significant challenges.

Communication Clarity
Ensuring clear communication between diverse

teams (Requirements, Software, V&V, Root Cause

Analysis).

Requirements Traceability
Managing traceability across the application

lifecycle and complex mission phases.

Interaction Validation
Validating hardware-software and component-to-

component interactions under critical operational

constraints.

Methodological Limitations
Overcoming limitations of traditional verification

methods.

Systems work as expected.

www.formule.dev

https://www.formule.dev/

The science behind Formule

Formule is a practical application of Temporal Logic, a formal system for reasoning about properties of

systems over time. It simplifies complex logical concepts into an intuitive, event-driven syntax.

The DSL directly maps to concepts found in formal languages like Linear Temporal Logic (LTL):

G(<condition>) in LTL becomes ASSERT <condition>

G(trigger→F(post_condition)) in LTL turns into WHEN <trigger> THEN <post-condition>

Real-time constraints from Metric Temporal Logic, e.g.: WITHIN <time>

In essence, our DSL provides the power of formal verification without the steep learning curve of writing raw

LTL formulas, making it ideal for engineering requirements.

Systems work as expected.

www.formule.dev

` ` ` `

` ` ` `

` `

https://www.formule.dev/

From text to test

Real-time validation of satellite bus telemetry against operational limits

Let’s check this requirement from the YAMCS* quickstart demo:

Requirement text

When the sun sensor
measures sunlight,

the satellite shall switch to
'day mode'

within half a second

Pseudo-code

when Sunsensor was < 10
and Sunsensor >= 10

then Mode_Day = 1 within
500 ms

Formule

Same as the pseudo

code, but

executable!

* YAMCS /jæmz/ is an open source mission control software developed by Space Applications Services. This

example demonstrates verification of real-time telemetry data from YAMCS quickstart demo

Systems work as expected.

www.formule.dev

https://yamcs.org/
https://github.com/yamcs/quickstart.git
https://www.formule.dev/

Turn it into a Formule!

Requirement: When the sun sensor measures sunlight, the satellite shall switch to 'day mode' within half a

second.

REQ-001: When the signal of the sun sensor

changes from a value less than 10

…: to a value greater than or equal to 10

…: then 'mode day' is active within 500 ms

Notice how close it is to our pseudo-code!

Systems work as expected.

www.formule.dev

[requirement id: "REQ-001"]

when myproject -> Sunsensor was < 10 and

myproject -> Sunsensor >= 10

then myproject -> Mode_Day = 1 within 500 ms

1

2

3

4

https://www.formule.dev/

One more thing …

Use normal Formule requirements like before

Define what to do when the verification check passes or fails

Emit events

Send output signals

Capture relevant signals in a defined time frame

Use C , Python or Lua bindings to handle collected data

Systems work as expected.

www.formule.dev

event day_mode_alert

output signal day_mode_error is int

when myproject -> Sunsensor was < 10 and myproject -> Sunsensor >= 10

then myproject -> Mode_Day = 1 within 500 ms

on fail emit day_mode_alert

on fail set day_mode_error to 1

on fail collect myproject -> Sunsensor, myproject -> Mode_Day from -5s to +2s

1

2

3

4

5

6

7

8

` ` ` ` ` `

https://www.formule.dev/

Meet

A DSL designed to empower domain experts.

An event-driven data analytics engine.

Directly interacts with system data like telemetry and command (TC) logs.

Supports real-time analysis.

Run on a PC, server, cloud, or embedded device.

Integrate into existing pipelines.

Stream filtered data to other systems.

Systems work as expected.

www.formule.dev

https://www.formule.dev/

Architecture of the Formule Ecosystem

Systems work as expected.

www.formule.dev

https://www.formule.dev/

How this helps you reducing costs?

Requirements as code

Domain Experts to maintain their own tests

Faster turnaround, less dependency on

programmers

Replace requirements text, no need to sync

Lower data volume

Filter telemetry, reduce data

Lower bandwidth and storage usage

Cut telemetry files, focus on relevant data

Stream data to other systems

Control test benches

Trigger external loggers

Update dashboards

Send alerts

Like a query language

Analysts can write Formule scripts to catch typical

root causes of issues, narrowing down the problem,

eliminating repetitive work in root cause analysis.

Systems work as expected.

www.formule.dev

https://www.formule.dev/

What about that big elephant in the room?

Options for using LLMs

1. Transform requirements to executable code

No, we don't do that.

Tried with limited success back in 2023. Nowadays it is possible,

but requires deep review of generated code.

2. Interpret Formule scripts and requirements using an LLM and use RAG to collect data

No, we don't do that, either.

We want deterministic results and we want them fast.

3. Translate requirements from text to Formule script

Since Formule DSL is very close to the language of requirements,

it is possible to translate requirements to Formule using LLMs with

high accuracy and low effort.

4. Make Formule output available to LLMs and let the user ask questions about it

We can stream Formule output (Test results, incoming / generated signals, events) into a database.

Then we might use RAG to make this data available for LLMs.

Systems work as expected.

www.formule.dev

https://www.formule.dev/

From requirements to Formule using LLMs

Input: Formule language specification and the YAMCS example

Prompt: Requirements text (see comments below)

Output: Formule script

Systems work as expected.

www.formule.dev

1 // when the system wakes up, the battery management system switches to ready mode within half second

2 when SYS_state turns from SYS_STATE_INIT to SYS_STATE_RUN

3 then BMS_modus is BMS_MODE_READY within 500 ms

4

5 // when the battery management is ready, the output stack voltage is between normal limits within 50 ms

6 when BMS_modus turns BMS_MODE_READY

7 then U_STACK >= U_STACK_NORMAL_MIN and U_STACK <= U_STACK_NORMAL_MAX within 50 ms

8

9 // BMS stack voltage can't go higher than 26V

10 assert U_STACK <= U_STACK_MAX

11

12 // when stack voltage is lower or higher than normal while BMS is running,

13 // BMS goes to ERROR mode within 50 ms

14 when BMS_modus is BMS_MODE_READY and (U_STACK < U_STACK_NORMAL_MIN or U_STACK > U_STACK_NORMAL_MAX)

15 then BMS_modus is BMS_MODE_ERROR within 50 ms

https://www.formule.dev/

Conclusion

Formal, declarative language

Human-readable. No software engineering skills are

needed. Executable. Automated verification of

requirements.

Improved traceability

Reduce costs by removing the need to manually

sync requirements and tests. Use Formule for both

requirements and test specifications.

Stable and deterministic

No AI, no LLMs, no uncertainty in the core. Pure

verification. Each execution on the same dataset

yields the same results.

AI in the loop

Use LLMs to prepare requirements or postprocess

Formule output.

Ready for on-board execution

Embedded runtime with minimal dependencies and

a small footprint. Update Formule scripts without

changing the system software.

Reduce data volume

Capture and transmit only relevant diagnostic data.

Cut telemetry files so analysts can focus on relevant

data.

Systems work as expected.

www.formule.dev

https://www.formule.dev/

Ready to Transform Your System Specifications?

Get Started · Documentation · Contact Us

Requirements to Verification - Systems work as expected.

https://formule.dev/
https://docs.formule.dev/
https://formule.dev/

